
 1

Efficient Synthesis of Quantum Logic Circuits by Rotation-based Quantum 
Operators and Unitary Functional Bi-decomposition 

Afshin Abdollahi and Massoud Pedram 
Department of Electrical Engineering-Systems 

University of Southern California 
Los Angeles, CA 

 

1. Abstract 
Quantum information processing technology is in its pioneering stage 
and no efficient method for synthesizing quantum circuits has been 
introduced so far. This paper introduces an efficient analysis and 
synthesis framework for quantum logic circuits. The proposed 
synthesis algorithm and flow can generate a quantum circuit using the 
most basic quantum operators, i.e., the rotation and controlled-rotation 
primitives. We will introduce the notion of quantum factored forms, 
and develop a canonical and concise representation of quantum logic 
circuits in the form of quantum decision diagrams (QDD’s) which are 
amenable to efficient manipulation and optimization including 
recursive unitary functional bi-decomposition. This representation will 
produce a rigorous graph-based framework for the analysis and 
synthesis of quantum logic circuits. Subsequently, an effective QDD-
based algorithm will be developed and applied to automatic synthesis 
of quantum logic circuits. 

2. Introduction 
We are beginning to reach the fundamental limits of the materials used 
in the planar CMOS process, the process that has been the basis for the 
semiconductor industry for the past 30 years. Further improvements in 
the planar CMOS process can continue for the next decade or so by 
introducing new materials into the basic CMOS structure. However, as 
we look forward 10-15 years, it becomes clear that even with the 
introduction of new materials, most of the known technological 
capabilities of the CMOS device structure will have reached their 
limits [1]. In order to continue to drive information technology 
advances, it becomes essential to investigate new “beyond CMOS” 
devices and structures, appropriate models of computation, and 
algorithms that may provide a more effective alternative to CMOS.  
Quantum computers can evolve a superposition of quantum states 
until the final output is obtained. Such “quantum parallelism” could 
potentially outstrip power of classical computers [2][3]. Certain 
problems for which there is no polynomial solution in classical 
domain can be solved in polynomial time in quantum domain (e.g., the 
factoring problem). Similarly, the complexity of some other problems 
(e.g., database search and Boolean satisfiability) can be reduced by 
transforming them into the quantum domain [4]. Indeed, quantum 
circuits have the ability to perform massively parallel computations in 
a single time step [5][6]. Hence quantum computing has become a 
very attractive research area, which is expected to play an increasingly 
critical role in building more efficient computers [7][8]. 
Quantum mechanics and quantum computing are established research 
areas; however, systematic design methods and logic design for 
quantum circuits and systems is at a primitive stage. Computer aided 
design of quantum circuits is even less developed, which motivates 
rigorous research aimed at developing CAD techniques and tools for 
quantum circuits. Nearly all quantum algorithms (e.g. Shor’s factoring 
and Grover search algorithms) require the implementation of a 
quantum oracle (logic circuit i.e., a circuit that for binary inputs only 
generates binary outputs.) To completely exploit the “quantum 
parallelism,” this oracle should be realized by using quantum gates 
because it must be able to handle an arbitrary superposition of basis 

vectors (quantum states.) A key problem is thus how to construct a 
minimum-cost realization of this kind of quantum logic circuit. 
Automated synthesis of standard Boolean logic circuits is a well-
studied area with many efficient algorithms. However, no efficient 
method for synthesizing quantum circuits has been introduced so far. 
Previous work on quantum logic synthesis is mostly based on search-
based approaches, which require enormous computational complexity 
(e.g., matrix decomposition, local circuit transformations, spectral 
techniques, and evolutionary approaches.) In this paper a canonical 
decision diagram based representation of quantum circuits is presented 
and a CAD methodology and novel techniques for synthesis of 
quantum logic circuits based on these decision diagrams are described.  
Quantum computation can utilize a series of steps, each logically 
reversible, and this in turn allows physical reversibility [9][10]. Hence, 
every quantum circuit is reversible and classical binary reversible 
synthesis and quantum synthesis are closely related research areas. 
Feasibility of reversible logic circuits has been technologically 
demonstrated [16]; the proposed approach is also applicable to 
synthesis of such circuits. The reminder of this paper is organized as 
follows: In section 3, some fundamental aspects of quantum 
mechanics is presented. Section 4, summarizes the previous work on 
quantum circuit synthesis. In section 5, the proposed technique is 
presented which includes the introduction of quantum factored forms, 
quantum decision diagrams (QDD’s) and QDD-based quantum circuit 
synthesis. The conclusions are provided in section 6. 

3. Fundamentals of Quantum Computing 
In quantum computation quantum bits (qubits), derived from the states 
of micro-particles such as photons, electrons or ions are used instead 
of classical binary bits to represent information. For example, two 
possible spin rotations of an electron are represented as 
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which are the basis states (basis vectors) of this computational 
quantum system [17][18]. Each particle in a quantum system is 
represented by a wave function inheriting the powerful concept of 
superposition of states. For example, the state of a particle p1 may be 
represented by a wave function 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

1

1
111 1

0
0
1

β
α

βαΨ  where the 

coefficients α1 and β1 are in general complex and |α1|2+|β1|2=1. In 
general, the wave function of a quantum system with n qubits 
represents an arbitrary superposition of 2n states while in a classical 
system n bits represent only 2n distinct states. Therefore the space of 
quantum systems is exponentially larger than that of the classical 
binary systems. Analysis (and by extension, synthesis)  of quantum 
logic circuits is more difficult than that of the digital logic circuits 
because the former requires manipulation of matrices and bases in 
Hilbert space whereas the latter requires binary, or at most multi-
valued,  logic operations. Quantum operators over a set of qubits are 
modeled as matrix operations. As an example, for a quantum system 
comprising of a single particle p1, a quantum operator (gate) is 
represented by a 2×2 (in general complex) unitary matrix U which 
transforms state T

111 ][ βαΨ =  to state 
12 UΨΨ = . Recall that a 

matrix U is unitary exactly if UU+=I where U+ is the hermitian 
(complex conjugate transpose) of U. Since matrix U is unitary, the 
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inverse of this gate is matrix U+, which is the inverse of U. An 
important class of quantum operators is the rotation operator. For 
example, a θ rotation around the X axis in Bloch sphere representation 

[4] is defined by: 
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The following relation shows that rotation operators around X are 
commutative with respect to matrix multiplication: 

)()()()()( 211221 θθθθθθ +== xxxxx RRRRR . 

In general for an n-qubit system, a quantum operation (or gate) is 
represented by a 2n×2n unitary matrix. An example of a 2-qubit gate is 
the controlled-U gate depicted in Figure 1. For a 2×2 unitary matrix U, 
the controlled-U gate works as follows: when the control signal a is 

T]01[ , q=b and when it is T]10[ , then q=Ub. For both cases, p=a. 

 
Similar to controlled-U operator, one can easily define a significant 
class of 2-qubit operators as the controlled-rotation operator.  
Rotation operators are elementary and easily realizable in most 
implementations of quantum computation [4], e.g., nuclear magnetic 
resonance and ion trap realizations. Rotations and controlled-rotations 
around X axis are universal. (A set of gates is universal if every 
quantum logic function can be constructed with this set of gates.) 
These reasons are precisely why this paper will focus on rotation and 
controlled-rotation operators as elementary building blocks for 
synthesis of quantum circuits. A new concise and canonical data 
structure, called quantum decision diagrams or QDD’s, will be 
introduced and subsequently used for conducting quantum operations 
and synthesizing quantum logic circuits. More precisely, the QDD’s 
are designed to have the ability to express the functionality of every 
quantum circuit composed of controlled-rotation operators assuming 
that all rotations are about a single axis and a ‘binary control signal’ 
constraint is enforced.  

4. Previous Work on Synthesis of Quantum 
Logic Circuits 
Reversible logic synthesis and quantum logic synthesis are closely 
related. However, for quantum circuits it is much more efficient to 
focus on logic synthesis with quantum gates. One method for quantum 
circuit synthesis is to decompose the corresponding unitary matrix of 
the circuit into unitary matrices of quantum gates, or alternatively, 
composing the matrices of elementary gates to achieve the unitary 
matrix of the circuit. Because for an n-input, n-output reversible 
circuit, size of the unitary matrix is 2n×2n, this is not a practical 
method for synthesizing a general quantum circuit. Since dealing with 
quantum gates is so much more difficult than dealing with reversible 
binary gates, most researchers have been working on reversible logic 
synthesis using reversible binary gates. The synthesis of reversible 
circuits differs significantly from synthesis by using traditional 
irreversible gates. Several approaches for reversible logic circuit 
synthesis have been presented in [19]-[23]. These approaches resort to 
exhaustive combinatorial search or methods such as matrix 
decomposition, local transformations, spectral approaches, and on 
adaptations of EXOR logic decomposition, Reed-Muller 
representations, and other classical combinational circuit design 
methods. Toffoli [24] provided an algorithm for implementing an 
arbitrary function with the “CNTS” library, comprising of controlled-
NOT, NOT, Toffoli gate, and SWAP gate (see section 5). Many other 
researchers have worked on reversible logic synthesis. Kerntopf [25] 

proposed exhaustive search methods to perform synthesis of small-
scale circuits. In [26] a synthesis method based on manipulating the 
truth tables is presented. The algorithm produces a circuit composed 
of n×n Toffoli gates. (An n×n Toffoli gate has n-1 control lines which 
pass through the gate unaltered and a target line on which the value is 
inverted if all the control lines have value '1'.) The method provided is 
a constructive approach based on the truth tables, which makes it 
computationally expensive and intractable for average and large 
circuits.  Shende et al. [27] generate a library of small optimal circuits 
based on branch-and-bound and exploiting the property that any sub-
circuit of an optimal circuit is itself optimal. This work does not 
provide a synthesis approach for a general logic and is limited to 
synthesizing reversible logic circuits with a small number of inputs 
and gates. Agrawal and Jha [28] presented a RM-expansion based 
technique for optimizing a circuit that is mapped to reversible gates. In 
[29] an algorithm for synthesis of quantum circuits using reversible 
Davio expansion was proposed. However these algorithms are 
intrinsically incapable of generating near optimal circuits and may 
require a large number of temporary storage channels, i.e., input-
output wire pairs other than those on which the function is computed. 
In [30], Shende et al presented a top-down structure using the Cosine-
Sine decomposition and introduced and used the quantum multiplexer 
for recursive implementation of quantum gates. Group theory has also 
been employed as a tool to analyze reversible gates [31] and 
investigate generators of the group of reversible gates [32].  
Few researchers have investigated the synthesis problem of quantum 
circuits by using quantum gates. In [33], Hung et al transform the 
synthesis problem into a satisfiability problem. They in fact use a SAT 
solver instead of employing an exhaustive search. This method is 
practical only for very small circuits since the reported run-time of the 
algorithm for optimal synthesis of a single-bit adder with 6 quantum 
gates is 7 hours on a 850MHz Pentium III processor running Linux. 
Other researchers have turned to evolutionary algorithms to reduce the 
CPU time [34]. However, applying evolutionary algorithms or similar 
techniques (such as simulated annealing and branch and bound) for 
solving a Boolean satisfiability problem does not help much with the 
quantum circuit synthesis task itself since these techniques can be 
applied to any combinatorial optimization problem and tend to only 
provide marginal improvement in terms of quality and runtime over 
semi-exhaustive or local neighborhood search methods. 
It can be inferred that developing a practical synthesis algorithm for 
quantum circuits is extremely difficult because of the fast increase of 
data sizes. Indeed to-date there are no counterparts in quantum logic of 
such useful tools as algebraic decomposition, decision diagram based 
synthesis, or other standard logic synthesis techniques such as 
reduction to covering/coloring combinational approaches. In this paper 
we introduce an efficient data structure based on decision diagrams for 
representation, analysis and synthesis of quantum circuits and provide 
a synthesis approach based on the proposed decision diagrams. 

5. Quantum Logic Synthesis with Rotation-
based Quantum Operators 
In this section, it will be shown that rotations and controlled-rotations 
around the X axis (i.e., )(θxR  and controlled- )(θxR ) form a universal 
gate library. In this section, we will address the problem of 
automatically synthesizing a given Boolean function, f, by using 

)(θxR  and controlled- )(θxR  operators as the elementary operations 
(gate primitives.)  
In a synthesized quantum circuit, the quantum states representing 
binary (basis states) values 0̂  and 1̂  will be:  
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Figure 1. Schematic diagram of a controlled-U
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With this definition of 0̂  and 1̂ , the basis states remain orthogonal, 
and hence, they can be completely distinguished with proper quantum 
measurements. We adopt this definition because inversion from one 
basis state to the other is simply obtained by a π rotation around the X 
axis. With these assignments (i.e. 0̂  and 1̂  as the basis binary states,) 
the )(πxR  operation acts as the quantum NOT gate (since 

IRRR xxx == )2()()( πππ .) Subsequently, the controlled-NOT 
(CNOT) gate can be described by using the controlled- )(πxR  
operator (cf. Figure 2(i).)  In addition, the Toffoli gate, also known as 
the 3×3 Feynman gate or Controlled-Controlled-NOT gate, may be 
described by using the controlled-controlled- )(πxR  operator (cf. 
Figure 2(ii).) Notice that the Boolean functions for each output of the 
CNOT and Toffoli gates are also shown in this figure, where ‘.’ and 
‘⊕’ denote binary ‘AND’ and ‘XOR’ operators. 

  
Toffoli [24] proved that NOT, CNOT and Toffoli gates are universal. 
Toffoli gate can be implemented using controlled-rotation operators as 
demonstrated in Figure 3. Therefore )(θxR  and controlled- )(θxR  
operators are universal. In this figure only the angle of rotation is 
shown for controlled-rotation operators. 

 
In this paper, we focus on rotation-based quantum gates, which are 
directly realizable in quantum hardware [11][12]. In contrast, coarse-
grained quantum gates (such as those in the CNTS library) may be 
used to synthesize an arbitrary quantum logic circuit. The 
disadvantage of the latter is that some of the basic gates in these 
libraries (e.g., the Toffoli and SWAP gates in the CNTS library) have 
complex realizations in quantum hardware. We believe working 
directly with the most primitive universal gates for quantum logic 
provides a higher degree of flexibility and freedom in synthesizing 
efficient quantum hardware, and thus, produces more efficient and 
compact hardware realization of quantum logic circuits. As an 
example, it was shown in [35] that, compared to CNTS-based 
realization, the implementation cost of realizing Fredkin [36] and 
Miller [37] gates is significantly lower when using even a restricted 
subset of the rotation-based operators. 
It is critical to point out that, for all input basis (binary) vectors, 
control inputs of the controlled- )(θxR  operators in the circuit of 

Figure 3 only take 0̂  or 1̂  values. This condition, which we shall 
refer to as the binary control signal constraint, is set as a design 
constraint in the synthesis process. For the purpose of representing 
quantum logic circuits this constraint does not affect the expressive 
power and universality of )(θxR  and controlled- )(θxR  operators and 
has also been adopted by other researchers in the field (cf. [33][34].) 

(This constraint does not imply that a control signal can never adopt a 
superposition value, i.e., it may be possible that a control signal adopt 
a superposition value when (and only when) the inputs of the circuit 
are not binary. In the reminder of this paper whenever we constraint a 
variable to binary values we implicitly mean that when binary inputs 
are applied to the circuit that constraint is set.) Moreover, to the best 
of our knowledge, there is no evidence that relaxing this constraint, 
can improve the optimality of the synthesis result for quantum logic 
circuits.   

5.1 Quantum Factored Forms  
In any quantum circuit synthesized with binary control signal 
constraint, the first output, p, of any controlled- )(θxR  operator is 
equal to the control input a. However, the second output depends on 
both inputs. We use the notation baRq x )(θ=  to describe the second 
output q. With this new notation )(θxR  can also be regarded as a two-

operand operator with the following functionality: if 0̂=a , then 
bq =  else bRq x )(θ= . (The left operand, a, only assumes 0̂  or 1̂ .)  

Definition: Quantum Factored Form. 0̂  is a quantum factored form. 
Every variable is a quantum factored form. If h is a factored form, 
then hRf x )(θ=  is a quantum factored form. Moreover, if g and h are 

factored forms and g only takes 0̂  and 1̂  values, then hgRf x )(θ=  is 
a quantum factored form. 

In a quantum circuit synthesized with )(θxR and controlled- )(θxR  
operators (with binary control signal constraint), any output (or 
internal signal) of the circuit can be described as a quantum factored 
form. For example, the output function r in Figure 3 may be described 
as:  [ ] [ ][ ]cbRaRRbaRr xxxx )2/()2/()2/()( ππππ −= . 

The following two commutative and associative relations are useful 
for manipulating quantum factored forms: 

abRbaR xx )()( ππ = , [ ] [ ]caRbRcbRaR xxxx )()()()( 1221 θθθθ = .  

A sub class of factored forms is cascade forms defined as follows. 

Definition: Quantum Cascade Form. 0̂  is a quantum cascade form. 
Every variable is a quantum cascade form. If h is a cascade form and v 
is a variable not present in h, then hvRf x )(θ=  is a quantum cascade 
form. ( hRf x )(θ=  is also considered a quantum cascade form.) 

A general quantum cascade form is expressed as: 

[ ][ ][ ]  0̂)(  ... )()()( 22110 nxnxxx RvRvRvRf θθθθ=  

Note that if πθ =n
 then nnxn vRv =0̂)(θ . It can be verified that this 

cascade form expression can be rewritten 

as: [ ][ ][ ]  0̂)(  ... )()()(
22110 npxnppxppxpx RvRvRvRf θθθθ=  

Where ),...,,( 21 nppp  is a permutation of ),...,2,1( n . 

The problem of realizing a function using )(θxR and controlled-

)(θxR  operators is equivalent to finding a quantum factored form for 
the function. To do this, we first introduce a graph-based data 
structure in the form of a decision diagram for representing quantum 
logic functions. 

5.2 Reduced Ordered Quantum Decision 
Diagrams (QDD) 
The concept of BDD’s was first proposed by Lee [38] and later 
developed by Akers [39] and then by Bryant [40], who introduced 

Figure 2. (i) CNOT gate (ii) Toffoli gate. 
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Figure 3. Synthesized Toffoli gate by using  )(θxR and 
controlled- )(θxR  operators.     
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Reduced Ordered BDD’s (ROBDD) and proved its canonicity 
property and also provided a set of operators for manipulating 
ROBDD’s. From now on, we shall use BDD to mean ROBDD.  Using 
complement edges can further reduce the size of the BDD [41]. Lai et 
al. [42] proposed Edge-Valued BDD’s (EVBDD), which can represent 
and manipulate integer functions and can be used for functional 
decomposition. In this section, we describe a new decision diagram for 
the representation of quantum functions. To the best of our 
knowledge, this is the first such canonical graph-based representation 
for quantum functions. 
Definition: A QDD is a directed acyclic graph with three types of 
nodes: a single terminal node with value 0̂ , a weighted root node, and 
a set of non-terminal (internal) nodes. Each internal node represents a 
quantum function. It is associated with a binary decision variable and 

has two outgoing edges: a weighted 1̂ -edge (solid line) leading to 

another node (the 1̂ -child) and a non-weighted 0̂ -edge (dashed line) 
leading to another node (the 0̂ -child.) The weights of the root node 

and 1̂ -edges are in the form of )(θxR  matrices. Since all the weights 

in a QDD are in the form of )(θxR , the value θ is sufficient to 

specify the weight. We assume that -π < θ < π. Furthermore, when the 
edge or root node weight is the identity matrix (i.e., IRx =)0( ), it 
will not be shown in the diagram. 

 
Figure 4(i) shows an internal node, f, in a QDD with decision variable, 
a, the corresponding 0̂  and 1̂  edges, and child nodes, f0 and f1. This 

relation between the QDD nodes in this figure is as follows. If 1̂=a , 
then 1)( fRf x θ=  else 

0ff = . In addition, if f is the weighted root 
node of a QDD (cf. Figure 4(ii)), then the following relation holds. If 

1̂=a , then 
11 )()()( fRfRRf rxxrx θθθθ +==  else 

0)( fRf rx θ= .  

Similar to BDD’s, in QDD’s isomorphic sub-graphs (nodes with the 
same quantum function) are merged. Additionally, if the 0̂ -child and 
the 1̂ -child of a node are the same and the weight of the 1̂ -edge is 

IRx =)0( , then that node is eliminated. Using these two reduction 
rules and given a total ordering on input variables, the QDD will be 
uniquely constructed for a quantum function.  
Consider a quantum function with n variables f(v1, v2, ..., vn). Each 
binary value assignment to the variables v1, v2, ..., vn corresponds to a 
path from the root to the terminal node of the QDD of f. Assuming the 
variable ordering v1<v2<...<vn, the corresponding path can be 
identified by a top-down traversal of the QDD starting from the root 
node. For each node that is visited during the traversal, we select the 
edge corresponding to the value of its decision variable vi. (i.e., if 
vi=1̂  select the 1̂ -edge; otherwise, select the 0̂ -edge) and continue 
with the node at the end of the selected edge until the terminal node is 
visited. During such a traversal for every variable vi, only one node 
with decision variable vi will be visited specifying a path from the root 
to the terminal node with a total number of n-1 edges. Let’s denote the 
weight of the root node by w0 and the weight of the selected edges by 
w1, w2, ..., wn-1. The value of the function f  for assigned values to v1, 

v2, ..., vn is: ⎥
⎦

⎤
⎢
⎣

⎡
== −− 0

1
...0̂...),...,,( 11011021 nnn wwwwwwvvvf . 

Clearly, if, during this graph traversal, a 0̂ -edge is selected for 
variable vi (i.e., if vi= 0̂ ), then the corresponding edge weight will be 
wi=I. We have shown that QDD’s provide a concise and canonical 
representation for a quantum function. Notice that QDD’s can be 
regarded as an extension of BDD’s i.e., each BDD can also be 
regarded as a QDD (A QDD is a BDD exactly if all the weights of the 
QDD are either IRx =)0(  or )(πxR .) As will be shown later, the 
synthesis process starts with the QDD of the given logic function 
(which is also a QDD) and decomposes the given QDD to realizable 
QDD’s. The QDD structure has some useful properties. One important 
property, i.e., the linear topology property, is demonstrated in Figure 
5. The idea is that when the 0̂ -child and the 1̂ -child of a node, f, are 
the same node, g, then that node can be directly realized by a 
controlled- )(θxR  operator in terms of its child i.e., gaRf x )(θ= . 

 
As an example, Figure 5 shows the QDD’s of functions q1 and r1 in 
Figure 3. The QDD’s in Figure 5 are associated with functions that 
have a quantum cascade form representation. For example function r1 
can be represented as: ])2/()[2/(1 cbRaRr xx ππ= which is a 
cascade form. Generally every QDD with a chain structure (such as 
QDD’s in Figure 5) is associated with a cascade form and can directly 
be realized with the rotation and controlled-rotation operators. This 
property will extensively be used in the synthesis algorithm. 

5.3 The Quantum Apply Operation 
In this section we explain how to apply rotation and controlled-
rotation operators to QDD’s. Suppose the QDD for a function, f, is 
given. The QDD for fRh x )(γ=  can simply be obtained by 
multiplying the weight of the root node of  f  by )(γxR . To obtain 

gfRh x )(γ=  for given QDD’s f and g (assuming f only takes 0̂  and 

1̂  values,) we use the quantum apply operation (q-apply) an extension 
to the apply operation first introduced by Bryant [40].  
The q-apply is implemented by a recursive traversal of the two QDD 
operands. For each pair of nodes that are visited during the traversal, 
an internal node is added to the resultant QDD by utilizing the one of 
three rules explained next. Consider performing q-apply to obtain 

gfRh x )(γ= . q-apply takes two QDD nodes f and g as arguments 
and compares the corresponding decision variables of the nodes and 
adds a new node to the resulting QDD, h, with decision variable 
d∈{a,b} and childs h1 and h0 using one of the following three rules 
after including the weights of the root node and 1̂ -edge in the 
corresponding 1̂ -child and 0̂ -child as shown in  Figure 6.  
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Figure 5.  The linear topology property of a QDD.  

Rx(θ) Rx(θ) 
   f0    f1 

a 
 f 

   f0    f1 

a 
 f 

Rx(θr) 

 (i)  (ii) 
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Rule 1: if a<b then d=a, h1=[Rx(αr+α)f1]Rx(γ)g,  h0=[Rx(αr)f0] Rx(γ) g. 

Rule 2: if b<a then d=b, h1= f Rx(γ) [Rx(βr+β)g1], h0=fRx(γ)[Rx(βr)g0]. 

Rule 3: if a=b then d=a, h1=[Rx(αr+α)f1]Rx(γ)[Rx(βr+β)g1],    
h0=[Rx(αr)f0]Rx(γ)[Rx(βr)g0]. 

 
Assume that the corresponding variables for QDD nodes f and g are a 
and b, respectively. The new node generated by q-apply depends on 
the variable ordering of a and b as demonstrated in  Figure 6. For 
example, suppose that a<b. Rule 1 is invoked, generating a new node 
in the resulting QDD (h) containing variable a. Rule 1 directs the q-
apply operation to recursively call itself. For terminal conditions the 
following relation are used:  vvRx =)(0̂ θ  and vRvR xx )()(1̂ θθ = . 

Since f only assumes 0̂  and 1̂  values, these are the only possible 
terminal conditions. After the recursive computation of 1̂ -child and 
0̂ -child of h, in order to maintain the canonicity of the resulting 
QDD, isomorphic sub-graphs are merged and if the 0̂ -child and the 
1̂ -child of a node are the same and the weight of the 1̂ -edge is 

IRx =)0( , then that node is eliminated.  Also the resulting weights 

for the nodes (1̂ -child and 0̂ -child of h) are modified as 
demonstrated in Figure 7 to make QDD of h canonical. 

  
The commutative property of matrix multiplication for )(θxR  
matrices is critical for the q-apply to generate the correct result i.e., 
performing q-apply as described may not generate the correct result 
for decision diagrams with weights that are not commutative.  

5.4 QDD-based Functional Decomposition 
As mentioned earlier, the problem of realizing a function, f, using 

)(θxR and controlled- )(θxR  operators is equivalent to finding a 
quantum factored form for the function, which can in turn be 
performed by recursive bi-decomposition of the given function f.  
Before delving into the details, we provide a brief review of prior 
work related to functional decomposition in general, and bi-
decomposition in particular. Multi-level logic synthesis based on 
algebraic optimization techniques [43] are commonplace. An 
alternative synthesis method is based on Boolean division and 
decomposition. Functional decomposition, systematically investigated 
by Ashenhurst [44] and Curtis [45], can be defined as expressing the 
function F(X) as F(X)=f(G(Y),Z) where Y∪Z=X. The decomposition 
methods provided in [44][45] and some other works are based on 
decomposition charts, which makes them computationally inefficient 
since the size of the chart grows exponentially with the number of 

variables. Therefore, BDD-based decomposition methods have been 
developed that use BDD’s as platform to carry out functional 
decomposition. Lai et al. [46] used BDD’s instead of decomposition 
charts to perform functional decompositions. Other approaches based 
on the technique provided in [46] have been reported in [47]-[49]. 
Reference [42] considered decomposition of multiple-output 
functions, where the multiple-output Boolean function is first 
transformed into an EVBDD and then decomposed by using methods 
developed in [46]. Bidecomposition [51], which is an important 
special case of functional decomposition, is a decomposition of type 
F(X)=G(Y)ΘH(Z) where Y∪Z=X and Θ stands for any logic 
operation. A class of quasi-algebraic decomposition, which in turn is a 
special case of bidecomposition, has been introduced in [52]. Files et 
al. [53] used Multivalued Decision Diagrams (MDD) to perform 
multi-valued functional decomposition. Karplus [54] proposed a 
method which performs functional decomposition directly on BDD’s. 
He introduced the concept of a 1- and 0-dominator and showed their 
relationship to algebraic AND/OR decomposition. Bertacco and 
Damiani [55] presented a method which performs recursive 
decomposition directly on a BDD. Stanion and Sechen [56] described 
a Boolean division and factorization method using a specialized BDD 
operator, called interval cofactor. Yang and Ciesielski [57] introduced 
the concepts of x-dominator and generalized x-dominator to perform 
XOR decomposition directly on BDD’s. 
Definition: Quantum (unitary) functional bi-decomposition of f is 
defined as finding functions g and h and value γ such that 

hgRf x )(γ=  where function g only assumes values 0̂  and 1̂ . 

Next we provide an algorithm for quantum unitary bi-composition 
which can be used to bi-decompose a given function f to hgRx )(γ . 
Subsequently, g and h are recursively bi-decomposed, which will 
eventually result in a quantum factored for f. The bi-decomposition 
algorithm is based on the notion of quantum linear (q-linear) 
variables. In the reminder of this paper, while expressing a function as 

),...,,( 21 nvvvf , it is implicitly assumed that f depends on all variables 

nvvv ,...,, 21  (i.e. f is not invariant with respect to nvvv ,...,, 21 ). 

Definition: For a given function ),...,,,,...,,( 1121 niii vvvvvvf +−
, variable 

vi  is ‘q-linear’ if there exists a rotation value, iθ , such that for every 
value assignment to nii vvvvv ,...,,,...,, 1121 +−

: 
ivixiv fRf )(θ= , where 

),...,,1̂,,...,,( 1121 niiv vvvvvff +−=  and ),...,,0̂,,...,,( 1121 niiv vvvvvff +−= . 

A variable is called q-nonlinear if it is not q-linear.  
Lemma 1: Consider function ),...,,( 21 nvvvf with variable ordering 

nvvv <<< ...21
. If (and only if) variables nkk vvv ,...,, 21 ++  are q-linear 

(i.e., for each iv , k+1<i<n, there is a iθ  that for all 

nii vvvvv ,...,,,...,, 1121 +−
 values, 

ivixiv fRf )(θ= ,) then for each variable 

vi, k+1<i<n, there is only one QDD node, ni, with decision variable vi. 

The weight of the1̂ -edge of ni will be )( ixR θ . Also no edge 
originating from nodes above nj (i.e., nodes with decision variable vj, 
j<i) will end at a node below ni (a node with decision variable vj, j>i.)  
Proof: The proof is by induction on vn, vn-1, vn-2, …, vk+1 starting from 
vn. Details are straight-forward and omitted here.   
Let vk be the lowest indexed q-nonlinear variable after which 

nkk vvv ,...,, 21 ++  are q-linear variables of f. From Lemma 1, 

jj vjxv fRf )(θ= , k+1<j<n where θj is fixed independent of the input 

combination of 
njj vvvvv ,...,,,...,, 1121 +−

. Every path from the root 

node of the QDD to its terminal node will either go thru an internal 

Figure 6. Recursive implementation of the q-apply operator
on two QDD’s. 

h0 

Rx(βr) Rx(αr) 
Rx(α) 

   f0    f1 

a 
 f 

Rx(β) 
  g0 g1 

b 
 g 

h1 

a 
 h 

Rx(γ0) 

Rx(γ1) 

a 
 h 

Rx(γ0) 

Rx(γ1-γ0) 

a
 h

Figure 7. Weight modification during q-apply to maintain
canonicity of the resulting QDD. 
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node with decision variable vk or it will skip any such node and 
directly go the single QDD node with decision variable vk+1. For the 
latter case, 

kkk vvxv ffRf == )0(  and for any former case, 

kk vixv fRf )(α=  where there will be as many different rotation angles 

(e.g., α1, α2) for variable vk as there are internal nodes with decision 
variable vk in the QDD.  
Definition: The degree of q-nonlinearity of variable vk is m-1 where m 
denotes the number of different rotation angles αi (including 0 if any) 
that 

kk vixv fRf )(α=  for some nkk vvvvv ,...,,,...,, 1121 +− . For q-

linear variables the degree of q-nonlinearity is zero. 

Lemma 2: Let 'm  denote the number of internal node with decision 
variable vk, then if all paths from the root node of the QDD to its 
terminal node go thru an internal node with decision variable vk, the 
degree of q-nonlinearity of variable vk will be equal to 

1'−m otherwise (if there is a path that skips any node with decision 
variable vk,) the degree of q-nonlinearity of  vk will be equal to 'm . 

Proof: The proof follows from structural properties of  QDD’s and the 
definition of q-nonlinearity. Details are straight-forward.  

Theorem 1: Consider function ),...,,( 21 nvvvf with variable ordering 

nvvv <<< ...21 .  Assume that nkk vvv ,...,, 21 ++
 are q-linear variables 

of f and kv  is a q-nonlinear variable of f with degree of q-nonlinearity 
m-1 (i.e., for each value assignment to variables 

nkk vvvvv ,...,,,...,, 1121 +−
 exactly one of the following m relations 

holds:
kk vxv fRf )( 1α= ,…, 

kk vmxv fRf )(α= .) Let function g be 

defined as: If 
kk vxv fRf )( 1α=  then 1̂=g  else 0̂=g . 

Then function f can be bi-decomposed as: hRgf x )(1 γ=  

where: gRvg xk )(1 π= , 2/)( 12 ααγ −= , fRgh x )(1 γ−= and g1 will be 

a function of kvvv ,...,, 21  (i.e. g1 will be invariant of 

nkk vvv ,...,, 21 ++ ) and kv  will be q-linear in function g1. Also h will 

be a function of nvvv ,...,, 21  and nkk vvv ,...,, 21 ++  will be q-linear 
in function h and the degree of q-nonlinearity of vk in h will be less 
than or equal to m-2.  (The proof is omitted due to space limitation.)  
Using the proposed bi-decomposition approach f can be bi-
decomposed into hRgf x )(1 γ= , where g1 and h are themselves 
recursively bi-decomposed until a quantum factored form is obtained. 
Since g1 is invariant of nkk vvv ,...,, 21 ++  and vk in g is q-linear and 
degree of q-non linearity of vk in h is at most m-2, the recursion will 
finally stop at terminal cases where g1 and/or h have directly realizable 
QDD’s, i.e., all the variables will be q-linear in the functions and 
hence they will have cascade forms corresponding to QDD’s with a 
chain structure similar to QDD’s in Figure 5. As a result of Lemma 1, 
in a function with chain structured QDD, all variables are q-linear. 
The algorithm, q-factor(f),  uses the recursive bi-decomposition in 
Theorem 1 to generate a quantum factored form for a function f. 

Algorithm: q-factor ( f ) 
0- If all variables are q-linear then return the 

corresponding cascade form for f . 
1- Find the lowest indexed q-nonlinear variable, kv , after 

which nkk vvv ,...,, 21 ++  are q-linear. 
2- Bi-decompose f as hRgf x )(1 γ=  where 1g , h  and γ  

are given in Theorem 1 using kv . 
3- Return   [q-factor( 1g )] Rx(γ) [q-factor( h )] . 

It is important to notice that all of the above steps can be directly 
performed on QDD’s. For example if the QDD of a function, f, is a 
chain structure, there exists a cascade form for f (step 0). For step 1, 
according to Lemma 1, identifying  kv  is equivalent to identify the 
lower chain-structure part of the QDD. As for step 2, according to 
Lemma 2, the values mααα ,...,, 21  can be obtained from the weights 

of the 1̂ -edges of nodes with decision variable kv . Hence, 

2/)( 12 ααγ −=  can also be obtained. Let ni denote the node with 

decision variable kv  and 1̂ -edges weight )( ixR α . The QDD of g1 
can be constructed from QDD of f using the following method. 
Starting from the QDD of f: Change all the weights to IRx =)0(  then 
create a QDD node, vk, representing vk. as depicted in Figure 8. 
Redirect all edges toward n1 to node vk and make the weight of all 
such edges )(πxR  and redirect all edges toward n2, n3, …, nm to node 

vk and make the weight of all such edges )0(xR . Discard nodes n1, n2, 
…, nm and finally merge isomorphic sub-graphs, eliminate nodes with 
same 0̂ -child and the 1̂ -child if the weight of the 1̂ -edge is 

IRx =)0( ,  and update weights of the QDD to make the QDD of g1 
canonical. Having the QDD’s for g1 and f, the QDD of 

fRgh x )(1 γ−=  can be obtained using the q-apply operation. 

 
The final factored form resulting from q-apply will be in the following 

form: [ ][ ][ ]  0̂)(  ... )()()( 332211 kxkxxx RgRgRgRgf γγγγ=  

which can also be rewritten as: 

[ ][ ][ ]  0̂)(  ... )()()(
332211 kpxkppxppxppxp RgRgRgRgf γγγγ=  

where ),...,,( 21 kppp  is a permutation of ),...,2,1( k . (Note that gi 
functions should be decomposed as well using q-apply.) In the 
following example, it is shown that different permutations on 

),...,2,1( k  may result in different number of gates while 
synthesizing the circuit.  
Example 1: In this part a four-input Toffoli gate, depicted in Figure 9 
(i), will be synthesized by using the q-factor algorithm. Figure 9 (ii) 
shows the QDD of the output s of the Toffoli gate. Throughout the 
synthesis process we maintain the variable ordering a<b<c<d.  

 

(i) 

b

c

 q = b 

 s = (a.b.c)⊕d Rx(π)

 r = c 

d

a  p = a 

Rx(π)

b

c

d

0̂

 s 

Rx(π)

a

(ii) 
Figure 9.  Four-input Toffoli gate and the QDD for 4th

output, s.   

Rx(π) 

vk 

0̂  

Figure 8. QDD for the node vk. 
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From the QDD of s with the c will correspond to vk in q-factor 
algorithm and the degree of q-nonlinearity of c is 1. Also 01 =α  and 

πα =2  which results in 2/πγ = . (It would also be correct to set 

πα =1
 and 02 =α . This will generate a different circuit but with the 

same functionality.) Consequently, function s can be bi-decomposed 
as: hRgs x )2/(1 π−=  where gcRg x )(1 π= . Now the QDD for g1 is 
depicted in Figure 10 (i). It is seen that function g1 is a 3-input Toffoli 
gate, which is synthesized as in Figure 3. As for function h, it can be 
derived as sRgh x )2/(1 π= . The QDD for h is depicted in Figure 10 
(ii). Subsequently, h can be bi-decomposed as 

12 )4/( hRgh x π−=  
where baRg x )(2 π=  and hRgh x )4/(21 π= . The resulting QDD for 
g2 and h1 are shown in Figure 10 (iii) and (iv). The resulting factored 
form for s is: ])4/([)2/( 121 hRgRgs xx ππ −−= . Due to the chain 
structure of g2 and h1, they may be directly realized by using 
controlled-rotation operators. Notice that when realizing g1, we will 
also implement g2. As a result, it is more efficient to construct s as: 

])2/([)4/( 112 hRgRgs xx ππ −−= . The resulting quantum circuit 
realization is depicted in Figure 11. 

 
The first part of the circuit (left of the dashed line) generates output s 
whereas the second part generates outputs a, b and c. This realization 
of the 4-input Toffoli gate can be generalized for n-input Toffoli gates. 
In [58] a method for synthesizing an n-input Toffoli gate (including 4-
input) is provided which is similar to the synthesis result provided in 
this paper. However the approach in [58] is specialized for gates 
similar to n-input Toffoli gates while our approach automatically and 
without assuming any prior knowledge above the function, synthesizes 
the circuit. 

 

5.5 Modified q-factor algorithm 
Using algorithm q-factor will result in a synthesized circuit with 

)(θxR  and controlled− )(θxR  operators where θ can take any value 

between −π and π. Consequently the internal signals of the circuit can 
take values 0̂)(θxR  where −π < θ <π. As mentioned before, the three 

operators controlled− )2/( π−xR , controlled− )(πxR  and 

controlled− )2/(πxR  create a universal set of gates which we will 

refer to as Reduced Controlled−Rotations (RCR) library. Using RCR 
library for synthesis may result in more number of gates and/or extra 
temporary storage channels as opposed to the previous approach. 
However, for practical issues, using RCR library might be more 
advantageous. There are at least two reasons for this statement. First, 
building a circuit which uses only three different gates in RCR library 
might be more practical (in terms of manufacturing) than using a 
library with )(θxR  and controlled− )(θxR  operators where  −π<θ<π. 
Second, using RCR library will result a circuit where the internal 
signal will only take one of the four values 
0̂ , 0̂)2/( π−xR , 0̂)2/(πxR  and 1̂0̂)( =πxR . Such a circuit will be 
more reliable in the presence of noise and quantum decoherence than a 
circuit where signals can take any value 0̂)(θxR , −π < θ <π. Since 
there is a possible advantage for synthesizing a circuit using RCR 
library we also present a synthesis algorithm (modification to q-factor 
algorithm) that results in a quantum circuit consisting of gates from 
RCR library. The weights of the QDD of a circuit consisting of gates 
from RCR library can take one of the four values  IRx =)0( , 

)2/( π−xR , )2/(πxR  and )(πxR . Hence the degree of q-nonlinearity 
of each variable can be at most three. The algorithm will be similar to 
q-factor algorithm except for the step 2. The step 2 will be modified as 
follows: 

Since variable kv (the lowest indexed q-nonlinear variable) is q-

nonlinear in f, the degree of q-nonlinearity of  kv , denoted by m,  can 
be 1,2 or 3.  
For kv , the functions gi (i = 0,1,2,3) are defined as follows: 

If 
kk vixv fRf )(α=  then 1̂=ig  else 0̂=ig  where 2/)1( πα −= ii . 

(Notice hat that for every value assignment to 
nkk vvvvv ,...,,,...,, 1121 +−

, exactly one of gi is one and the rest are zero.) 

For m (the degree of q-nonlinearity of  kv ) we consider 3 cases: 
If m=1, exactly two function among functions gi (i = 0,1,2,3) are zero 
for all nkk vvvvv ,...,,,...,, 1121 +−

 and the other two (gj, gl) will take non-
zero values for some nkk vvvvv ,...,,,...,, 1121 +−

. 
Without the loss of generality let’s assume 

lj αα > .  Then 
lj αα −  

can take one of three values π/2, π and 3π/2. Based on the value of 

lj αα −  the function f is bi-decomposed as 21 )2/( hRhf x π−=  

where: 
If παα =− lj

, jxk gRvh )(1 π= . It can be proven that in function h2, 

the variables  nkkk vvvv ,...,,, 21 ++  will be q-linear.  

If 2/παα =− lj
,  lk gvh .1 =  . In function h2 the variables  

nkk vvv ,...,, 21 ++  will be q-linear and h2 will be invariant of kv . 

If 2/3παα =− lj
,  jk gvh .1 = . In function h2 the variables  

nkk vvv ,...,, 21 ++  will be q-linear and h2 will be invariant of kv . 

Rx(π) 

Rx(π) 

a 

b

c 

0̂  

 g1 = c Rx(π) g 

Rx(π) 

Rx(π/2) 

Rx(π/2) 

a 

b

c 

 h = g1 Rx(π/2) s 

d

 

0̂  

Rx(π/2)

 h1

d

Rx(π)

Rx(π/4)

c

Rx(π/4)

b

a

0̂

Rx(π) 

Rx(π) 

a
 g2 = a Rx(π) b 

b

0̂  

(i)                 (ii)       (iii)                (iv)
Figure 10. QDD’s in synthesizing the four-input Toffoli gate. 
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Figure 11. Automatic synthesis solution for the four-input 
Toffoli gate obtained by the q-factor algorithm.  
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 In all of the above three cases function h2 can be obtained as 
fRhh x )2/(12 π= . 

If m=2 or m=3 it is always possible to find j,l∈{0,1,2,3} such that 
παα =− lj

where gj and gl  are non-zero (i.e. will take non-zero 

values for some nkk vvvvv ,...,,,...,, 1121 +−
.) For such gj and gl  the 

function f is bi-decomposed as 
21 )2/( hRhf x π=  where 

jxk gRvh )(1 π=  and fRhh x )2/(12 π−= . Also it can be proven that 

the degree of q-nonlinearity of kv  in h2 will be less than or equal to 

m−1. 
In all the above cases there is a reduction (in the total q-nonlinearity of 
variables) from f to functions h1 and h2 which guaranties that the 
recursive q-factor algorithm (both original and modified) will reach 
the final conditions (i.e., step 1 of the q-factor algorithm.) 
Example 2: Figure 12 shows the result of synthesizing four-input 
Toffoli gate, depicted in Figure 9 (i), using the modified q-factor 
algorithm.  

 
As can be observed in this case there is need to use an extra temporary 
storage channel while reducing the number of gates to 10. 

6. Conclusions  
In this paper an efficient analysis and synthesis framework for 
quantum logic circuits was presented. We introduced the quantum 
factored forms, and developed a canonical and concise representation 
of quantum logic circuits. The focus of our approach was on the most 
basic quantum operators, i.e., the rotation and controlled-rotation 
primitives. Subsequently, two effective QDD-based algorithms (q-
factor and modified q-factor) for automatic synthesis of quantum logic 
circuits were introduced. The synthesis results for examples provided 
in this paper, demonstrates the effectiveness and promise of the 
proposed approach.   
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