
 1

Efficient Synthesis of Quantum Logic Circuits by Rotation-based Quantum
Operators and Unitary Functional Bi-decomposition

Afshin Abdollahi and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA

1. Abstract
Quantum information processing technology is in its pioneering stage
and no efficient method for synthesizing quantum circuits has been
introduced so far. This paper introduces an efficient analysis and
synthesis framework for quantum logic circuits. The proposed
synthesis algorithm and flow can generate a quantum circuit using the
most basic quantum operators, i.e., the rotation and controlled-rotation
primitives. We will introduce the notion of quantum factored forms,
and develop a canonical and concise representation of quantum logic
circuits in the form of quantum decision diagrams (QDD’s) which are
amenable to efficient manipulation and optimization including
recursive unitary functional bi-decomposition. This representation will
produce a rigorous graph-based framework for the analysis and
synthesis of quantum logic circuits. Subsequently, an effective QDD-
based algorithm will be developed and applied to automatic synthesis
of quantum logic circuits.

2. Introduction
We are beginning to reach the fundamental limits of the materials used
in the planar CMOS process, the process that has been the basis for the
semiconductor industry for the past 30 years. Further improvements in
the planar CMOS process can continue for the next decade or so by
introducing new materials into the basic CMOS structure. However, as
we look forward 10-15 years, it becomes clear that even with the
introduction of new materials, most of the known technological
capabilities of the CMOS device structure will have reached their
limits [1]. In order to continue to drive information technology
advances, it becomes essential to investigate new “beyond CMOS”
devices and structures, appropriate models of computation, and
algorithms that may provide a more effective alternative to CMOS.
Quantum computers can evolve a superposition of quantum states
until the final output is obtained. Such “quantum parallelism” could
potentially outstrip power of classical computers [2][3]. Certain
problems for which there is no polynomial solution in classical
domain can be solved in polynomial time in quantum domain (e.g., the
factoring problem). Similarly, the complexity of some other problems
(e.g., database search and Boolean satisfiability) can be reduced by
transforming them into the quantum domain [4]. Indeed, quantum
circuits have the ability to perform massively parallel computations in
a single time step [5][6]. Hence quantum computing has become a
very attractive research area, which is expected to play an increasingly
critical role in building more efficient computers [7][8].
Quantum mechanics and quantum computing are established research
areas; however, systematic design methods and logic design for
quantum circuits and systems is at a primitive stage. Computer aided
design of quantum circuits is even less developed, which motivates
rigorous research aimed at developing CAD techniques and tools for
quantum circuits. Nearly all quantum algorithms (e.g. Shor’s factoring
and Grover search algorithms) require the implementation of a
quantum oracle (logic circuit i.e., a circuit that for binary inputs only
generates binary outputs.) To completely exploit the “quantum
parallelism,” this oracle should be realized by using quantum gates
because it must be able to handle an arbitrary superposition of basis

vectors (quantum states.) A key problem is thus how to construct a
minimum-cost realization of this kind of quantum logic circuit.
Automated synthesis of standard Boolean logic circuits is a well-
studied area with many efficient algorithms. However, no efficient
method for synthesizing quantum circuits has been introduced so far.
Previous work on quantum logic synthesis is mostly based on search-
based approaches, which require enormous computational complexity
(e.g., matrix decomposition, local circuit transformations, spectral
techniques, and evolutionary approaches.) In this paper a canonical
decision diagram based representation of quantum circuits is presented
and a CAD methodology and novel techniques for synthesis of
quantum logic circuits based on these decision diagrams are described.
Quantum computation can utilize a series of steps, each logically
reversible, and this in turn allows physical reversibility [9][10]. Hence,
every quantum circuit is reversible and classical binary reversible
synthesis and quantum synthesis are closely related research areas.
Feasibility of reversible logic circuits has been technologically
demonstrated [16]; the proposed approach is also applicable to
synthesis of such circuits. The reminder of this paper is organized as
follows: In section 3, some fundamental aspects of quantum
mechanics is presented. Section 4, summarizes the previous work on
quantum circuit synthesis. In section 5, the proposed technique is
presented which includes the introduction of quantum factored forms,
quantum decision diagrams (QDD’s) and QDD-based quantum circuit
synthesis. The conclusions are provided in section 6.

3. Fundamentals of Quantum Computing
In quantum computation quantum bits (qubits), derived from the states
of micro-particles such as photons, electrons or ions are used instead
of classical binary bits to represent information. For example, two
possible spin rotations of an electron are represented as

⎥
⎦

⎤
⎢
⎣

⎡
0
1 and

⎥
⎦

⎤
⎢
⎣

⎡
1
0 ,

which are the basis states (basis vectors) of this computational
quantum system [17][18]. Each particle in a quantum system is
represented by a wave function inheriting the powerful concept of
superposition of states. For example, the state of a particle p1 may be
represented by a wave function

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

1

1
111 1

0
0
1

β
α

βαΨ where the

coefficients α1 and β1 are in general complex and |α1|2+|β1|2=1. In
general, the wave function of a quantum system with n qubits
represents an arbitrary superposition of 2n states while in a classical
system n bits represent only 2n distinct states. Therefore the space of
quantum systems is exponentially larger than that of the classical
binary systems. Analysis (and by extension, synthesis) of quantum
logic circuits is more difficult than that of the digital logic circuits
because the former requires manipulation of matrices and bases in
Hilbert space whereas the latter requires binary, or at most multi-
valued, logic operations. Quantum operators over a set of qubits are
modeled as matrix operations. As an example, for a quantum system
comprising of a single particle p1, a quantum operator (gate) is
represented by a 2×2 (in general complex) unitary matrix U which
transforms state T

111][βαΨ = to state
12 UΨΨ = . Recall that a

matrix U is unitary exactly if UU+=I where U+ is the hermitian
(complex conjugate transpose) of U. Since matrix U is unitary, the

 2

inverse of this gate is matrix U+, which is the inverse of U. An
important class of quantum operators is the rotation operator. For
example, a θ rotation around the X axis in Bloch sphere representation

[4] is defined by:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

2
cos

2
sin

2
sin

2
cos

)(θθ

θθ

θ
i

i
Rx

.

The following relation shows that rotation operators around X are
commutative with respect to matrix multiplication:

)()()()()(211221 θθθθθθ +== xxxxx RRRRR .

In general for an n-qubit system, a quantum operation (or gate) is
represented by a 2n×2n unitary matrix. An example of a 2-qubit gate is
the controlled-U gate depicted in Figure 1. For a 2×2 unitary matrix U,
the controlled-U gate works as follows: when the control signal a is

T]01[, q=b and when it is T]10[, then q=Ub. For both cases, p=a.

Similar to controlled-U operator, one can easily define a significant
class of 2-qubit operators as the controlled-rotation operator.
Rotation operators are elementary and easily realizable in most
implementations of quantum computation [4], e.g., nuclear magnetic
resonance and ion trap realizations. Rotations and controlled-rotations
around X axis are universal. (A set of gates is universal if every
quantum logic function can be constructed with this set of gates.)
These reasons are precisely why this paper will focus on rotation and
controlled-rotation operators as elementary building blocks for
synthesis of quantum circuits. A new concise and canonical data
structure, called quantum decision diagrams or QDD’s, will be
introduced and subsequently used for conducting quantum operations
and synthesizing quantum logic circuits. More precisely, the QDD’s
are designed to have the ability to express the functionality of every
quantum circuit composed of controlled-rotation operators assuming
that all rotations are about a single axis and a ‘binary control signal’
constraint is enforced.

4. Previous Work on Synthesis of Quantum
Logic Circuits
Reversible logic synthesis and quantum logic synthesis are closely
related. However, for quantum circuits it is much more efficient to
focus on logic synthesis with quantum gates. One method for quantum
circuit synthesis is to decompose the corresponding unitary matrix of
the circuit into unitary matrices of quantum gates, or alternatively,
composing the matrices of elementary gates to achieve the unitary
matrix of the circuit. Because for an n-input, n-output reversible
circuit, size of the unitary matrix is 2n×2n, this is not a practical
method for synthesizing a general quantum circuit. Since dealing with
quantum gates is so much more difficult than dealing with reversible
binary gates, most researchers have been working on reversible logic
synthesis using reversible binary gates. The synthesis of reversible
circuits differs significantly from synthesis by using traditional
irreversible gates. Several approaches for reversible logic circuit
synthesis have been presented in [19]-[23]. These approaches resort to
exhaustive combinatorial search or methods such as matrix
decomposition, local transformations, spectral approaches, and on
adaptations of EXOR logic decomposition, Reed-Muller
representations, and other classical combinational circuit design
methods. Toffoli [24] provided an algorithm for implementing an
arbitrary function with the “CNTS” library, comprising of controlled-
NOT, NOT, Toffoli gate, and SWAP gate (see section 5). Many other
researchers have worked on reversible logic synthesis. Kerntopf [25]

proposed exhaustive search methods to perform synthesis of small-
scale circuits. In [26] a synthesis method based on manipulating the
truth tables is presented. The algorithm produces a circuit composed
of n×n Toffoli gates. (An n×n Toffoli gate has n-1 control lines which
pass through the gate unaltered and a target line on which the value is
inverted if all the control lines have value '1'.) The method provided is
a constructive approach based on the truth tables, which makes it
computationally expensive and intractable for average and large
circuits. Shende et al. [27] generate a library of small optimal circuits
based on branch-and-bound and exploiting the property that any sub-
circuit of an optimal circuit is itself optimal. This work does not
provide a synthesis approach for a general logic and is limited to
synthesizing reversible logic circuits with a small number of inputs
and gates. Agrawal and Jha [28] presented a RM-expansion based
technique for optimizing a circuit that is mapped to reversible gates. In
[29] an algorithm for synthesis of quantum circuits using reversible
Davio expansion was proposed. However these algorithms are
intrinsically incapable of generating near optimal circuits and may
require a large number of temporary storage channels, i.e., input-
output wire pairs other than those on which the function is computed.
In [30], Shende et al presented a top-down structure using the Cosine-
Sine decomposition and introduced and used the quantum multiplexer
for recursive implementation of quantum gates. Group theory has also
been employed as a tool to analyze reversible gates [31] and
investigate generators of the group of reversible gates [32].
Few researchers have investigated the synthesis problem of quantum
circuits by using quantum gates. In [33], Hung et al transform the
synthesis problem into a satisfiability problem. They in fact use a SAT
solver instead of employing an exhaustive search. This method is
practical only for very small circuits since the reported run-time of the
algorithm for optimal synthesis of a single-bit adder with 6 quantum
gates is 7 hours on a 850MHz Pentium III processor running Linux.
Other researchers have turned to evolutionary algorithms to reduce the
CPU time [34]. However, applying evolutionary algorithms or similar
techniques (such as simulated annealing and branch and bound) for
solving a Boolean satisfiability problem does not help much with the
quantum circuit synthesis task itself since these techniques can be
applied to any combinatorial optimization problem and tend to only
provide marginal improvement in terms of quality and runtime over
semi-exhaustive or local neighborhood search methods.
It can be inferred that developing a practical synthesis algorithm for
quantum circuits is extremely difficult because of the fast increase of
data sizes. Indeed to-date there are no counterparts in quantum logic of
such useful tools as algebraic decomposition, decision diagram based
synthesis, or other standard logic synthesis techniques such as
reduction to covering/coloring combinational approaches. In this paper
we introduce an efficient data structure based on decision diagrams for
representation, analysis and synthesis of quantum circuits and provide
a synthesis approach based on the proposed decision diagrams.

5. Quantum Logic Synthesis with Rotation-
based Quantum Operators
In this section, it will be shown that rotations and controlled-rotations
around the X axis (i.e.,)(θxR and controlled-)(θxR) form a universal
gate library. In this section, we will address the problem of
automatically synthesizing a given Boolean function, f, by using

)(θxR and controlled-)(θxR operators as the elementary operations
(gate primitives.)
In a synthesized quantum circuit, the quantum states representing
binary (basis states) values 0̂ and 1̂ will be:

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

0̂ ,
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
==

i
RR xx

0
0
1

)(0̂)(1̂ ππ .

a

b

p

q U
Figure 1. Schematic diagram of a controlled-U

 3

With this definition of 0̂ and 1̂ , the basis states remain orthogonal,
and hence, they can be completely distinguished with proper quantum
measurements. We adopt this definition because inversion from one
basis state to the other is simply obtained by a π rotation around the X
axis. With these assignments (i.e. 0̂ and 1̂ as the basis binary states,)
the)(πxR operation acts as the quantum NOT gate (since

IRRR xxx ==)2()()(πππ .) Subsequently, the controlled-NOT
(CNOT) gate can be described by using the controlled-)(πxR
operator (cf. Figure 2(i).) In addition, the Toffoli gate, also known as
the 3×3 Feynman gate or Controlled-Controlled-NOT gate, may be
described by using the controlled-controlled-)(πxR operator (cf.
Figure 2(ii).) Notice that the Boolean functions for each output of the
CNOT and Toffoli gates are also shown in this figure, where ‘.’ and
‘⊕’ denote binary ‘AND’ and ‘XOR’ operators.

Toffoli [24] proved that NOT, CNOT and Toffoli gates are universal.
Toffoli gate can be implemented using controlled-rotation operators as
demonstrated in Figure 3. Therefore)(θxR and controlled-)(θxR
operators are universal. In this figure only the angle of rotation is
shown for controlled-rotation operators.

In this paper, we focus on rotation-based quantum gates, which are
directly realizable in quantum hardware [11][12]. In contrast, coarse-
grained quantum gates (such as those in the CNTS library) may be
used to synthesize an arbitrary quantum logic circuit. The
disadvantage of the latter is that some of the basic gates in these
libraries (e.g., the Toffoli and SWAP gates in the CNTS library) have
complex realizations in quantum hardware. We believe working
directly with the most primitive universal gates for quantum logic
provides a higher degree of flexibility and freedom in synthesizing
efficient quantum hardware, and thus, produces more efficient and
compact hardware realization of quantum logic circuits. As an
example, it was shown in [35] that, compared to CNTS-based
realization, the implementation cost of realizing Fredkin [36] and
Miller [37] gates is significantly lower when using even a restricted
subset of the rotation-based operators.
It is critical to point out that, for all input basis (binary) vectors,
control inputs of the controlled-)(θxR operators in the circuit of

Figure 3 only take 0̂ or 1̂ values. This condition, which we shall
refer to as the binary control signal constraint, is set as a design
constraint in the synthesis process. For the purpose of representing
quantum logic circuits this constraint does not affect the expressive
power and universality of)(θxR and controlled-)(θxR operators and
has also been adopted by other researchers in the field (cf. [33][34].)

(This constraint does not imply that a control signal can never adopt a
superposition value, i.e., it may be possible that a control signal adopt
a superposition value when (and only when) the inputs of the circuit
are not binary. In the reminder of this paper whenever we constraint a
variable to binary values we implicitly mean that when binary inputs
are applied to the circuit that constraint is set.) Moreover, to the best
of our knowledge, there is no evidence that relaxing this constraint,
can improve the optimality of the synthesis result for quantum logic
circuits.

5.1 Quantum Factored Forms
In any quantum circuit synthesized with binary control signal
constraint, the first output, p, of any controlled-)(θxR operator is
equal to the control input a. However, the second output depends on
both inputs. We use the notation baRq x)(θ= to describe the second
output q. With this new notation)(θxR can also be regarded as a two-

operand operator with the following functionality: if 0̂=a , then
bq = else bRq x)(θ= . (The left operand, a, only assumes 0̂ or 1̂ .)

Definition: Quantum Factored Form. 0̂ is a quantum factored form.
Every variable is a quantum factored form. If h is a factored form,
then hRf x)(θ= is a quantum factored form. Moreover, if g and h are

factored forms and g only takes 0̂ and 1̂ values, then hgRf x)(θ= is
a quantum factored form.

In a quantum circuit synthesized with)(θxR and controlled-)(θxR
operators (with binary control signal constraint), any output (or
internal signal) of the circuit can be described as a quantum factored
form. For example, the output function r in Figure 3 may be described
as: [] [][]cbRaRRbaRr xxxx)2/()2/()2/()(ππππ −= .

The following two commutative and associative relations are useful
for manipulating quantum factored forms:

abRbaR xx)()(ππ = , [] []caRbRcbRaR xxxx)()()()(1221 θθθθ = .

A sub class of factored forms is cascade forms defined as follows.

Definition: Quantum Cascade Form. 0̂ is a quantum cascade form.
Every variable is a quantum cascade form. If h is a cascade form and v
is a variable not present in h, then hvRf x)(θ= is a quantum cascade
form. (hRf x)(θ= is also considered a quantum cascade form.)

A general quantum cascade form is expressed as:

[][][] 0̂)(...)()()(22110 nxnxxx RvRvRvRf θθθθ=

Note that if πθ =n
 then nnxn vRv =0̂)(θ . It can be verified that this

cascade form expression can be rewritten

as: [][][] 0̂)(...)()()(
22110 npxnppxppxpx RvRvRvRf θθθθ=

Where),...,,(21 nppp is a permutation of),...,2,1(n .

The problem of realizing a function using)(θxR and controlled-

)(θxR operators is equivalent to finding a quantum factored form for
the function. To do this, we first introduce a graph-based data
structure in the form of a decision diagram for representing quantum
logic functions.

5.2 Reduced Ordered Quantum Decision
Diagrams (QDD)
The concept of BDD’s was first proposed by Lee [38] and later
developed by Akers [39] and then by Bryant [40], who introduced

Figure 2. (i) CNOT gate (ii) Toffoli gate.

a

b

 p = a

 r = (a.b) ⊕ c
Rx(π)

 q = b

c

(i) (ii)

Rx(π)

a

b

 p = a

q = a ⊕ b

Figure 3. Synthesized Toffoli gate by using)(θxR and
controlled-)(θxR operators.

 p1

 q1

 r1 π/2 π/2

π

-π/2

π

a

c

 p = a

 b q=b

r=(a.b) ⊕ c

 4

Reduced Ordered BDD’s (ROBDD) and proved its canonicity
property and also provided a set of operators for manipulating
ROBDD’s. From now on, we shall use BDD to mean ROBDD. Using
complement edges can further reduce the size of the BDD [41]. Lai et
al. [42] proposed Edge-Valued BDD’s (EVBDD), which can represent
and manipulate integer functions and can be used for functional
decomposition. In this section, we describe a new decision diagram for
the representation of quantum functions. To the best of our
knowledge, this is the first such canonical graph-based representation
for quantum functions.
Definition: A QDD is a directed acyclic graph with three types of
nodes: a single terminal node with value 0̂ , a weighted root node, and
a set of non-terminal (internal) nodes. Each internal node represents a
quantum function. It is associated with a binary decision variable and

has two outgoing edges: a weighted 1̂ -edge (solid line) leading to

another node (the 1̂ -child) and a non-weighted 0̂ -edge (dashed line)
leading to another node (the 0̂ -child.) The weights of the root node

and 1̂ -edges are in the form of)(θxR matrices. Since all the weights

in a QDD are in the form of)(θxR , the value θ is sufficient to

specify the weight. We assume that -π < θ < π. Furthermore, when the
edge or root node weight is the identity matrix (i.e., IRx =)0(), it
will not be shown in the diagram.

Figure 4(i) shows an internal node, f, in a QDD with decision variable,
a, the corresponding 0̂ and 1̂ edges, and child nodes, f0 and f1. This

relation between the QDD nodes in this figure is as follows. If 1̂=a ,
then 1)(fRf x θ= else

0ff = . In addition, if f is the weighted root
node of a QDD (cf. Figure 4(ii)), then the following relation holds. If

1̂=a , then
11)()()(fRfRRf rxxrx θθθθ +== else

0)(fRf rx θ= .

Similar to BDD’s, in QDD’s isomorphic sub-graphs (nodes with the
same quantum function) are merged. Additionally, if the 0̂ -child and
the 1̂ -child of a node are the same and the weight of the 1̂ -edge is

IRx =)0(, then that node is eliminated. Using these two reduction
rules and given a total ordering on input variables, the QDD will be
uniquely constructed for a quantum function.
Consider a quantum function with n variables f(v1, v2, ..., vn). Each
binary value assignment to the variables v1, v2, ..., vn corresponds to a
path from the root to the terminal node of the QDD of f. Assuming the
variable ordering v1<v2<...<vn, the corresponding path can be
identified by a top-down traversal of the QDD starting from the root
node. For each node that is visited during the traversal, we select the
edge corresponding to the value of its decision variable vi. (i.e., if
vi=1̂ select the 1̂ -edge; otherwise, select the 0̂ -edge) and continue
with the node at the end of the selected edge until the terminal node is
visited. During such a traversal for every variable vi, only one node
with decision variable vi will be visited specifying a path from the root
to the terminal node with a total number of n-1 edges. Let’s denote the
weight of the root node by w0 and the weight of the selected edges by
w1, w2, ..., wn-1. The value of the function f for assigned values to v1,

v2, ..., vn is: ⎥
⎦

⎤
⎢
⎣

⎡
== −− 0

1
...0̂...),...,,(11011021 nnn wwwwwwvvvf .

Clearly, if, during this graph traversal, a 0̂ -edge is selected for
variable vi (i.e., if vi= 0̂), then the corresponding edge weight will be
wi=I. We have shown that QDD’s provide a concise and canonical
representation for a quantum function. Notice that QDD’s can be
regarded as an extension of BDD’s i.e., each BDD can also be
regarded as a QDD (A QDD is a BDD exactly if all the weights of the
QDD are either IRx =)0(or)(πxR .) As will be shown later, the
synthesis process starts with the QDD of the given logic function
(which is also a QDD) and decomposes the given QDD to realizable
QDD’s. The QDD structure has some useful properties. One important
property, i.e., the linear topology property, is demonstrated in Figure
5. The idea is that when the 0̂ -child and the 1̂ -child of a node, f, are
the same node, g, then that node can be directly realized by a
controlled-)(θxR operator in terms of its child i.e., gaRf x)(θ= .

As an example, Figure 5 shows the QDD’s of functions q1 and r1 in
Figure 3. The QDD’s in Figure 5 are associated with functions that
have a quantum cascade form representation. For example function r1
can be represented as:])2/()[2/(1 cbRaRr xx ππ= which is a
cascade form. Generally every QDD with a chain structure (such as
QDD’s in Figure 5) is associated with a cascade form and can directly
be realized with the rotation and controlled-rotation operators. This
property will extensively be used in the synthesis algorithm.

5.3 The Quantum Apply Operation
In this section we explain how to apply rotation and controlled-
rotation operators to QDD’s. Suppose the QDD for a function, f, is
given. The QDD for fRh x)(γ= can simply be obtained by
multiplying the weight of the root node of f by)(γxR . To obtain

gfRh x)(γ= for given QDD’s f and g (assuming f only takes 0̂ and

1̂ values,) we use the quantum apply operation (q-apply) an extension
to the apply operation first introduced by Bryant [40].
The q-apply is implemented by a recursive traversal of the two QDD
operands. For each pair of nodes that are visited during the traversal,
an internal node is added to the resultant QDD by utilizing the one of
three rules explained next. Consider performing q-apply to obtain

gfRh x)(γ= . q-apply takes two QDD nodes f and g as arguments
and compares the corresponding decision variables of the nodes and
adds a new node to the resulting QDD, h, with decision variable
d∈{a,b} and childs h1 and h0 using one of the following three rules
after including the weights of the root node and 1̂ -edge in the
corresponding 1̂ -child and 0̂ -child as shown in Figure 6.

Rx(π)

a

Rx(π)

b
 b

0̂

Rx(π/2

a

b

Rx(π/2

Rx(π)

c

0̂

 c

r2

 q1 = a Rx(π) b
 r1 = a Rx(π/2) r2

Rx(θ)
 g

a
f =a Rx(θ) g

Figure 5. The linear topology property of a QDD.

Rx(θ) Rx(θ)
 f0 f1

a
 f

 f0 f1

a
 f

Rx(θr)

 (i) (ii)
Figure 4. Structure of a QDD.

 5

Rule 1: if a<b then d=a, h1=[Rx(αr+α)f1]Rx(γ)g, h0=[Rx(αr)f0] Rx(γ) g.

Rule 2: if b<a then d=b, h1= f Rx(γ) [Rx(βr+β)g1], h0=fRx(γ)[Rx(βr)g0].

Rule 3: if a=b then d=a, h1=[Rx(αr+α)f1]Rx(γ)[Rx(βr+β)g1],
h0=[Rx(αr)f0]Rx(γ)[Rx(βr)g0].

Assume that the corresponding variables for QDD nodes f and g are a
and b, respectively. The new node generated by q-apply depends on
the variable ordering of a and b as demonstrated in Figure 6. For
example, suppose that a<b. Rule 1 is invoked, generating a new node
in the resulting QDD (h) containing variable a. Rule 1 directs the q-
apply operation to recursively call itself. For terminal conditions the
following relation are used: vvRx =)(0̂ θ and vRvR xx)()(1̂ θθ = .

Since f only assumes 0̂ and 1̂ values, these are the only possible
terminal conditions. After the recursive computation of 1̂ -child and
0̂ -child of h, in order to maintain the canonicity of the resulting
QDD, isomorphic sub-graphs are merged and if the 0̂ -child and the
1̂ -child of a node are the same and the weight of the 1̂ -edge is

IRx =)0(, then that node is eliminated. Also the resulting weights

for the nodes (1̂ -child and 0̂ -child of h) are modified as
demonstrated in Figure 7 to make QDD of h canonical.

The commutative property of matrix multiplication for)(θxR
matrices is critical for the q-apply to generate the correct result i.e.,
performing q-apply as described may not generate the correct result
for decision diagrams with weights that are not commutative.

5.4 QDD-based Functional Decomposition
As mentioned earlier, the problem of realizing a function, f, using

)(θxR and controlled-)(θxR operators is equivalent to finding a
quantum factored form for the function, which can in turn be
performed by recursive bi-decomposition of the given function f.
Before delving into the details, we provide a brief review of prior
work related to functional decomposition in general, and bi-
decomposition in particular. Multi-level logic synthesis based on
algebraic optimization techniques [43] are commonplace. An
alternative synthesis method is based on Boolean division and
decomposition. Functional decomposition, systematically investigated
by Ashenhurst [44] and Curtis [45], can be defined as expressing the
function F(X) as F(X)=f(G(Y),Z) where Y∪Z=X. The decomposition
methods provided in [44][45] and some other works are based on
decomposition charts, which makes them computationally inefficient
since the size of the chart grows exponentially with the number of

variables. Therefore, BDD-based decomposition methods have been
developed that use BDD’s as platform to carry out functional
decomposition. Lai et al. [46] used BDD’s instead of decomposition
charts to perform functional decompositions. Other approaches based
on the technique provided in [46] have been reported in [47]-[49].
Reference [42] considered decomposition of multiple-output
functions, where the multiple-output Boolean function is first
transformed into an EVBDD and then decomposed by using methods
developed in [46]. Bidecomposition [51], which is an important
special case of functional decomposition, is a decomposition of type
F(X)=G(Y)ΘH(Z) where Y∪Z=X and Θ stands for any logic
operation. A class of quasi-algebraic decomposition, which in turn is a
special case of bidecomposition, has been introduced in [52]. Files et
al. [53] used Multivalued Decision Diagrams (MDD) to perform
multi-valued functional decomposition. Karplus [54] proposed a
method which performs functional decomposition directly on BDD’s.
He introduced the concept of a 1- and 0-dominator and showed their
relationship to algebraic AND/OR decomposition. Bertacco and
Damiani [55] presented a method which performs recursive
decomposition directly on a BDD. Stanion and Sechen [56] described
a Boolean division and factorization method using a specialized BDD
operator, called interval cofactor. Yang and Ciesielski [57] introduced
the concepts of x-dominator and generalized x-dominator to perform
XOR decomposition directly on BDD’s.
Definition: Quantum (unitary) functional bi-decomposition of f is
defined as finding functions g and h and value γ such that

hgRf x)(γ= where function g only assumes values 0̂ and 1̂ .

Next we provide an algorithm for quantum unitary bi-composition
which can be used to bi-decompose a given function f to hgRx)(γ .
Subsequently, g and h are recursively bi-decomposed, which will
eventually result in a quantum factored for f. The bi-decomposition
algorithm is based on the notion of quantum linear (q-linear)
variables. In the reminder of this paper, while expressing a function as

),...,,(21 nvvvf , it is implicitly assumed that f depends on all variables

nvvv ,...,, 21 (i.e. f is not invariant with respect to nvvv ,...,, 21).

Definition: For a given function),...,,,,...,,(1121 niii vvvvvvf +−
, variable

vi is ‘q-linear’ if there exists a rotation value, iθ , such that for every
value assignment to nii vvvvv ,...,,,...,, 1121 +−

:
ivixiv fRf)(θ= , where

),...,,1̂,,...,,(1121 niiv vvvvvff +−= and),...,,0̂,,...,,(1121 niiv vvvvvff +−= .

A variable is called q-nonlinear if it is not q-linear.
Lemma 1: Consider function),...,,(21 nvvvf with variable ordering

nvvv <<< ...21
. If (and only if) variables nkk vvv ,...,, 21 ++ are q-linear

(i.e., for each iv , k+1<i<n, there is a iθ that for all

nii vvvvv ,...,,,...,, 1121 +−
 values,

ivixiv fRf)(θ= ,) then for each variable

vi, k+1<i<n, there is only one QDD node, ni, with decision variable vi.

The weight of the1̂ -edge of ni will be)(ixR θ . Also no edge
originating from nodes above nj (i.e., nodes with decision variable vj,
j<i) will end at a node below ni (a node with decision variable vj, j>i.)
Proof: The proof is by induction on vn, vn-1, vn-2, …, vk+1 starting from
vn. Details are straight-forward and omitted here.
Let vk be the lowest indexed q-nonlinear variable after which

nkk vvv ,...,, 21 ++ are q-linear variables of f. From Lemma 1,

jj vjxv fRf)(θ= , k+1<j<n where θj is fixed independent of the input

combination of
njj vvvvv ,...,,,...,, 1121 +−

. Every path from the root

node of the QDD to its terminal node will either go thru an internal

Figure 6. Recursive implementation of the q-apply operator
on two QDD’s.

h0

Rx(βr) Rx(αr)
Rx(α)

 f0 f1

a
 f

Rx(β)
 g0 g1

b
 g

h1

a
 h

Rx(γ0)

Rx(γ1)

a
 h

Rx(γ0)

Rx(γ1-γ0)

a
 h

Figure 7. Weight modification during q-apply to maintain
canonicity of the resulting QDD.

 6

node with decision variable vk or it will skip any such node and
directly go the single QDD node with decision variable vk+1. For the
latter case,

kkk vvxv ffRf ==)0(and for any former case,

kk vixv fRf)(α= where there will be as many different rotation angles

(e.g., α1, α2) for variable vk as there are internal nodes with decision
variable vk in the QDD.
Definition: The degree of q-nonlinearity of variable vk is m-1 where m
denotes the number of different rotation angles αi (including 0 if any)
that

kk vixv fRf)(α= for some nkk vvvvv ,...,,,...,, 1121 +− . For q-

linear variables the degree of q-nonlinearity is zero.

Lemma 2: Let 'm denote the number of internal node with decision
variable vk, then if all paths from the root node of the QDD to its
terminal node go thru an internal node with decision variable vk, the
degree of q-nonlinearity of variable vk will be equal to

1'−m otherwise (if there is a path that skips any node with decision
variable vk,) the degree of q-nonlinearity of vk will be equal to 'm .

Proof: The proof follows from structural properties of QDD’s and the
definition of q-nonlinearity. Details are straight-forward.

Theorem 1: Consider function),...,,(21 nvvvf with variable ordering

nvvv <<< ...21 . Assume that nkk vvv ,...,, 21 ++
 are q-linear variables

of f and kv is a q-nonlinear variable of f with degree of q-nonlinearity
m-1 (i.e., for each value assignment to variables

nkk vvvvv ,...,,,...,, 1121 +−
 exactly one of the following m relations

holds:
kk vxv fRf)(1α= ,…,

kk vmxv fRf)(α= .) Let function g be

defined as: If
kk vxv fRf)(1α= then 1̂=g else 0̂=g .

Then function f can be bi-decomposed as: hRgf x)(1 γ=

where: gRvg xk)(1 π= , 2/)(12 ααγ −= , fRgh x)(1 γ−= and g1 will be

a function of kvvv ,...,, 21 (i.e. g1 will be invariant of

nkk vvv ,...,, 21 ++) and kv will be q-linear in function g1. Also h will

be a function of nvvv ,...,, 21 and nkk vvv ,...,, 21 ++ will be q-linear
in function h and the degree of q-nonlinearity of vk in h will be less
than or equal to m-2. (The proof is omitted due to space limitation.)
Using the proposed bi-decomposition approach f can be bi-
decomposed into hRgf x)(1 γ= , where g1 and h are themselves
recursively bi-decomposed until a quantum factored form is obtained.
Since g1 is invariant of nkk vvv ,...,, 21 ++ and vk in g is q-linear and
degree of q-non linearity of vk in h is at most m-2, the recursion will
finally stop at terminal cases where g1 and/or h have directly realizable
QDD’s, i.e., all the variables will be q-linear in the functions and
hence they will have cascade forms corresponding to QDD’s with a
chain structure similar to QDD’s in Figure 5. As a result of Lemma 1,
in a function with chain structured QDD, all variables are q-linear.
The algorithm, q-factor(f), uses the recursive bi-decomposition in
Theorem 1 to generate a quantum factored form for a function f.

Algorithm: q-factor (f)
0- If all variables are q-linear then return the

corresponding cascade form for f .
1- Find the lowest indexed q-nonlinear variable, kv , after

which nkk vvv ,...,, 21 ++ are q-linear.
2- Bi-decompose f as hRgf x)(1 γ= where 1g , h and γ

are given in Theorem 1 using kv .
3- Return [q-factor(1g)] Rx(γ) [q-factor(h)] .

It is important to notice that all of the above steps can be directly
performed on QDD’s. For example if the QDD of a function, f, is a
chain structure, there exists a cascade form for f (step 0). For step 1,
according to Lemma 1, identifying kv is equivalent to identify the
lower chain-structure part of the QDD. As for step 2, according to
Lemma 2, the values mααα ,...,, 21 can be obtained from the weights

of the 1̂ -edges of nodes with decision variable kv . Hence,

2/)(12 ααγ −= can also be obtained. Let ni denote the node with

decision variable kv and 1̂ -edges weight)(ixR α . The QDD of g1
can be constructed from QDD of f using the following method.
Starting from the QDD of f: Change all the weights to IRx =)0(then
create a QDD node, vk, representing vk. as depicted in Figure 8.
Redirect all edges toward n1 to node vk and make the weight of all
such edges)(πxR and redirect all edges toward n2, n3, …, nm to node

vk and make the weight of all such edges)0(xR . Discard nodes n1, n2,
…, nm and finally merge isomorphic sub-graphs, eliminate nodes with
same 0̂ -child and the 1̂ -child if the weight of the 1̂ -edge is

IRx =)0(, and update weights of the QDD to make the QDD of g1
canonical. Having the QDD’s for g1 and f, the QDD of

fRgh x)(1 γ−= can be obtained using the q-apply operation.

The final factored form resulting from q-apply will be in the following

form: [][][] 0̂)(...)()()(332211 kxkxxx RgRgRgRgf γγγγ=

which can also be rewritten as:

[][][] 0̂)(...)()()(
332211 kpxkppxppxppxp RgRgRgRgf γγγγ=

where),...,,(21 kppp is a permutation of),...,2,1(k . (Note that gi
functions should be decomposed as well using q-apply.) In the
following example, it is shown that different permutations on

),...,2,1(k may result in different number of gates while
synthesizing the circuit.
Example 1: In this part a four-input Toffoli gate, depicted in Figure 9
(i), will be synthesized by using the q-factor algorithm. Figure 9 (ii)
shows the QDD of the output s of the Toffoli gate. Throughout the
synthesis process we maintain the variable ordering a<b<c<d.

(i)

b

c

 q = b

 s = (a.b.c)⊕d Rx(π)

 r = c

d

a p = a

Rx(π)

b

c

d

0̂

 s

Rx(π)

a

(ii)
Figure 9. Four-input Toffoli gate and the QDD for 4th

output, s.

Rx(π)

vk

0̂

Figure 8. QDD for the node vk.

 7

From the QDD of s with the c will correspond to vk in q-factor
algorithm and the degree of q-nonlinearity of c is 1. Also 01 =α and

πα =2 which results in 2/πγ = . (It would also be correct to set

πα =1
 and 02 =α . This will generate a different circuit but with the

same functionality.) Consequently, function s can be bi-decomposed
as: hRgs x)2/(1 π−= where gcRg x)(1 π= . Now the QDD for g1 is
depicted in Figure 10 (i). It is seen that function g1 is a 3-input Toffoli
gate, which is synthesized as in Figure 3. As for function h, it can be
derived as sRgh x)2/(1 π= . The QDD for h is depicted in Figure 10
(ii). Subsequently, h can be bi-decomposed as

12)4/(hRgh x π−=
where baRg x)(2 π= and hRgh x)4/(21 π= . The resulting QDD for
g2 and h1 are shown in Figure 10 (iii) and (iv). The resulting factored
form for s is:])4/([)2/(121 hRgRgs xx ππ −−= . Due to the chain
structure of g2 and h1, they may be directly realized by using
controlled-rotation operators. Notice that when realizing g1, we will
also implement g2. As a result, it is more efficient to construct s as:

])2/([)4/(112 hRgRgs xx ππ −−= . The resulting quantum circuit
realization is depicted in Figure 11.

The first part of the circuit (left of the dashed line) generates output s
whereas the second part generates outputs a, b and c. This realization
of the 4-input Toffoli gate can be generalized for n-input Toffoli gates.
In [58] a method for synthesizing an n-input Toffoli gate (including 4-
input) is provided which is similar to the synthesis result provided in
this paper. However the approach in [58] is specialized for gates
similar to n-input Toffoli gates while our approach automatically and
without assuming any prior knowledge above the function, synthesizes
the circuit.

5.5 Modified q-factor algorithm
Using algorithm q-factor will result in a synthesized circuit with

)(θxR and controlled−)(θxR operators where θ can take any value

between −π and π. Consequently the internal signals of the circuit can
take values 0̂)(θxR where −π < θ <π. As mentioned before, the three

operators controlled−)2/(π−xR , controlled−)(πxR and

controlled−)2/(πxR create a universal set of gates which we will

refer to as Reduced Controlled−Rotations (RCR) library. Using RCR
library for synthesis may result in more number of gates and/or extra
temporary storage channels as opposed to the previous approach.
However, for practical issues, using RCR library might be more
advantageous. There are at least two reasons for this statement. First,
building a circuit which uses only three different gates in RCR library
might be more practical (in terms of manufacturing) than using a
library with)(θxR and controlled−)(θxR operators where −π<θ<π.
Second, using RCR library will result a circuit where the internal
signal will only take one of the four values
0̂ , 0̂)2/(π−xR , 0̂)2/(πxR and 1̂0̂)(=πxR . Such a circuit will be
more reliable in the presence of noise and quantum decoherence than a
circuit where signals can take any value 0̂)(θxR , −π < θ <π. Since
there is a possible advantage for synthesizing a circuit using RCR
library we also present a synthesis algorithm (modification to q-factor
algorithm) that results in a quantum circuit consisting of gates from
RCR library. The weights of the QDD of a circuit consisting of gates
from RCR library can take one of the four values IRx =)0(,

)2/(π−xR ,)2/(πxR and)(πxR . Hence the degree of q-nonlinearity
of each variable can be at most three. The algorithm will be similar to
q-factor algorithm except for the step 2. The step 2 will be modified as
follows:

Since variable kv (the lowest indexed q-nonlinear variable) is q-

nonlinear in f, the degree of q-nonlinearity of kv , denoted by m, can
be 1,2 or 3.
For kv , the functions gi (i = 0,1,2,3) are defined as follows:

If
kk vixv fRf)(α= then 1̂=ig else 0̂=ig where 2/)1(πα −= ii .

(Notice hat that for every value assignment to
nkk vvvvv ,...,,,...,, 1121 +−

, exactly one of gi is one and the rest are zero.)

For m (the degree of q-nonlinearity of kv) we consider 3 cases:
If m=1, exactly two function among functions gi (i = 0,1,2,3) are zero
for all nkk vvvvv ,...,,,...,, 1121 +−

 and the other two (gj, gl) will take non-
zero values for some nkk vvvvv ,...,,,...,, 1121 +−

.
Without the loss of generality let’s assume

lj αα > . Then
lj αα −

can take one of three values π/2, π and 3π/2. Based on the value of

lj αα − the function f is bi-decomposed as 21)2/(hRhf x π−=

where:
If παα =− lj

, jxk gRvh)(1 π= . It can be proven that in function h2,

the variables nkkk vvvv ,...,,, 21 ++ will be q-linear.

If 2/παα =− lj
, lk gvh .1 = . In function h2 the variables

nkk vvv ,...,, 21 ++ will be q-linear and h2 will be invariant of kv .

If 2/3παα =− lj
, jk gvh .1 = . In function h2 the variables

nkk vvv ,...,, 21 ++ will be q-linear and h2 will be invariant of kv .

Rx(π)

Rx(π)

a

b

c

0̂

 g1 = c Rx(π) g

Rx(π)

Rx(π/2)

Rx(π/2)

a

b

c

 h = g1 Rx(π/2) s

d

0̂

Rx(π/2)

 h1

d

Rx(π)

Rx(π/4)

c

Rx(π/4)

b

a

0̂

Rx(π)

Rx(π)

a
 g2 = a Rx(π) b

b

0̂

(i) (ii) (iii) (iv)
Figure 10. QDD’s in synthesizing the four-input Toffoli gate.

 s = (a.b.c) ⊕ dh1 π/2 π/4 π/4 -π/2

π/2 π/2

π

-π/2

-π/4

π/2

π

-π/2 -π/2

b

c

d

a

g1

g2 b

c

a

Figure 11. Automatic synthesis solution for the four-input
Toffoli gate obtained by the q-factor algorithm.

 8

 In all of the above three cases function h2 can be obtained as
fRhh x)2/(12 π= .

If m=2 or m=3 it is always possible to find j,l∈{0,1,2,3} such that
παα =− lj

where gj and gl are non-zero (i.e. will take non-zero

values for some nkk vvvvv ,...,,,...,, 1121 +−
.) For such gj and gl the

function f is bi-decomposed as
21)2/(hRhf x π= where

jxk gRvh)(1 π= and fRhh x)2/(12 π−= . Also it can be proven that

the degree of q-nonlinearity of kv in h2 will be less than or equal to

m−1.
In all the above cases there is a reduction (in the total q-nonlinearity of
variables) from f to functions h1 and h2 which guaranties that the
recursive q-factor algorithm (both original and modified) will reach
the final conditions (i.e., step 1 of the q-factor algorithm.)
Example 2: Figure 12 shows the result of synthesizing four-input
Toffoli gate, depicted in Figure 9 (i), using the modified q-factor
algorithm.

As can be observed in this case there is need to use an extra temporary
storage channel while reducing the number of gates to 10.

6. Conclusions
In this paper an efficient analysis and synthesis framework for
quantum logic circuits was presented. We introduced the quantum
factored forms, and developed a canonical and concise representation
of quantum logic circuits. The focus of our approach was on the most
basic quantum operators, i.e., the rotation and controlled-rotation
primitives. Subsequently, two effective QDD-based algorithms (q-
factor and modified q-factor) for automatic synthesis of quantum logic
circuits were introduced. The synthesis results for examples provided
in this paper, demonstrates the effectiveness and promise of the
proposed approach.

7. References
[1] http://public.itrs.net/Files/2003ITRS/Home2003.htm.
[2] R. P. Feynman, “Simulating Physics with Computers,” International Journal of

Theoretical Physics, 21, 1982, pp. 467-488.
[3] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal

Quantum Computer,” Royal Society, A, 400,1985,pp. 97-117.
[4] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, 2000.
[5] C. P. Williams, S. H. Clearwater, Explorations in Quantum Computing,

Springer-Verlag, 1998.
[6] M. Hirvensalo, Quantum Computing, Springer Verlag, 2001.
[7] R. Landauer, “Irreversibility and Heat Generation in the Computational

Process,” IBM Journal of Research and Development, 5, 1961, pp. 183-191.
[8] R. Keyes, R. Landauer, “Minimal Energy Dissipation in Logic,” IBM Journal

of Research and Development, 14, 1970, pp. 152-157.
[9] C. Bennett, “Logical Reversibility of Computation,” IBM Journal of Research

and Development, 17, 1973, pp. 525-532.
[10] C. Bennett, R. Landauer, “The Fundamental Physical Limits of Computation,”

Scientific American, 1985, pp. 48-56.
[11] J. I. Cirac, P. Zoller, “Quantum Computation with Cold Trapped Ions,” Physical

Review, 74, Issue 20, 1995, pp. 4091-4094.
[12] C. Monroe, D. Leibfried, B. E. King, D.M. Meekhof, W. M. Itano, D.J.

Wineland, “Simplified Quantum Logic with Trapped Ions,”. Physical Review
A, 55, Issue 4, 1997, pp. 2489-2491.

[13] D. P. Di Vincenzo, “Quantum Computation,” Science, 270, 1995, pp. 255-256.

[14] A. Ekert, R. Jozsa, “Quantum Computation and Shor’s Factoring Algorithm,”
Review of Modern Physics, 68, Issue 3, 1996, pp. 733-753.

[15] I. L. Chuang, R. Laflamme, Y. Yamamoto, “Decoherence and a Simple
Quantum Computer,” Quantum Coherence and Decoherence, 1996, pp.299-302.

[16] C. Vieri, M. J. Ammer, M. Frank, N. Margolus, T. A. Knight, Fully Reversible
Asymptotically Zero Energy Microprocessor, MIT Artificial Intelligence
Laboratory, Cambridge, MA 02139, USA.

[17] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University
Press, 1st Edition, 1930.

[18] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton
Univ. Press, 1950.

[19] K. Iwama, Y. Kambayashi, S. Yamashita, “Transformation Rules for
Designing CNOT-Based Quantum Circuits,” Design Automation Conference,
2002, pp.419-424.

[20] A. Khlopotine, M. Perkowski, P. Kerntopf, “Reversible Logic Synthesis by
Iterative Compositions,” International Workshop on Logic Synthesis, 2002, pp.
261-266.

[21] D. M. Miller, “Spectral and Two-Place Decomposition Techniques in
Reversible Logic,” Midwest Symposium on Circuits and Systems, on CD-
ROM, 2002.

[22] A. Mishchenko, M. Perkowski, “Logic Synthesis of Reversible Wave
Cascades,” International Workshop on Logic Synthesis, 2002, pp. 197-202.

[23] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko,
X. Song, A. Al-Rabadi, L. Joswiak, A. Coppola, B. Massey, “Regularity and
Symmetry as a Base for Efficient Realization of Reversible Logic Circuits,”
International Workshop on Logic Synthesis, 2001, pp. 90-95.

[24] T. Toffoli, Reversible Computing, Lab. for Computer Science, MIT,
Cambridge, MA, Technical Memo. MIT/LCS/TM-151, 1980.

[25] P. Kerntopf, “A Comparison of Logical Efficiency of Reversible and
Conventional Gates,” International Workshop Logic Synthesis, 2000, pp. 261-
269.

[26] D. M. Miller, D. Maslov, G. W. Dueck, “A Transformation Based Algorithm
for Reversible Logic Synthesis,” Design Automation Conference, 2003, pp.
318-323.

[27] V. V. Shende, A. K. Prasad, I. L. Markov, J. P. Hayes, “Synthesis of Reversible
Logic Circuits,” IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, vol. 22(6), 2003, pp. 710-722.

[28] A. Agrawal, N. K. Jha, “Synthesis of Reversible Logic,” Design Automation
and Test in Europe, 2004, pp. 21384-21385.

[29] A. Al-Rabadi, “Quantum Circuit Synthesis Using Classes of GF(3) Reversible
Fast Spectral Transforms,” International Symp. on Multi Valued Logic, 2004,
pp. 87-93.

[30] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of Quantum Logic
Circuits,” Asia and South Pacific Design Automation Conference, 2005, pp.
272-275.

[31] L. Storme et al., “Group Theoretical Aspects of Reversible Logic Gates,”
Journal of Universal Computer Science 5, 1999, pp 307-321.

[32] A. De Vos et al., “Generating the Group of Reversible Logic Gates,” Journal of
Physics A: Mathematical and General, vol. 35, 2002, pp. 7063-7078.

[33] W. Hung, X. Song, G. Yang, J.Yang, M. Perkowski, “Quantum Logic
Synthesis by Symbolic Reachability Analysis,” Design Automation Conference,
2004, pp.838-841.

[34] M. Lukac, M. Perkowski, H. Mikhail Pivtoraiko, C. Hyo Yu, K. Chung, H. Jee,
B. Kim, Y. Kim, “Evolutionary Approach to Quantum and Reversible Circuits
Synthesis,” Artificial Intelligence in Logic Design, Kluwer Academic
Publisher, 2004, pp. 361-417.

[35] J. A. Smolin, D. P. DiVincenzo, “Five Two-Bit Quantum Gates are Sufficient
to Implement the Quantum Fredkin Gate,” Physical Review A, 53, 1996,
pp.2855-2856.

[36] E. Fredkin, T. Toffoli, “Conservative Logic.,” Int. J. of Theoretical Physics
(21): 219–253, 1982.

[37] D. M. Miller, “Spectral and Two-Place Decomposition Techniques in
Reversible Logic,” Proc. Midwest Symp. on Circuits and Systems, on CD-
ROM, August 2002.

[38] C. Y. Lee, “Representation of Switching Circuits by Binary Decision
Programs,” Bell System Technical Journal, vol. 38, no. 4, 1959, pp. 985-999.

[39] S. B. Akers, “Functional Testing with Binary Decision Diagrams,” Annual
Conference of Fault-Tolerant Computing, 1978, pp. 75-82.

[40] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol. 35, 1986, pp. 677-691.

[41] K. Brace, R. Rudell, and R. Bryant, “Efficient Implementation of a BDD
Package,” Design Automation Conference, 1990, pp. 40-45.

[42] Y.-T. Lai, M. Pedram, and S. Vrudhula, “EVBDD-Based Algorithms for
Integer Linear Programming, Spectral Transformation, and Function
Decomposition,” IEEE Transactions on Computer-Aided Design, vol. 8, 1994,
pp. 959-975.

[43] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli, “Multilevel
Logic Synthesis,” Proceedings of the IEEE , Vol. 78 , Issue 2, 1990, pp. 264-
300.

[44] R. L. Ashenhurst, “The decomposition of switching functions,” in Proc. Int.
Symp. Theory of Switching, vol. XXIX, Ann. Computation Lab. Harvard
Univ., Cambridge, MA, 1959, pp. 74–116.

[45] H. A. Curtis, “A New Approach to the Design of Switching Circuits,” Boston,
MA: D. Van Nostrand, 1962.

[46] Y-T. Lai, M. Pedram, and S. Vrudhula, “BDD-based decomposition of logic
for functions with applications to FPGA synthesis,” in Proc. Design
Automation Conf., 1993, pp. 642–647.

[47] T. Sasao, “FPGA Design by Generalized Functional Decomposition,” in Logic
Synthesis and Optimization. Boston, MA: Kluwer, 1993.

Figure 12. Synthesis solution for the four-input Toffoli gate
obtained by the modified q-factor algorithm.

0̂

π/2

c

d

π/2 π/2

π

-π/2

π

a

b

π/2 -π/2

π

π

c

a

b

s = (a.b.c) ⊕ d

 9

[48] Y.-T. Lai, K.-R. Pan, and M. Pedram, “OBDD-based function decomposition:
Algorithms and implementattion,” IEEE Trans. Computer-Aided Design, vol.
15, pp. 977–990, Aug. 1996.

[49] S.-C. Chang, M. Marek-Sadowska, and T. Hwang, “Technology mapping for
TLI FPGA’s based on decomposition of binary decision diagrams,” IEEE
Trans. Computer-Aided Design, vol. 15, pp. 1226–1235, Oct. 1996.

[50] Y.-T. Lai, M. Pedram, and S. Vrudhula, “EVBDD-based algorithms for integer
linear programming, spectracl transformation, and function decomposition,”
IEEE Trans. Computer-Aided Design, vol. 8, pp. 959–974, Aug. 1994.

[51] D. Bochman, F. Dresig, and B. Steinbach, “A new decomposition method for
multilevel circuit design,” in Proc. Eur. DAC, 1991, pp. 374–377.

[52] T. Stanion and C. Sechen, “Quasialgebraic decomposition of switching
functions,” in Advanced Res. VLSI, 1995.

[53] C. Files and M. Perkowski, “New multi-valued functional decomposition
algorithms based on MDD’s,” IEEE Trans. Computer-Aided Design, vol. 19,
pp. 1081–1086, Sept. 2000.

[54] K. Karplus, “Using if-then-else DAG’s for multi-level logic minimization,”
Univ. California, Santa Cruz, UCSC-CRL-88-29, 1988.

[55] V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” in IEEE Int. Conf. Computer-Aided Design, 1997, pp. 78–82.

[56] T. Stanion and C. Sechen, “Boolean division and factorization using binary
decision diagrams,” IEEE Trans. Computer-Aided Design, vol. 13, pp. 1179–
1184, Sept. 1994.

[57] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization System,”
Trans. CAD. July 2002.

[58] A. Barenco et al., “Elementary Gates for Quantum Computation,” Physical
Review A, 52, 1995, pp. 3457-3467.

