On the Behavior of Substitution-based Reversible Circuit Synthesis Algorithms: Investigation and Improvement

Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi
Email: {msaeedi, szamani, msedighi}@aut.ac.ir

Quantum Design Automation Group
Computer Engineering Department - Amirkabir University of Technology
Tehran, Iran

Presented by:
Mahtab Niknahad (Amirkabir University of Technology)

ANNUAL Symposium ON VLSI 2007
PORTO ALEGRE, BRAZIL
Outline

- Introduction
- Basic concept
- Previous work
- Search-based method
- Proposed method
 - DFS and BFS synthesis methods
 - Hybrid synthesis method
- Experimental results
- Conclusion
- References
Introduction

- Reversible function
- Landauer’s paper about energy dissipation
- Bennett’s paper about the power dissipation of reversible gates
- The applications of reversible circuits
 - Low power CMOS design
 - Optical computing
 - Quantum computing
 - Synthesis

QDA Group, Amirkabir University of Technology, Tehran, Iran
Basic Concept (1)

- Reversible Function
- A new notation for reversible function
- Reversible gate
- various reversible gates
 - NOT, CNOT, C2NOT, ...
- \(x_i (\text{out}) = x_i \) \((i < n)\), \(x_n (\text{out}) = x_1 x_2 ... x_{n-1} \oplus x_n \).
- PPRM (Positive polarity Reed-Muller) expansion.
 \[
 f(x_1, x_2, ..., x_n) = a_0 \oplus a_1 x_1 \oplus ... \oplus a_n x_n \\
 \oplus a_{12} x_1 x_2 \oplus ... \oplus a_{n,n-1} x_{n-1} x_n \oplus \\
 ... \oplus a_{12...n} x_1 x_2 ... x_n
 \]

QDA Group, Amirkabir University of Technology, Tehran, Iran
Basic Concept (2)

- Gate Complexity
 - The number of terms in PPRM expansion
 - The number of non-zero coefficients in previous equation

- gate cost
 - The number of elementary operations required to realize a gate

- Reducing the number of cascaded gates and the number of gate control lines are always preferred
Previous Work

- Two type of algorithms:
 - Transformation-based algorithms
 - Synthesis Algorithms (constructive algorithm)
- The size of a reversible circuit can be very large
 - A practical algorithm may become extremely difficult
- Search-based algorithms
 - Extensive exploration is required
Search-based method (1)

- PPRM expansion
- common sub-expressions
 - common sub-expressions between the PPRM expansions of multiple outputs are identified
- Primary objective
 - Minimize the number of gates (i.e. factors) needed to transform a PPRM expansion into the identity function.
- Secondary objective
 - Minimize the size of the individual gates (i.e. the number of literals in each factor) which is related to the number of control lines for each CNOT-based gate.

QDA Group, Amirkabir University of Technology, Tehran, Iran
Search-based method (2)

- While common sub-expressions seem to be good candidates for current substitution, there is no guarantee that the resulted PPRM expression contains fewer terms.
 - Example 1 (common sub-expression)
 - \(a_{out} = a \oplus b, \quad b_{out} = b \oplus bc \oplus ac, \quad c_{out} = 1 \oplus c \).
 - \(b = b \oplus ac \) (common factor)
 - \(a_{out} = a \oplus b \oplus ac, \quad b_{out} = b \oplus bc \oplus ac, \quad c_{out} = 1 \oplus c \)
 - Not only this common factor dose not decrease the number of terms in its original expression (i.e. \(b \)), but also it increases the number of terms in the other expression (i.e. \(a \)).

QDA Group, Amirkabir University of Technology, Tehran, Iran
Search-based method (3)

- Therefore, **greedy** common sub-expression selection may not result in a better expression.
- Greedy disregard of non-common factors.
- Example 2 (non-common sub-expression):
 - $a_{out} = 1 \oplus a \oplus b \oplus c \oplus ac$, $b_{out} = b \oplus bc \oplus ac$, $c_{out} = c$
 - $b_{out} = b \oplus a$ (non-common factor)
 - Using this factor will result in an optimized CNOT-based circuit with the cost of 8.
- The best report result is a circuit with the cost of 16.
Search-based method (4)

- An important result:
 - Based on the previous two examples, it can be concluded that the selection metric of common sub-expressions may result in poor results. Therefore, there is a clear advantage to use other factors as well as common factors to simplify a reversible circuit.
Search-based method (5)

- The only sub-expression that can increase the number of terms in PPRM expansions is $v_{i,\text{out}} = v_i \oplus \overline{I}$

- Any increase in the number of PPRM terms is discarded

- However, there is no direct correlation between local increase or decrease in the number of PPRM terms and the final synthesized result. (The next slide)
Search-based method (6)

- \(a_{out} = 1 \oplus a \oplus c \oplus ab \oplus ac, \quad b_{out} = 1 \oplus b \oplus ab \oplus ac, \quad c_{out} = a \oplus 1 \)
- \(a_{out} = a \oplus c \) (Common factor)
- \(a_{out} = 1 \oplus a \oplus c \oplus ab \oplus bc \oplus ac, \quad b_{out} = 1 \oplus b \oplus c \oplus ab \oplus bc \oplus ac, \quad c_{out} = 1 \oplus a \oplus c \)
- The number of term eliminations is (-1,-2,-1)
- Using this factor as an initial substitution will result in better-synthesized result

- The greedy substitution of factors, which results in fewer PPRM terms, may not lead to solution at all

QDA Group, Amirkabir University of Technology, Tehran, Iran
Proposed Method (1)

- DFS and BFS synthesis algorithm
- DFS algorithm
 - It considers the results of previously substituted factors before examining any new substitutions
- BFS Algorithm
 - It considers all new factors before using the results of previously substituted factors
- Deeper nodes are more likely to be close to a solution
- The authors of [12] used a DFS-based search method.
- Using a new previously unconsidered factor to synthesize a circuit

QDA Group, Amirkabir University of Technology, Tehran, Iran
Proposed Method (2)

- **Example 4 (DFS vs. BFS synthesis methods)**
 - \[a_{out} = 1 \oplus ab \oplus bc \oplus ac, \quad b_{out} = 1 \oplus a \oplus bc \oplus ac, \]
 - \[c_{out} = 1 \oplus a \oplus b \oplus ab \oplus bc \oplus ac \]

- **BranchNo** is the maximum number of acceptable substitutions at each node

- **MaxDepth** is the maximum tree depth at which PPRM terms can still be increased.

- Please see the paper for more details.

- Testing more factors will always lead to better results.

- Efficient method to synthesize

QDA Group, Amirkabir University of Technology, Tehran, Iran
Hybrid synthesis method

- In the first \textit{MaxDepth} levels, a BFS algorithm is used to evaluate all of the possible factors including common sub-expressions.
- After that, a DFS algorithm is used to evaluate the previously considered nodes, as we believe that deeper nodes have more opportunities to lead a result.
- By using a hybrid DFS & BFS method, the benefits of both algorithm are used.
- Several notations and theorems are proposed in this paper which were omitted due to the lack of time.

QDA Group, Amirkabir University of Technology, Tehran, Iran
Experimental results (1)

☐ The first eight examples are come from literature.

☐ The second eight examples are introduced for the first time.

☐ Please note that the second examples are not synthesized using the previously published paper (Search-based method)

☐ Pentium IV 3.0GHz computer with 1GB memory
Experimental results (2)

- Cost as the total cost of final circuit and SNd as the number of searched nodes

Table 1. The results of using our method on examples of [12]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>SNd</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>761</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>156</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>9515</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>230</td>
<td>12</td>
</tr>
<tr>
<td>Average</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The results of using our method for eight new examples where the method of [12] can not produce any circuit

<table>
<thead>
<tr>
<th>Our Circuits</th>
<th>No. of Gates</th>
<th>Cost</th>
<th>SNd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>19</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>14</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>4387</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>19</td>
<td>352</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>51</td>
<td>678</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>62</td>
<td>9712</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>73</td>
<td>74521</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>72</td>
<td>85191</td>
</tr>
</tbody>
</table>
Experimental results (3)

Table 3. Our synthesized circuits for the attempted examples

<table>
<thead>
<tr>
<th>Circuit#</th>
<th>Description</th>
<th>Our synthesized circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(4,5,6,1,0,7,2,3)</td>
<td>b=b, a=a, b=b, a=a, b=b, a=a, b=b</td>
</tr>
<tr>
<td>2</td>
<td>(7,6,4,5,0,1,2,3)</td>
<td>a=a, b=b, a=a, b=b, a=a, b=b</td>
</tr>
<tr>
<td>3</td>
<td>(0,1,2,3,5,4,3,8,7)</td>
<td>b=b, a=a, b=b, a=a, b=b, a=a</td>
</tr>
<tr>
<td>4</td>
<td>(0,6,2,3,4,5,1,7)</td>
<td>a=a, b=b, c=c, b=b, a=a, b=b, a=a</td>
</tr>
<tr>
<td>5</td>
<td>(0,1,4,2,3,4,5,6,7,8,9,10,11,12,13,1,15)</td>
<td>a=a, b=b, c=c, b=b, a=a, b=b, c=c, b=b, a=a, b=b, c=c, b=b, a=a, b=b, c=c, b=b, a=a</td>
</tr>
<tr>
<td>6</td>
<td>(4,5,6,7,2,3,1,0)</td>
<td>c=c, c=c, b=b, a=a, b=b, a=a, b=b, a=a</td>
</tr>
<tr>
<td>7</td>
<td>(8,9,10,11,12,13,14,15,4,5,6,7,2,3,1,0)</td>
<td>d=d, d=d, b=b, a=a, b=b, a=a, b=b, a=a, b=b, a=a</td>
</tr>
<tr>
<td>8</td>
<td>(0,1,2,3,6,7,5,4,14,15,13,12,9,8,11,10)</td>
<td>d=d, d=d, b=b, a=a, b=b, a=a, b=b, a=a, b=b, a=a, b=b, a=a, b=b, a=a, b=b, a=a</td>
</tr>
</tbody>
</table>

QDA Group, Amirkabir University of Technology, Tehran, Iran
Conclusion

- A more efficient search-based synthesis method is proposed.
- There is no direct correlation between local common sub-expression factors and the final circuit.
- A new hybrid DFS/BFS reversible circuit synthesis algorithm is proposed.
- Experimental results demonstrated that using our method can lead to better synthesis circuits with respect to the total circuit cost as well as the probability of leading to a synthesized circuit.

QDA Group, Amirkabir University of Technology, Tehran, Iran
References

Thanks for your attentions.

Any question?

(msaeedi@aut.ac.ir)