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Abstract 
As technology scales down, timing verification of digital 
integrated circuits becomes an extremely difficult task due to 
statistical variations in the gate and wire delays. Statistical timing 
analysis techniques are being developed to tackle this important 
problem. In this paper, we propose a new framework for handling 
variation-aware interconnect timing analysis in which the sources 
of variation may have symmetric or skewed distributions. To 
achieve this goal, we express the resistance and capacitance of a 
line in canonical first order forms and then use these to compute 
the circuit moments. The variational moments are subsequently 
used to compute the interconnect delay and slew at each node of 
an RC tree. For this step, we combine known closed-form delay 
metrics such as Elmore and AWE-based algorithms to take 
advantage of the efficiency of the first category and the accuracy 
of the second. Experimental results show an average error of 2% 
for interconnect delay and slew with respect to SPICE-based 
Monte Carlo simulations.   

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids. 

General Terms 
Algorithms, Measurement, Performance, Design, Sensitivity. 

Keywords 
Statistical timing analysis, Elmore delay, Moment calculation, 
sources of variation. 

1. Introduction 
Process technology and operating condition induced variability of 
gates and wires in VLSI circuits makes timing analysis of such 
circuits a challenging task  [1]. As the number of sources of 
variations increases, it is impossible to perform static timing 
analysis to analyze all corners  [3]. Furthermore, the identification 
of the corner-point is a complicated task, which is dependent on 
the precise interconnect and gate structure  [4]. Statistical timing 
analysis (denoted by σTA) provides an effective solution to this 
important and complex problem  [1] [3].  
 
 

 

 

 

 

σTA approaches can be classified into two groups: path-
based and block-based. Because of the high computational 
complexity associated with the path-based σTA, block-based 
σTA has received a lot of attention. In block-based σTA, every 
timing quantity of interest (e.g., delay and slew, arrival time and 
required arrival time) is represented as a function of global 
sources of variation (denoted by Xi) and independent random 
sources of variation (denoted by Si) in the canonical first-order 
(denoted by CFO) form  [3]. As with its STA counterpart, block-
based σTA breaks the analysis into two parts: 1) variational 
interconnect timing analysis and 2) variational gate timing 
analysis. In this work, we focus on the variation-aware 
interconnect timing analysis.  

Interconnect timing analysis in STA has been widely studied. 
It is well established that the Elmore delay metric  [4] (which uses 
the first moment of the impulse response transfer function) can be 
off by orders of magnitude in some cases. To address the 
accuracy problem, different delay metrics have been proposed 
 [6]- [8]. For example, the empirical D2M metric  [6] uses the first 
two moments of the impulse response transfer function. Similarly, 
in  [9], we described a new approach (called TFA) to find the 
interconnect delay and slew by using two moments of the impulse 
response. AWE methods are based on a variable refinement 
waveform estimator for approximating a generalized linear RLC 
interconnect. The AWE-based interconnect analysis tools (e.g., 
RICE  [10], PRIMA  [11]), which use the higher order moments of 
the impulse response to approximate poles of the circuit, produce 
the time-domain waveform of the output under arbitrary inputs. 
As a result, these techniques exhibit high accuracy. In spite of 
this, the Elmore delay metric continues to be used for interconnect 
delay calculation during the various steps of the physical design 
because of its high efficiency.  

For interconnect timing analysis in σTA, the authors in  [2] 
express the resistance and capacitance of an interconnect line as a 
linear function of random variables and then use these r.v.’s to 
compute the circuit moments. These variability-aware moments 
are used in standard closed-form delay metrics such as the Elmore 
metric to compute interconnect delay PDF’s. Unfortunately, this 
method can produce erroneous results due to the inaccuracy of the 
closed-form delay metrics. In addition, the authors do not provide 
a solution for the case of non-symmetric distribution of different 
sources of variations. On the other hand, resorting to AWE-based 
approaches to evaluate sensitivity of the interconnect delay and 
output slew to the sources of variations is seemingly impractical. 
Therefore, in this paper, we present Variation-Aware Interconnect 
Timing Analysis method (named VITA, which comprises of the 
following steps): 

1) Given the variational resistive-capacitive load and the 
variational ramp input (where all resistances and capacitances and 
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the input are represented in the CFO form), an efficient algorithm 
is employed to calculate variation-aware circuit moments in the 
CFO form. 

2) Plugging these variational circuit moments in any of the 
existing closed-form delay metrics such as Elmore and also by 
introducing a set of new linearization techniques, interconnect 
delay and slew in the CFO form are calculated. 

3) By combining the result of the variation-aware closed-
form delay metrics (as obtained in step 2) with the result of AWE-
based algorithm for the nominal case of the circuit parameters, we 
calculate interconnect delay and slew for each node of the RC tree 
in the CFO form. 

The remainder of this paper is organized as follows. In 
section 2, we review the background of the block-based σTA. 
Variation-aware delay and slew calculations are presented in 
section 3. Section 4 gives an improvement on the delay and slew 
obtained in section 3 by calculating the nominal delay and slew 
with AWE-based algorithm. Section 5 presents experimental 
results. Conclusions are given in section 6.  

2. Background for Block-Based σTA 

2.1 CFO model for timing parameters  
A first-order variational model is employed for all timing 
quantities such as the gate and wire delays, arrival times, required 
arrival times, slacks and slews, i.e., all timing quantities are 
expressed in the CFO form as:  
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where anom is the mean or the nominal value; ∆Xi‘s represent the 
variation of m global sources of variation, Xi, from their nominal 
values, ai‘s denote the sensitivities to each of the global sources 
of variation, ∆Sa is the variation of independent random variable 
Sa, and am+1 is the sensitivity of the timing quantity to Sa. By 
appropriately scaling the sensitivity coefficients, and without loss 
of generality, we may assume that ∆Xi and ∆Sa are distributions 
with zero mean (µ=0), variance of one (σ=1), and a pre-
determined skewness  [14]; i.e. Dist(µ=0, σ=1, skewness). 
Moreover, we define ai/anom as the normalized sensitivity 
coefficient (denoted by NSC.)  

2.2 CFO model for electrical parameters  
Variation of the circuit parameters causes change in the resistance 
and capacitance of the wire, thereby, making the wire delay and 
slew to vary accordingly. Therefore, we need to capture the effect 
of variations on the electrical parameters. Classifying the sources 
of variation into global and independent random sources of 
variation, we represent electrical parameters of the wire (i.e., R 
and C) in the CFO form. For instance, R and C in the CFO form 
are calculated as follows  [12]: 
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where Rnom and Cnom represent nominal resistance and capacitance 
values, computed when the sources of variation are at their 
nominal or typical values.  

2.3 Converting into CFO form 
As mentioned in sections 2.1 and 2.2, it is important to represent 
timing and electrical quantities in the CFO form. This in turn 
enables one to propagate first order sensitivities to different 
sources of variation through the circuit timing graph  [3] [12]. In 
addition, it makes statistical computations efficient and practical 
and provides timing diagnostics with a small cost in terms of the 
cpu time.  

A key question is how to convert some quantity of interest 
(which itself is a function of CFO variables) into the CFO form. 
First, however, we explain how to calculate a number of 
arithmetic operations (i.e., addition, subtraction, multiplication, 
division, and square root) on two CFO operands. These operations 
will be subsequently utilized during interconnect timing analysis 
in order to put the result in the CFO form.  

Suppose A and B are two parameters in CFO form: 
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We represent the results of the operations on these two operands 
in CFO form below. In each case, the results expression was 
obtain in such a way that the first and second moments of the 
approximated output in CFO form are equal to the first and 
second moments of the actual (exact) result. 

Addition and subtraction- If C=A±B, then C in CFO form 
can be written as: 

( ) ( ) 2 2
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Multiplication- If C=AxB, then C in the CFO form can be 
written as: 
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However, because of the nonlinear term, Equation (5) is not in the 
CFO form. To put it in CFO form, we use the following 
linearization technique. The ∆Xi

2 is substituted with a linear 
approximation µ+σ∆Xi, such that the first and second moments of 
the actual term and the approximated term are equal i.e.,  

( ) ( ) ( ) ( ){ }22 4
i i i iE X E X E X E Xµ σ µ σ∆ = + ∆ ∆ = + ∆  (6) 

Consequently, C in CFO form can be approximated as: 
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For instance, if ∆Xi is a unit normal distribution N(α=0, β=1), 
thus; 

( ) ( )2 2 2 4 4 2 2 46 3i iE X E Xα β α α β β∆ = + ∆ = + +  (8) 
Hence, using equations (6) and (8), we have: 

2 1 2i iX X∆ ≅ + ∆  (9) 
Division- Suppose A and B are in CFO forms. The objective 

is to find C in CFO form while 



  

.AC A C B
B

≅ ⇒ ≅  (10) 

Following the derivation for the multiplication operation, we can 
find the unknown coefficients of C in the CFO form. 

Square root- Having A in the CFO form, the objective is to 
find C in the CFO form while 

2C A C A≅ ⇒ ≅  (11) 
With the approach similar to that adopted for the multiplication 
operation, we can find C in the CFO form. 

3. Interconnect Timing Analysis for an RC Tree 
in Block-Based σTA 

Elmore  [4] showed the delay of an RC tree may be approximated 
by using the first moment of the impulse response transfer 
function (i.e., -m1.) It has also been shown that the interconnect 
propagation delay and slew for an RC circuit driven by a ramp 
input by using the Elmore delay metric can be calculated as: 
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where Tin(α%-β%) denotes the input transition time from α% point  
to β%. point, Tx(α%-β%) is the transition time of node x from its 
α% point  to β%. point, m1 is the first moment of the impulse 
response transfer function, and Tr is the input transition time form 
0% point to 100% point. 

D2M  [6] uses two moments of the impulse response transfer 
function, thus yielding a more accurate delay and slew value: 
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TFA  [9] approximates the slew of an interconnect using the 
first two circuit moments as follows: 

( ) ( )2 2
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where γ is a function of m2/m1
2. For a general second order 

system, when applying a step input to the system, γ is a linear 
function of m2/m1

2 and is estimated as follows: 
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λ and κ values for different transition points are reported in  [9]. 
AWE can perform highly accurate interconnect timing 

analysis; However, its efficiency is much lower compared to 
Elmore, D2M, and TFA. The efficiency issue becomes even more 
critical when doing variational interconnect timing analysis. 

Problem statement: Given is an RC tree representation in a 
design as shown in Figure 1, where each R and C is in the CFO 
form and the RC tree is driven with a ramp input, also, in the CFO 
form. The objective is to calculate the voltage transition time and 
propagation delay from the input node to each node in the tree in 
the CFO form. 

Vi 
Vo 

 
Figure 1. An RC tree where an input ramp voltage Vi is 

applied and Vo is the voltage of the output pin. 
The proposed framework to solve the aforesaid problem is as 

follows. 1) We first compute the circuit moments in the CFO 
form, and 2) By using the obtained moments, we calculate the 
interconnect propagation delay and slew at each node of the RC 
tree in the CFO form. 

3.1 Variational moment calculation in CFO form  
To calculate the delay and slew of any node in an RC tree in CFO 
form, we need to first obtain the circuit moment(s) in the CFO 
form (Elmore metric requires the first moment only. However, 
D2M and TFA require the first two moments). Given is an RC 
tree representation in a design as shown in Figure 1, where each R 
and C is in the CFO form. The objective is to find impulse 
response moment(s) in CFO form. 

It has been shown that circuit moments in an RC tree can be 
computed directly as functions of the RCs in linear time in the 
size of the circuit  [13]. The circuit moments of an RC tree can be 
computed efficiently by path tracing. The p-th order circuit 
moment (p>1) of node i ( mi

p) in an RC tree can be expressed as: 

1
i i
p ik k p

k

m R C m −= −∑  (19) 

Here, summation is taken over all the nodes other than the source 
node. Ck is the capacitance at node k and Rik denotes the total 
overlap resistance in the unique paths from the source node to the 
nodes i and k  [13]. Since Rik and Ck are in the CFO form, by using 
the multiplication and addition operations presented in section 
2.3, we can calculate any moment in the CFO form.  

3.2 Delay and slew calculation in CFO form using 
moments in CFO form 

Given are circuit moments in CFO form. The objective is to 
calculate the delay and slew at each node of the RC tree in CFO 
form. Based on the discussion at the beginning of section 3, the 
delay and slew at each node of the RC tree can approximately be 
written as a function of the input transition time and circuit 
moments using Elmore, D2M, TFA and many other delay metrics 
as in Eqns. (12)-(18). Therefore, if we substitute the obtained 
moments from section 3.1 in those equations, and use the 
operations in section 2.3, we will end up computing the delay and 
slew of each node in CFO form. 



  

4. A Mixed Method for Interconnect Timing 
Analysis for RC Tree in Block-Based σTA 

Section 3 presented a method to calculate voltage transition time 
and interconnect delay in CFO form by using known closed form 
delay metrics. The proposed method was based on the circuit 
moments of the impulse response in the CFO form. Calculating 
variation-aware interconnect delay based on Elmore delay, D2M, 
or TFA method will cause pessimistic and possibly erroneous 
results. Using more accurate delay calculation algorithm such as 
AWE is CPU-intensive. Furthermore, as the number of sources of 
variations increases, interconnect delay and slew calculation 
become more complex. Thus, we propose an efficient and 
accurate mixed method, which benefits from the accuracy of exact 
algorithms such as AWE, and the efficiency of fast algorithms 
like Elmore, D2M or TFA. Next, we explain how to compute a 
more accurate, yet efficient, interconnect delay in CFO form. The 
discussion can be applied in the same manner to any other timing 
quantity (e.g., slew). Suppose the actual interconnect delay in the 
CFO from can be represented as follows: 
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Previously we showed how to use circuit moments of 
impulse response to approximately compute delay in CFO form. 
We define Dapx (in CFO form) as an approximate value for Dact: 
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Dapx can be calculated based on different delay metrics such 
as Elmore, D2M or TFA. We define dapx,i/dapx,nom and dapx,i/dapx,nom 
as approximate and actual normalized sensitivity coefficients 
(denoted by NSCs), respectively. As will be seen in the 
experimental results section, for different delay metrics, the 
approximated NSCs remain nearly the same, and furthermore, 
they converge to their actual NSC values.  Hence,  
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Based on the above observation, a mixed method for 

transition time and interconnect delay calculation comprises of 
the following steps.  
1) Calculate Dapx in the CFO form (section 3), and therefore, 

find dapx,nom and dapx,i for 1≤ i ≤m+1. 
2) Find the actual dact,nom by performing the AWE algorithm for 

the nominal conditions of the circuit. 
3) By using Eqn. (22) and the results of step 1 and 2, we get  

 ,
, ,

,

,1 1apx i
act i act nom

apx nom

i i m
d

d d
d

∀ ≤ ≤ += ×   

After finding all dact,nom and dact,i, we can write Dact in CFO form. 

5. Experimental Results 
5.1 Normal sources of variation, N(0,1) 
To assess the quality of the solution to the general problem 
statement in section 3, the proposed algorithm (in section 3) is 
applied on 1000 random RC ladder with 30 segments connected in 
series (nodes are labeled 1 to 30 from the input to the output.) The 
R and C values were uniformly distributed between 1-500 ohms 
and 1-500pF, respectively. We characterized the variations of 
each R and C as a function of three normal global and one normal 
independent random sources of variation. The total σ variation for 
each R and C was considered to be 15% of their nominal value. 
However, sensitivities of each R and C in the circuit to sources of 
variation were set randomly. The nominal value for the input 
transition time was uniformly chosen between 10ps to 300ps. 
Furthermore, we characterized its variation as a function of three 
normal global random sources and one normal independent 
random source of variation. The sensitivity of the input transition 
time to sources of variations was also set randomly, whereas the 
total σ variation of the input rise time was chosen to be 15% of its 
nominal value.  

We ran HSPICE-based Monte Carlo simulation on each case 
of the above circuit scenarios and compared the delay and slew 
results with the approach explained in section 3. The results are 
reported in Table 1. Experimental results indicate an average error 
of less than 14% for different σ values when the Elmore delay 
metric is used for statistical timing analysis. This error goes down 
to an average of 10% by applying the D2M based statistical 
interconnect timing analysis. TFA based approach gives an even 
lower average error of only 7%.  

In section 4, we stated that NSCs change only slightly as the 
delay metrics used for statistical interconnect timing analysis are 
changed. To verify this statement, Figure 2 provides NSC 
variation for Elmore, D2M, and TFA-based interconnect timing 
analyses with respect to their actual NSC values for nine different 
circuit scenarios. The figure clearly corroborates the claim. The 
average error is less than 2% when the approach in section 4 (i.e., 
mixed method, using TFA for NSC and AWE for nominal value 
calculation) is employed. These results are also presented in Table 
1 (cf. the last column.) 
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Figure 2. Changes in the normalized NSC using Elmore, 

D2M, TFA and AWE algorithms. Results are provided for 
nine different circuit scenarios. 

5.2 Skewed sources of variation with µ=0, σ=1, and 
skew=0.5 

The same set of experiments was run by using skewed sources of 
variation with mean of zero, variance of one, and skewness of 0.5. 
The average error of µ and σ for the 30-segment RC ladders is 



  

presented in Table 2. Results reveal an average error of less than 
15% if the Elmore delay metric is used for statistical timing 
analysis. This error goes down to average of 12% by applying the 
D2M-based statistical interconnect timing analysis. TFA-based 
approach gives a better average error of 9%. The average error 
becomes less than 3% when the mixed method (using TFA for 
NSC and AWE for nominal value calculation) is employed. 

6. Conclusion 
In this paper we presented a framework to handle the variation-
aware interconnect timing analysis in block-based σTA. We 
expressed the resistance and capacitance of a line in a canonical 
first order form and used them to compute the circuit moments. 
These variational moments were used to compute interconnect 
delay and slew at each node of the RC tree. To achieve this goal, 
we combined known closed form delay metrics such as Elmore 
with AWE based algorithms to benefit from the efficiency of the 
first category as well as the accuracy of the second. Experimental 
results showed an average error of 2% with respect to Spice-based 
Monte Carlo simulation results. 
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Table 1: Experimental results for RC ladder with normal sources of variations N(0,1) 
Elmore D2M TFA Mixed (TFA+AWE) 

Delay Slew Delay Slew Delay Slew Delay Slew Node 
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ 

10 12.3% 11.2% 13.3% 10.3% 7.3% 7.4% 7.3% 6.9% 5.3% 5.2% 4.9% 4.2% 1.9% 1.8% 1.8% 1.8% 
15 11.2% 10.0% 9.6% 10.2% 6.9% 5.1% 5.6% 4.9% 4.1% 4.2% 3.9% 3.5% 1.5% 1.6% 1.5% 1.5% 
20 8.7% 8.5% 8.5% 7.6% 5.2% 4.9% 4.8% 4.2% 3.2% 3.6% 3.3% 3.0% 1.3% 1.7% 1.4% 1.5% 
25 6.5% 5.4% 6.7% 4.7% 4.0% 3.2% 3.1% 3.1% 2.7% 2.3% 2.0% 2.1% 1.2% 1.1% 1.0% 1.1% 
30 5.3% 4.5% 4.5% 3.9% 2.4% 2.1% 2.0% 1.9% 1.0% 1.3% 1.2% 1.1% 0.7% 0.6% 0.5% 0.7% 

Table 2: Experimental results for RC ladder with a source of variation with µ=0, σ=1, and skew=0.5  
Elmore D2M TFA Mixed (TFA+AWE) 

Delay Slew Delay Slew Delay Slew Delay Slew Node 
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ 

10 14.5% 15.5% 15.1% 15.6% 9.3% 9.4% 9.3% 8.9% 7.3% 7.2% 7.9% 7.2% 2.4% 2.4% 2.3% 2.1% 
15 14.1% 14.3% 14.2% 14.3% 7.9% 7.1% 7.6% 7.9% 6.1% 5.2% 5.9% 6.5% 1.6% 1.8% 1.8% 1.9% 
20 12.3% 12.6% 12.3% 12.1% 6.2% 6.9% 5.8% 5.2% 5.2% 4.2% 4.2% 4.7% 1.5% 1.6% 1.6% 1.3% 
25 7.4% 8.7% 7.9% 6.1% 3.8% 3.9% 4.1% 4.1% 3.3% 3.4% 3.2% 3.6% 1.4% 1.4% 1.5% 1.4% 
30 5.5% 5.9% 6.3% 5.9% 3.6% 3.4% 2.5% 2.9% 2.2% 2.1% 2.7% 2.4% 1.2% 1.3% 1.2% 1.1% 

 


