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Abstract

This paper presents an exact algorithm and two heuristics for solving the Bounded
path length Minimal Spanning Tree 	BMST
 problem� The exact algorithm which is
based on iterative negative�sum�exchange	s
 has polynomial space complexity and is
hence more practical than the method presented by Gabow� The �rst heuristic method
	BKRUS
 is based on the classical Kruskal MST construction� For any given value of
parameter �� the algorithm constructs a routing tree with the longest interconnection
path length at most 	� �
 �R� and empirically with cost at most �� � cost	BMST �

whereR is the length of the direct path from the source to the farthest sink andBMST

�

is the optimal bounded path length MST� The second heuristic combines BKRUS and
negative�sum�exchange	s
 of depth � to generate even better results 	more stable local
minimum
� Extensions of these techniques to the bounded path length Minimal Steiner
Trees� using the Elmore delay model� and the construction of MSTs with lower and
upper bounded path lengths are presented as well� Empirical results demonstrate the
e�ectiveness of these algorithms on a large benchmark set�

�Part of this work is published in European Design and Test Conference ����� pp �������	



� Introduction

In the design of high�performance VLSI systems� circuit speed and power consumption are
important considerations� Routing optimization plays an important role in achieving optimal
circuit speed and minimal power consumption� Indeed� critical path delay is a function of
maximum interconnection path length while power consumption is a function of the total
interconnection length�

A linear RC model �where interconnection delay between a source and a sink is propor�
tional to the wire length between the two terminals� is often used as a simple approximation
for interconnection delay� First� we also use wire length to approximate interconnection de�
lay during the construction of routing trees� Later� we extend this delay model to a more
accurate RC delay model�

A routing tree used in a synchronous system has an input� called the driver or source�
that sends signals to each sink� Critical path delay is de�ned as the maximumdelay from the
source to any sink� The critical path delay of the Shortest Path Tree �SPT� is minimum��
but SPT has excessive routing cost and power dissipation as the power consumed by the
driver has a linear relation with the routing capacitance� Minimal Spanning Tree �MST� has
minimal routing cost� but may contain a very long source�to�sink path which degrades the
performance� Alpert et al� �	
 showed how to trade the average source�to�sink path length
for lower total routing cost by using a linear combining cost function consisting of the source�
to�sink path length and the weight of the edge to be added during the tree construction�

In this paper� we present algorithms for constructing a Bounded path length Minimal
Spanning Tree �BMST�� The routing tree achieves bounded path length� that is� the length
of the path from the source to each terminal is bounded� Such a bounded path length tree
provides a good initial topology for designers to adjust for minimizing critical paths using a
more accurate RC delay model� Also� the tree has small routing cost which is important from
area and power consumption viewpoints� We will show the same method can be extened to
bounded path length Steiner tree�

Let R be the length of direct path from the source to the farthest sink and � be a
non�negative user�speci�ed parameter� Our method constructs a spanning tree with radius
at most �� � �� � R by using an analogue of the classical Kruskal MST construction ��
�
Furthermore� the tree cost is empirically observed to be at most ���	 of that of an optimal
BMST�

We next describe an exact algorithm due to Gabow �
 which produces an optimal
BMST with exponential time and space complexity� Then� we propose a new exact algorithm
which requires polynomial space� This method constructs an optimal tree by negative�sum�
exchange�s� on an initial feasible solution� We also propose another heuristic which resolves
the complexity problems of the exact algorithm and produces better average results than
the Kruskal based method� Finally� we show extension of these algorithms to the case where
the path lengths are bounded from both above and below �e�g� in clock routing problem��

The key features of our algorithms are described as follows�

� The path length from the source to each terminal is bounded�

� The routing cost is small�

�In a SPT� each sink is connected to the source by the shortest possible path	
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� A user�given parameter can trade�o� the longest and shortest path length for the
routing cost�

The remainder of this paper is organized as follows� Section � formulates the BMST
problem and describes the previous work� Section � proposes a new bounded path length
algorithm which uses an analogue of the classical Kruskal MST construction� Section � de�
scribes an exact method for �nding BMST based on a variation of the Gabow�s algorithm�
Section � presents another exact method and heuristic based on negative�sum�exchange�s��
Section  describes extension to the lower bounded path length constraints� Section �
presents benchmark results and comparisons and Section � concludes the paper�

� Background

On a Manhattan �L� metric� or an Euclidean �L� metric� plane� let G � �V�E� �jV j � N�
be a network where V is a set of randomly distributed terminal pins called sinks with a
distinguished pin called the source�s�� and E is the set of edges connecting V � BMST seeks
to connect all nodes of V in G by a set of edges in E of minimal total length with a bounded
path length from the source to any sink� This problem is known to be NP�complete ��
� We
propose a novel algorithm � that is� Bounded path length Kruskal �BKRUS� � for solving this
problem heuristically� A tree generated by our BKRUS method is called a Bounded path
length Kruskal minimal spanning Tree �BKT��

Cong et al� ��
 proposed two heuristics for solving the BMST problem� In the �rst
method of Cong et al�� i�e� the Bounded Prim �BPRIM� algorithm� even though the empirical
results are promising� the worst�case performance ratio is unbounded where performance
ratio is de�ned as cost�BPRIM��cost�MST� �see Table �� � and Figure ��� In the second
method of Cong et al�� i�e� the Bounded Radius� Bounded Cost �BRBC� algorithm� the
worst�case performance ratio is bounded� However� BRBC method uses minimum path
�shortest path� from the source to sink whenever the source�to�sink path length violates the
length bound � � cost�S� sink� during the depth �rst tree traversal� Hence� it may introduce
unnecessary routing cost� A better heuristic algorithm was proposed in �	
� but its average
performance is still lower than BPRIM�

Before describing our approach� we give some de�nitions� The sum of all edge weights
of T is the cost of the tree� cost�T �� A node refers to both the source and the sinks� The
distance between node u and node v is dist�u� v�� The shortest path distance between node
u and node v in tree T is pathT �u� v�� The radius of node v � T is radiusT �v� �i�e� max
fpathT �v� u�g� � u � T �� The partial tree which contains node v is represented by tv� S
denotes the source�

We de�ne the BMST problem as follows�

Given the routing graph G�V�E� in L� or L� space� �nd a minimal cost routing
tree BMST with radiusBMST�S� � �� � �� � R�
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BPRIM MST and BKT BKT
ε = 0.25
Cost = 38.57Cost = 30.98

ε= ∞
Cost = 131.30
ε= 0.0

BKT
ε = 0.0
Cost = 40.09

Figure �� The leftmost �gure is quoted from Cong� et� el� With BPRIM� as the tree is build
up starting from the source� it ends up with a situation that the far away nodes cannot be
connected to any other nodes except the source� However� our proposed method correctly
returns the rightmost �gure� which happened to be an optimal solution�

� BKRUS and its extensions

In this section� we present Bounded KRUSkal�BKRUS� algorithm and its extensions to using
the Elmore delay model� Bounded path length Steiner trees�

��� A heuristic� BKRUS

The classical Kruskal algorithm adds an edge �u� v� in G to MST� or equivalently� merges
two partial trees tu and tv by the edge �u� v� if�

��� �u� v� is the least weight edge among the available edges and
��� tu �� tv�

For ���� all the edges are sorted in nondecreasing order� For ���� a disjoint set on V is
implemented� Three operations on the set are MAKE SET� FIND SET and UNION� the
meanings of which are self�explanatory� Merging two partial trees is done by the UNION
operation followed by the Merge routine to be discussed later� while condition ��� is easily
tested by the FIND SET operation� BKRUS algorithm adds one more condition as follows�

��� the merged tree satis�es the path length bound ��� �� �R from the source to
the farthest sink�

Let tM be the merged tree� i�e�� tM � tu � tv � �u� v�� Two cases are possible as shown in
Figure ��

���a� If tu contains the source� then the following condition should be satis�ed�

pathtu�S� u� � dist�u� v� � radiustv�v� � �� � �� �R

Since nodes in tu already satisfy the upper bound constraint� this condition ensures that
nodes in tv will also satisfy the upper bound constraint after the merge �Figure ���a��� The
case where tv contains the source is similar�
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Figure �� Feasibility test of edge �u� v�� In �a�� partial tree tu contains the source� In �b��
none of the partial tree contains the source�

���b� If neither tu nor tv contains the source� then there must be a node x � tM such
that�

dist�S� x� � radiustM �x� � �� � �� �R

This condition ensures that all the nodes in the merged tree tM can be connected to
the source without violating the upper bound path length constraint by having at least a
direct path from the source to node x �Figure ���b��� That is� the existence of such node
x guarantees that all nodes in tM can satisfy the upper bound constraint� If no such node
exists in tM � then �u� v� should be rejected as there is no way to satisfy the upperbound
constraint for all the nodes in tM � We can now give two important de�nitions�

De�nition ��� A feasible node� If there exists a node x in tM such that dist�S�x� � radiustM�x�
� �� � �� � R� then node x is a feasible node in tM �

De�nition ��� A feasible edge� If edge �u� v� satis	es conditions �
� and ���� then it is a
feasible edge�

The importance of feasible edges is that they can be safely added to the spanning tree
under construction�

The radius of a node in the merged tree can be found by the following equation�
Suppose x belongs to tu� Then it can be easily seen that

radiustM �x� � max fradiustu�x�� pathtu�x� u� � dist�u� v� � radiustv�v�g

The case where x belongs to tv is similar� To conduct the feasibility test� BKRUS
maintains the radius of each node in the partial tree it belongs to� and the path lengths
between every pair of nodes within the partial tree they belong to� Let the array D�V� V 

contain the distances between every pair of nodes� i�e� D�x� y
 � dist�x� y�� This matrix is
computed from the coordinates of nodes� Let the array P �V� V 
 be the path length between
every pair of nodes in the routing tree T � i�e� P �x� y
 � pathT �x� y�� Also let the vector r�V 

be the radii of nodes in the tree they belong to� Initially� the array P and the vector r are
initialized to zero at the beginning of the tree construction process� As the tree grows� P
and r are updated by the Merge routine given below�
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Figure �� Example of Merging Two Partial Trees

fMerge two subtrees tu and tv by edge �u� v�g
Algorithm Merge�u� v�
� for each x � tu and y � tv do
� P�x� y
 � P�y� x
 � P�x� u
 � D�u� v
 � P�v� y

� end for

� for each x � tu do
� r�x
 � max�r�x
� P�x� i
� � i � tv�
	 end for


 for each y � tv do
� r�y
 � max�r�y
� P�i� y
� � i � tu�
� end for

Figure � shows an example of how Merge routine works� The vertex labels and edge
weights are shown in the �gure� The two partial trees are merged by the edge �c� e�� The
lefthand side tree is tc and the righthand side tree is te� Before the merging takes place� all
of the non�zero elements �except the diagonal elements� in matrix P and the vector r were
computed from the previous mergings� Note that elements of r are the maximum of each row
of P � The Merge routine leaves those non�zero elements unchanged and updates P �x� y
 only
when x and y are in di�erent partial trees� For example� P �a� f 
 can be computed by P �a� f 

� P �a� c
 � D�c� e
 � P �e� f 
� Once the P matrix is updated by line ��� in the algorithm� new
radius r�x
 can be found by taking the maximum among the old radius �old r�x
� and the
P �x� y
s for all y � tv� For example� new r�a
 can be found by taking the maximum among
fold r�a
� P �a� e
� P �a� f 
g� which is f	� ��� ��g� So the new r�a
 is ��� We can easily see that
the time complexity of Merge is O�V ���

With this� the radius of a node x in the merged tree is

radiustM �x� � max fr�x
� P �x� u
 �D�u� v
 � r�v
g
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Note that D�P� r are already computed from the previous mergings� So no merging is
needed to compute the radius of a node in the merged tree� Only when the edge �u� v� is
feasible� the merge routine is invoked� Since feasibility test for a node can be done in O����
the condition ���b� can be tested in O�V �� We also note that condition ���a� can be tested
in O����

The complete BKRUS algorithm is summarized in the following�

Algorithm BKRUS�G�source and sinks�
� for each vertex x � G do

� MAKE SET�x�
� r�x
 � �
� end for

� for every pair of vertices x� y � V do

	 P�x� y
 � �

 end for

� sort the edge set E in nondecreasing order of weights
� for each edge �u� v� in the sorted edge list do
� if FIND SET�u� �� FIND SET�v� then
�� if either condition ���a� or ���b� is satis�ed then
�� UNION�u� v�
�� Merge�u� v�
�� output the edge �u� v�
�� end if

�	 end if

�
 end for

The for loop in line 	 can be implemented to make an early exit when V � � UNION
is performed� Each node has a pointer to the next node in the same partial tree� Each
node also has a pointer to a randomly selected representative node� which also serves as
the name of the partial tree �hence the name of the set�� With this implementation of sets�
FIND SET�u� can be done in O��� and UNION�u�v� can be done in O�V �� Line ��� take
O�V � while line ��� take O�V ��� Sorting in line � takes O�ElogE�� The loop in line 	���
goes O�E� iterations in the worst case� Line �� can be done in O���� Line �� tests the
condition ���a� or ���b� depending on the case and takes O�V � in the worst case as discussed
before� Line �� takes O�V � while line �� takes O�V ��� Line �� puts �u� v� in the tree under
construction� Since line �� is executed E times and line �� is executed V � � times� the
complexity of line 	��� is bounded by O�EV � V � V �� � O�V ��� This dominates the whole
complexity of BKRUS algorithm�

Here� we explain BKRUS algorithm with a simple example� Suppose we have a source
and four sinks as shown in Figure �� If the upper bound path length is set to ��� BKRUS
works in the order of �a�� �b�� �c�� and �d�� In �c�� edge �c� d� is rejected since there is
no feasible node that satis�es upper bound constraint� edge �b� d� is included instead� In
�d�� edge �S�a� is rejected since it violates upper bound constraints� Finally� edge �S� b� is
included in the tree�
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Figure �� BKRUS Example� In �a� � �d�� dotted lines are rejected because they are not
feasible�
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Figure �� Example where BKRUS can not generate an optimal solution

During the BKRUS algorithm execution� once an edge is marked as infeasible and then
rejected� it will never be considered again� The following lemma proves that indeed there is
no need to reconsider such rejected edges�

Lemma ��� If an edge is rejected during the BKRUS algorithm� then that edge cannot
become feasible at a later time�

Proof If the rejected edge was a cycle edge �violation of condition ����� the rejected edge
would again create a cycle when it is reconsidered for merging� If the rejected edge �u� v�
was an upper bound violation edge �violation of condition ����� there are two cases as
follows� �� If S � tu� then the edge �u� v� was rejected because pathtu�S�u� � dist�u� v�
� radiustv�v� � upper bound� On the left hand side of the above inequality� the �rst
two terms are �xed while the last term only increases but never decreases during the
growth of trees� Hence there is no way that the edge �u� v� becomes feasible� The
case S � tv can be similarly proved� �� If S �� tu nor tv� then the edge �u� v� was
rejected because for all x � tu� dist�S�x� � pathtu�x� u� � dist�u� v� � radiustv�v� �
upper bound �the case for x � tv can be similarly stated�� After the growth of trees�
let�s assume without loss of generality that a node y is introduced to tu and y is feasible
in the tree merged by �u� v� �Note that any node x in tu is still not feasible in the new
merged tree�� Then dist�S�y� � pathtu�y� u� � dist�u� v� � radiustv�v�� upper bound�
Let�s pick any node x in the path from y to u� The above inequality can be rewritten
as dist�S�y� � pathtu�y� x� � pathtu�x� u� � dist�u� v� � radiustv�v� � upper bound�
However� we have dist�S�y� � pathtu�y� x� 	 dist�S�x� by the triangular inequality in
Manhattan space �strict inequality in Euclidean space�� If we insert this inequality
into the previous inequality� then x is a feasible node� which is a contradiction� �

BKRUS may not generate an optimal solution� Consider con�guration �a� of Figure �
with an upper bound of ���� BKRUS generates the tree in �b� in order a�b� S�c� S�a and
S�d with total cost �	�	 which is not optimal� However� if we had rejected a�b� we could
have generated the tree in �c� in order S�c� c�a� c�b� and S�d with total cost of �	�� which
is optimal� In order for BKRUS to be an exact algorithm� we need a backtracking step
which removes existing tree edges and adds a new feasible edge� However� this will make the
algorithm an exponential one�
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��� Extension of BKRUS to use the Elmore Delay Model

The BKRUS algorithm can be extended to the Elmore delay model so that the path length
from the source to any sink is replaced with the signal propagation delay� For two nodes
u and v� the delay from u to v is not simply proportional to the path length between u
and v� but also dependent on the tree topology and the load capacitance at the sinks� So
the method in BKRUS for computing the radius of a node does not work� The new radii
r in BKRUS algorithm must be completely recomputed after a tentative merger of the two
subtrees�

The Elmore delay is de�ned as follows� Let T be a routing tree and u� v be nodes of T �
Suppose the signal is propagated from u to v� Then we restructure the tree T such that u is
the root of the tree T �restructuring means changing the direction of edge arcs in the tree��
Let Tk be a subtree of T rooted at node k� i�e� Tk is a subtree rooted at k and all the nodes
in Tk are descendents of k in T � Let p�k� be the parent of k� We de�ne Ck be the sum of all
the load capacitances and the wire capacitances of Tk� That is�

Ck �
X

x�Tk�x ��k

cs � dist�x� p�x�� � CL�x�

where cs is the unit sheet capacitance of the wire and CL�k� is the load capacitance of k�
In a tree� there is a unique path from a node to the other node� Let path nodes�x� y�

be the set of nodes in the path from x to y� The Elmore delay delay�x� y� is de�ned as�

delay�x� y� �
X

k�path nodes�x�y��k ��x

rs � dist�k� p�k���cs�� � dist�k� p�k�� � Ck�

where rs is the unit sheet resistance of the wire� Especially when x is the Source� we take
driver resistance rd and driver capacitance cd into account�

delay�S� y� � rd � �cd � CS� �
X

k�path nodes�S�y��k ��S

rs � dist�k� p�k���cs�� � dist�k� p�k�� � Ck�

Then we can �nd the radius of a node u in the merged tree�

r�u
 � max fdelay�u� v���v � tMg

Since the delay computation between any two nodes takes O�V �� the delay compatation
between every pair of nodes in the merged tree takes O�V ��� After that� the radii for all the
nodes can be found in O�V ���

To ensure the existence of a solution� the source should be able to supply very large
amount of current� i�e� it must have a very low driver resistance so that SPT can be a
solution� R is set to the longest S�sink delays of SPT�

The feasibility tests ���a� and ���b� are then restated as�
���a�

�

r�source
 � �� � �� �R in the merged tree
���b�

�

there exists a node x in the merged tree such that

rd � �cd � cs � dist�S� x� � Cx� � rs � dist�S� x� � �cs � dist�S� x��� � Cx� � r�x
 � �� � �� �R

When all the radii are available� ���a�
�

takes constant time� while ���b�
�

takes O�V ��
Hence� the feasibility test is dominated by the radii computations� which is O�V ��� As a
result of these modi�cations to BKRUS� the feasibility test dominates the total complexity
of the algorithm� whose complexity becomes O�EV ���

	



��� Constructing Bounded Path Length Steiner Trees� BKST

Bounded Path Length Steiner Trees can be constructed on a channel intersection graph or
on a Hanan�s grid graph ���
 using a modi�ed BKRUS� A spanning tree that spans all the
sinks and the source on these routing graphs becomes a Steiner tree� Initially� the distances
between every pair of sinks on the routing graph are computed and stored in a heap� These
distances are analogous to the edge weights in BKRUS� Then we extract the smallest distance
from the heap and check its feasibilty� If it is feasible� the path in the routing graph that
achieves this distance is found and added to the Steiner tree under construction� If there are
multiple such paths� we choose only L�shaped paths �no zigzag paths�� Also� among the two
possible L�shaped paths� we choose the path whose corner is closer to the source� The nodes
that lie on the path which was just added to the Steiner tree� are treated as new sinks� Next�
the distances between the new sinks and all other sinks which are not in the current merged
tree are computed and stored in the heap� The next iteration picks the smallest distance
from the heap� This continues until every sink is covered�

If there are m nodes in the routing graph� the complexity of BKRUS becomes O�V m���
In the worst case� m is of O�V ��� However� in practice� m is not large� In our benchmark
circuits� m was usually no more than �� times of V � In many VLSI designs� especially in
standard cell designs� the sink locations are regular� So there are not so many Hanan points�
These facts enabled us to run BKST on large benchmarks as well�

Figure  shows an example of this algorithm on a Hanan grid graph� In the Figure�
�a� shows the given source and four sink locations� The dotted lines and their intersection
points are the edges and nodes of the Hanan grid graph� Initially� the distances between the �
points �Source� a� b� c� d� are computed and stored in the heap� From the heap� the shortest
distance �a�b� is extracted� Assume that it is feasible� Then the path path�a� b� shown in �b�
is added to the Steiner tree� We then have two new sinks e and f � The distances from e� f
to Source� c� d are computed and stored in the heap� The next shortest distance in the heap
is �f �c� and it is feasible� so path�f� c� is added to the Steiner tree in �c�� The next shortest
distance path�c� d�� however� is not feasible� so it is rejected� The next shortest and feasible
distance is path�Source� g�� so it is added in �d�� Finally� path�i� d� is included in �e��

� Gabow�s Exact Method� BMST G

Let us describe an optimal algorithm for the Bounded path length Minimal Spanning Tree
�BMST� problem� This optimal algorithm is adopted from �
� although our implementation
is somewhat di�erent� Besides� Lemma ��� to ��� which are used to reduce the space and
time complexities of Gabow�s method are new�

Gabow�s algorithm produces all spanning trees in order of increasing tree cost with
time complexity of O�KElog���E�V �V � and space complexity of O�K� where K is the total
number of spanning trees generated�� We brie�y describe his algorithm� omitting many
details� Interested readers may refer to �
�

Let T be a spanning tree of G� A T�exchange is a pair of edges �e� f� where e � T � f �
G�T and T� e � f is a spanning tree� The weight of exchange �e� f� is weight�f�� weight�e��

�We believe this is the right time complexity instead of Gabow
s claim of O�KE��E� V ��	
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Figure � Example of Steiner BKRUS

The edge pair �e� f � which achieves the minimumweight of exchange is minimal T�exchange�
Note that if T is a minimal spanning tree� there is no negative weight T�exchange� If T is
a minimal spanning tree and �e� f � is a minimal T �exchange� then T� e � f is a spanning
tree with the next smallest cost� This is the basis of the algorithm�

We terminate Gabow�s algorithm when the generated spanning tree satis�es the upper
bound� The major shortcoming of Gabow�s algorithm is the space complexity� Total number
of spanning trees in a complete graph is V V�� ��
� This makes Gabow�s algorithm impractical
even for as few as �� nodes� We found that some edges should be included and some edge
should be excluded in the optimal solution tree� As a preprocessing� edges are included or
excluded using the following rules� With it� we have been able to somewhat reduce the space
and time complexities�

Lemma ��� Consider the source S and two sinks a and b� For every three nodes S� a and
b� if weight�a�b� � weight�S�a�� weight�S�b�� then eliminate edge�a�b��

Lemma ��� Eliminate edge �a�b� �a� b are sinks� if weight�S�a� � weight�a� b� � �� � ��R
and weight�S�b� � weight�a�b� � �� � ��R�

Lemma ��� Include edge�S�a� if for any node x �x �� a�� weight�S�x� � weight�x�a� � �� �
��R�

The Lemma ���� ��� and ��� above can be reasoned from geometric considerations�
Lemma ��� means that there is no optimal solution that includes the edge �a� b�� If an
optimal solution includes such edge �a�b�� then we can construct better solution as follows�

��



First remove the edge �a�b�� This will disconnet the solution tree into two subtrees ta and tb�
Suppose ta contains the source S� Then we add edge �S�b� to the tree� We can see that nodes
which were in tb do not violate the upper bound constraint since weight�S�b� � weight�a�b��
So the new tree has lower cost than the optimal solution� which proves the Lemma�

Lemma ��� means that some edge �a�b�� when included� makes one of the node a� b
violate the delay constraint no matter how the tree will be built later� Lemma ��� means
that there are sinks which should be connected directly to the source because any indirect
path to the sink will violate the delay constraint� Using these rules� we have used Gabow�s
algorithm on trees with as many as �� sinks� In a practical CMOS circuit� a gate usually
drives less than �� gates� So this algorithm can be used in most practical cases�

	 Yet Another Exact Method and a Heuristic� BKEX

and BKH�

Let us describe another optimal algorithm for the same problem� This optimal algorithm is
based on negative�sum�exchange�s� technique�

Bounded Kruskal EXchange �BKEX� is a post�processing algorithm that starts from
an initial feasible solution and reduces the routing cost toward the optimal� Let T be a
bounded path length tree such as SPT or BKT� If T is not an optimal solution� BKEX
will �nd edge exchange�s� such that routing cost will be reduced� We call such exchange�s�
negative�sum�exchange�s��

De�nition ��� Negative�sum�exchange�s�� A sequence of T�exchange�s� where the sum of
the weight�s� of exchange�s� is negative�

BKEX starts from any solution tree� �nds negative�sum�exchange�s�� converts the so�
lution tree to a new solution tree� and iterates until no more possible exchange�s� are found�
Let�s call the search tree in Figure � � � Each node in � represents a spanning tree� The
root of � is the initial solution� A child node is generated by a T �exchange from its parent
node� The edges of � are labeled with the weight of T �exchange� BKEX searches negative�
sum�exchange�s� in a depth �rst search manner� Note that one can reach any spanning
tree including an optimal solution from the root by a series of at most V � � T �exchanges�
However� in most cases� BKEX �nds an optimal solution in much smaller depth�

BKEX keeps track of sum of T �exchange weights from the root to the current node
during the depth �rst search� If this sum is not negative� further search from this node is
stopped� Whenever a better solution is found during the search� this new tree is put on the
root of � and a new search begins� Below is the complete algorithm�

Algorithm BKEX�G�
� T 
 BKRUS�G�
� while DFS EXCHANGE�T��� do
Algorithm DFS EXCHANGE �T� weight sum�
� FA 
 make father array�T�
� for each edge �x�y� in G � T do

��



Figure �� BKDFS Negative�sum�Exchange Search Tree

� u � x� v � y
� while �u �� v� do
� if depth�u� � depth�v� then
	 swap u� v

 di� � weight�x�y� � weight�v�FA�v
�
� if di� � weight sum � � then
� T 
 T � �v�FA�v
� � �x�y�
� if T is feasible then
�� return TRUE
�� else if DFS EXCHANGE�T� di� � weight sum� then
�� return TRUE
�� else T 
 T � �x�y� � �v�FA�v
�
�� end if

�	 end if

�
 v 
 FA�v

�� end while

�� end for

� return FALSE

In the DFS EXCHANGE algorithm� FA is the father array in spanning tree T �FA�v

is the father node of the node v�� This can be generated by depth �rst search on T starting
from S� At the same time� the depth level for each node is recorded �depth of a node is the
number of ancestors in the path from the source S to the node� In particular� depth�S� �
��� Parameter weight sum is the sum of weights of T �exchanges so far� Initially� for each
non�tree edge �x� y�� u� v are set to x� y respectively� Suppose v has a higher depth than
u �line �� ensure that v has a higher depth�� Then the new exchange value is weight�x� y�
� weight�v�FA�v
�� If this value is added to weight sum and the sum is still negative� then
the new spanning tree generated by adding �x� y� and removing �v�FA�v
� has less cost than
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Figure �� Example of �nding T �exchanges

the root� If it is not negative� we replace v by FA�v
 �line ��� and continue the above
procedure until u and v meet at a common ancestor� When the new spanning tree has less
cost than the root� we check if this new tree is feasible� If it is� a new iteration begins �line
� in BKEX�� If not� we recursively call DFS EXCHANGE with the new spanning tree and
the new weight sum value �line ���� If subsequent calls to DFS EXCHANGE still fails� we
recover the original spanning tree �line ���� The iteration in BKEX is terminated when there
is no feasible exchange�

Figure � shows an example of how edge pairs for T �exchange are found� For each
�x� y�� u� v start from x� y respectively and move toward the common ancestor �node c��
In Figure �� v has a higher depth compared to u� so �v�FA�v
� and �x� y� are paired up as
a possible T �exchange� Suppose the exchange is rejected� Then the new v becomes FA�v
�
This procedure alternates between u and v until they meet at node c�

Since the number of possible T �exchanges in a tree T is O�EV �� a node in � has
O�EV � children� So � has O�EnV n� nodes where n is the depth of � � For each node in
� � BKEX needs to check if the current spanning tree is feasible� which takes O�V �� So the
time complexity of BKEX is O�EnV n���� This is a higher time complexity than Gabow�s�
but space complexity is only O�E�� The initial solution signi�cantly a�ects the performance
of BKEX� When BKEX starts from a very good initial solution �such as BKT�� the actual
search space is much smaller than EnV n� Indeed our experimental results in Table � show
that BKEX is much faster than Gabow�s method� Besides� BKEX �nds the solution when
Gabow�s algorithm fails for larger benchmarks due to its exponential space complexity�

We tested BKEX with ����� randomly generated benchmarks� The number of sinks of
these benchmarks are between � and ��� The � value has a range from ��� to ���� BKEX
reaches optimal solutions of 	�	���� 	����	� and 		���	� with depth two� three and four
respectively� Only one benchmark was left unoptimal with depth �ve and it was solved by
depth six�
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We implemented another heuristic method BKH� which limits the depth of the search
tree � by two� BKH� does one or two negative�sum�exchange�s� in the breadth �rst search
manner and checks if the resultant tree is a solution� This procedure is repeated until there
is no improvement�

With the help of Lemma ���� it can be shown that BKT is a local optimum with
respect to a single T �exchange� To obtain a better local optimum than BKT� at least double
T �exchanges are needed� Thus BKH� is proposed to �nd a deep local optimum with respect
to two T �exchanges� BKH� may not get an optimal solution because we may need three or
more exchanges to improve the solution� The complexity of BKH� is O�E�V ��� Since this
complexity is relatively high� we found that BKH� is beni�cial when V is less than ��� �see
Table ���


 Lower and Upper Bounded Path Length MST

In the clock routing� there are two important parameters � clock skew and routing cost �
so that we would like to simultaneously control both the longest�shortest interconnection
path and routing cost� Also� in case of global routing� fast sink delays should be avoided
to prevent the so called �double clocking� as described next� Consider two synchronizing
elements F�� F� and a combinational circuit that delivers signal from F� to F�� Suppose
the combinational circuit delay �delay due to routing tree and logic gates� is very short�
If F� is a slow �ip��op� then at the rising edge of the clock� the new value through the
combinational circuit may arrive fast and replace the input data of F� before F� latches
the previous data� A usual practice to avoid this problem is to add a bu�er to slow down
the fast combinational circuit� However this requires extra area and introduces additional
power consumption� Instead� we can adjust the delay lower bound by wire�length control�
As interconnection delays dominate gate delays these days� this method will be more area
and power e�cient�

A routing tree can be constructed with shortest interconnection path length at least �� �
R� longest interconnection path length at most ������ � R for any given values of parameters
�� and ��� That is� any source to sink path length is bounded by�

�� �R � pathT �S� x� � �� � ��� �R� �sink x

Bounded�delay�di�erence Steiner heuristics were presented in ���
� ���
 and ���
� Our algo�
rithm is a spanning tree heuristic� so it may give higher tree costs than the Steiner tree
heuristics� However� our algorithm runs fast� and gives reliable estimation of tree cost upper
bounds to the Steiner tree heuristics� Besides� our algorithm accepts explicit lower bound
and upper bound on delay rather than delay di�erences as in ���
� ���
 and ���
�

BKRUS� BMST G� BKEX� and BKH� algorithms are implemented for both the lower
and the upper bounded path length with the inclusion of Lemma ��� The inclusion of
Lemma �� eliminates an edge �S� i� � �� � R� � i such that the resultant tree does not
violate the lower bound�

Lemma 	�� Eliminate edge �S� i� � E� for �i� if weight�S� i� � �� � R�
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bench  of pts�  of edges R r

p�  �� ���� ����
p� � �� ���� ����
p� �� �� ��� ��
p� �� �� ���� ���
pr� ��� ���� ��� ��
pr� �� ����� 	�� ��
r� �� ����� ����� ����
r� �		 ��	��� ���� ���
r� �� ���	�� ����	 ����
r� �	�� ����� ������ ��
r� ���� ���	�� ������ ��

R� length of the shortest path from source to the farthest sink

r� length of the shortest path from source to the nearest sink

Table �� Characteristics of Benchmarks

It is possible that solutions do not exist depending on the benchmark or on the
lower�upper bounds combinations� One can easily generate such instances� This is un�
avoidable since we are restricting ourselves to spanning tree heuristics�

� Experimental Results
We implemented BKRUS� BMST G� BKEX� BKH� and BKST algorithms in C on HPPA
and SUN workstations in the UNIX environment� We used four sets of benchmarks� ��� the
sink placements for the four benchmarks p��p� generated specially to test extreme results�
and ��� the sink placements for MCNC Primary� and Primary� benchmarks used in ��
 and
��
� and originally provided by the authors of ��
� and ��� the sink placements for the �ve
benchmarks r��r� used in ��
� and ��� �ve sets of � to �� sinks and �� random test cases
for each set� Benchmark p� and p� have the same con�guration as that of Figure ��� but
p� has one more sink between the source and the group of sinks� Benchmark p� has the
same con�guration as that of Figure �� Benchmark p� has the same con�guration as that of
Figure ��� but sinks are scattered around a circle of diameter ��� We added one more node
as the source to the r! and primary! benchmarks because they did not come with a source�
All the results are computed in Manhattan metric� Description of all the benchmarks is
given in Table ��

A comparison of BMST G� BKEX� BKRUS� BKH� and BPRIM over MST is given
in Table � and Table � for benchmarks ���� ���� ��� The results show that the performance
ratio of BKT over MST is at most ���� except in p� and p� which have a very special
con�guration� In the case of p� with � � ���� BPRIM generates poor performance ratio
compared to our methods� In the case of p� with � � ���� the cost reductions are ���� ���
and ��� over BPRIM for BKEX� BKH� and BKRUS respectively� For ��� benchmarks� the
comparison of BPRIM� BRBC� BKRUS� BKH�� BMST G and BKST in terms of routing
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Figure 	� Tradeo� Curve

cost is shown in Table �� The benchmark results show about worst�case performance ratios of
������ ����	� ���� and ���� and average performance ratios of ������ ������ ����� and �����
for BPRIM� BKRUS� BKH� and BMST respectively� In the case of �� points with � � ����
the average cost reductions are ���� ��� and ��� over BPRIM for BMST G �BKEX��
BKH� and BKRUS respectively� The result of Bounded Kruskal Steiner Tree �BKST� on
benchmark set ��� shows that its cost is lower than any other spanning tree heuristics� The
savings are �� to ��� over other heuristics� Note that the savings are even greater when �
is close to zero� This is due to the fact that when � is close to zero� there are many direct
source�to�sink paths in the spanning tree solutions while in the Steiner solutions� these direct
paths are replaced by fewer direct source�to�sink paths and Steiner points on those paths
that connect other sinks� Although BKST produces lower cost trees� we feel that spanning
tree heuristics are worthwhile because they run much faster�

BKRUS method o�ers a continuous� smooth trade�o� between the competing require�
ments of longest path length and total wire length in terms of � as shown in Figure 	�

In Figure ��� we show ratios of cost�BKRUS��cost�MST �� cost�BKEX��cost�MST ��
cost�BKRUS��cost�BKEX� and cost�BKH���cost�BKEX�� The reason why we compare
BKEX� BKRUS and BKH� with MST is to show that our methods generate a low cost routing
tree compared to MST whatever the � value is� The e�ectiveness of BKRUS and BKH� is
shown by cost�BKRUS��cost�BKEX� and cost�BKH���cost�BKEX� respectively�

From these results� the various BMST methods can be ordered by their routing costs
as shown in Figure ��� This chart shows the average relative position�

For lower�upper bounded delay MST� we tested BKRUSmethod for ���� ���� ��� bench�
marks as shown in Table �� BKRUS uses ��	 times routing cost of MST to generate an exact
zero skew tree� Note that many values of �� and �� lead to infeasible solutions since BKRUS
uses node�branching technique� Path�branching and Steiner�branching are more desirable�
In Figure ��� we show a typical trade�o� between routing cost and clock skew�
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perf� ratio �Tree� � cost�Tree� � cost�MST�

path ratio �Tree� � longest path�Tree� � longest path�SPT�

CPU time is measured in seconds�

�� memory over�ow

�� can not get MST even with � � ��


Table �� BMST G� BKEX� BKRUS� BKH� and BPRIM results for special benchmarks
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GABOW� BKEX and BPRIM are impractical to generate outputs�

Table �� BKRUS and BKH� results for large benchmarks
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�� random test cases were generated for each point�

CPU time is the average of �� random test cases measured in seconds�

Minimum values are ������ ���	�� ����� and ����� for BPRIM� BKRUS� BKH� and BMST G respectively at � � ��� of net ��� The others are

������
BRBC is shown only with maximum values since minimum and average values of BRBC are always worse than those of BPRIM�

Table �� The Ratio of the Routing Cost over MST
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Figure ��� The ratio of Longest Path Length over Shortest Path Length and the ratio of
Routing Cost over MST

� Conclusion
We have presented bounded path length minimal spanning tree schemes which can control
longest�shortest path length and routing cost� With upper bound� our method achieves
smaller cost than that of BPRIM and BRBC� However� it is possible that even the optimal
method can generate almost N � cost�MST � where N is the number of sinks in Figure ��
�p� case��

We presented two optimal algorithms� BMST G using the Gabow�s method� BKEX
using the negative T�exchange technique� When the number of sink is less than ��� as is often
the case in a global routing problem� we have shown in the expriemental results that the
optimal algorithms can be used� We also compared our heuristic solutions against optimal
solutions to show their e�ectiveness�

The BKRUS solution is further enhanced with the use of BKH� as a post processing�
We also presented BKRUS method can be extended to Elmore delay model� to Steiner trees
with bounded path length and to lower�upper bounded path length spanning trees� Future
research includes considering the e�ects of bu�ering and wire sizing� extending this work
to lower and upper bounded Steiner trees and preserving planarity during the construction
procedure�
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Figure ��� Example where cost�BKT ��cost�MST � can be N where N is number of sinks
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