
Irredundant Address Bus Encoding for Low
Power

Yazdan Aghaghiri
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089

yazdan@sahand.usc.edu

Farzan Fallah
Fujitsu Laboratories of America

595 Lawrence Expressway
Sunnyvale, CA 94086
farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California

3740 McClintock Ave
Los Angeles, CA 90089
pedram@ceng.usc.edu

ABSTRACT
This paper proposes efficient encoding techniques for
decreasing power dissipation on global buses. The best
target for these techniques is a wide and highly
capacitive memory bus. Building on T0 and Offset-
Xor encoding techniques, we present three irredundant
bus-encoding techniques. Our methods decrease
switching activity up to 83% without the need for
redundant bus lines. The power dissipation of encoder
and decoder circuitry has also been calculated and
shown to be small in comparison with the power
savings on the memory address bus itself.

1 INTRODUCTION
With the increasing number of transistors on a chip
and the rising operation frequencies, the total power
dissipation of VLSI circuits is rapidly increasing,
causing high temperatures on the chip surface that can
lead to a variety of reliability problems. Thus low
power design methodologies are receiving more
attention. Meanwhile, many systems are becoming
portable and wireless, functioning on the power
provided by a battery pack with a limited energy
supply. Again, low power design techniques are
innovated to help increase the operation time of such
systems before their battery pack needs to be
refurbished or recharged.

The major building blocks of a computer system
include the CPU, the memory controller, the memory
chips, and the communication channels dedicated to
providing the means for data transfer between the
CPU and the memory. These channels tend to support
heavy traffic and often constitute the performance
bottleneck in many systems. At the same time, the
energy dissipation per memory bus access is quite
high, which in turn limits the power efficiency of the
overall system. In a computer system, the bus can be
an on-chip bus, a local bus between the CPU and the
memory controller, or a memory bus between the
memory controller (which may be on-chip or off-chip)
and the memory devices. The bus may be used for
addresses or data. The emphasis of this paper is on

encoding techniques for the memory address bus that
minimize the switched capacitance of the bus.

The remainder of this paper is organized as follows. In
section 2 we provide a review of previous memory bus
encoding techniques. In section 3.1 the T0-C method,
which is an optimized version of T0, will be presented.
In section 3.2 another method, called Offset-Xor-SM
(an optimized version of Offset-Xor), will be
introduced. In section 3.3, Offset-Xor-SMC, which is
an extension of Offset-Xor-SM will be discussed. In
section 4 all of the above methods are implemented to
compare their effectiveness with regard to the
previous methods. The encoder blocks have also been
designed and synthesized to estimate the overhead of
the encoding hardware. Concluding remarks are given
in the last section. 1

2 PREVIOUS WORK

In this section we examine previous work in low
power bus encoding and compare various encoding
techniques. We first introduce the terminology and
notation that will be used throughout this paper:

b(t): Address value to be sent on the bus at time t
(source word at time t).

B(t): Encoded value on the bus lines at time t (code
word at time t).

S: Stride value, which is the difference between
consecutive addresses in a sequential addressing
mode.

A number of encoding techniques rely on introducing
redundancy to save power. More precisely, these
techniques add one or more extra bits to the original
bus. However, the extra bus lines cannot be tolerated
in many systems because the extra bits require
hardware changes and often cause incompatibility
with standard bus interfaces. Consequently, a great
deal of effort has been spent in finding irredundant
encoding techniques that reduce the switched
capacitance on the bus while preserving compatibility
with existing bus interfaces and the rest of the system.
In the following paragraphs, we review a number of
related works on bus encoding. This is not a
comprehensive review and only includes work that is
directly related to our proposed encoding techniques.

1 This work is supported by DARPA PAC/C program
under contract award number DAAB07-00-C-L516.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED ’01, August 6-7, 2001, Huntington Beach, CA.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

In [1] Stan and Burleson proposed the Bus-Invert
method, which is explained next. Consider an N-bit
(non-multiplexed) bus. The idea is that if the
Hamming distance between two consecutive patterns
is larger than N/2, then the second pattern can be
inverted so as to reduce the inter-pattern Hamming
distance to below N/2. One redundant bit is needed to
distinguish between the original and inverted patterns
on the bus. The Bus-Invert method tends to perform
well when sending random patterns, which is often the
case on data busses. However, this method is largely
ineffective on address buses, which tend to exhibit a
high degree of sequentiality.
In [2] Benini et al. proposed the T0 code, which
exploits data sequentiality to reduce the switching
activity on the address bus. The observation is that
addresses are sequential except when control flow
instructions are encountered or exceptions occur. T0
adds a redundant bus line, called INC. If the addresses
are sequential, the sender freezes the value on the bus
and sets the INC line. Otherwise, INC is de-asserted
and the original address is sent. On average 60%
reduction in address bus switching activity is achieved
by T0 coding [9]. In this paper, we propose a T0-like
encoding technique for an address bus, which does not
require any redundant lines. We call this new
encoding technique, T0-Concise or T0-C for short.

Several methods that are basically combinations of the
Bus-Invert and T0 encodings were proposed in [3].
For instance, one of the introduced methods, called
T0-BI, adds two redundant bits, named INV and INC,
to the bus. If the addresses are sequential, T0 coding is
applied and the bus is frozen, otherwise the new
address, which is not sequential, is encoded based on
the Bus-Invert coding. INC and INV bits are used to
correctly decode the bus value on the receiver side.
The major drawback of the coding methods introduced
in this work is that they introduce redundant bits. At
the same time, the best reported result shows only a
40% reduction in the switching activity for the
instruction address bus.

In [4] a new coding technique called the Beach
Solution was proposed. In this method, the address
trace of software is profiled, and possible correlation
between different signals of the profiled trace is
extracted. This information is subsequently used to
define encoding functions that reduce the total
switching activity. However, this method is only
applicable to systems where the application programs
are fixed and known a priori since the encoding
technique needs exact knowledge of the address bus
trace. The power savings is reported as 42%.

In [5] Musoll et al. proposed an address bus encoding
method that works based on the fact that, at any time
during execution, a software program uses a limited
number of working zones in the address space. Thus,
instead of sending the address, its offset with regards
to the previous reference in the same zone along with
the zone identifier is sent. One extra bit is required to
notify the receiver whether this coding is in effect or
the address itself is being sent.

In [6], Ikeda et al. proposed using codebooks in the
sender and the receiver. For every address, the code
with the minimum Hamming distance to the address is
found in the codebook. Subsequently, the selected
code identifier along with the Hamming distance
between the address and the selected code is sent over
the bus. The authors improved their method by using
an adaptive codebook in [7]. Thus the codes in the
codebook are replaced on the fly. As the program
execution proceeds, only codes whose nearby
addresses are accessed by the program, remain in the
codebook.

There is another class of encoding techniques that
avoid the use of redundant bits. These techniques
make use of the decorrelating characteristic of the
Exclusive-Or (Xor) function as follows. Since, when
using Xor, the code words are transition-signaled over
the bus, in every position where there is a 1 in the
code word, the bus will toggle and a switching will
occur. This observation can be used to cast the low
power encoding problem to that of finding code words
with the smallest average number of 1’s in them. The
most efficient one of these codes is the T0-Xor code,
which was proposed by Fornaciari et al. in [9]. The
encoder works as follows:

B(t) = b(t) ⊕ (b(t-1) + S) ⊕ B(t-1)

It can be easily seen that when the addresses are
sequential, no switching activity occurs (similar to the
case of T0 code). In the same work, the authors
proposed another encoding technique, which is called
Offset-Xor code. The encoder works as follows:

B(t) = (b(t) - b(t-1)) ⊕ B(t-1)

Although not stated in [9], this encoding will become
much more effective if the coding algorithm is
modified as follows (resulting in a code that we will
call Offset-Xor with Stride or Offset-Xor-S for short):

B(t) = (b(t) - b(t-1) - S) ⊕ B(t-1)

The reason for Offset-Xor-S improvement over
Offset-Xor is that it avoids switching activity when
sequential addresses are encoded. One important point
to notice is that sometimes, even if the difference
between b(t) and b(t-1) + S is small, their Hamming
distance may be quite large. This usually occurs for
source words b(t) and b(t-1) that are located at
opposite sides of 2N, e.g., 61 and 69 are located at the
two sides of 64. In these cases, although the offset is
small, b(t) ⊕ (b(t-1) + S) contains many ones
and thus causes many transitions on the bus when it is
Exclusive-Or’ed with the value on the bus. We refer to
this problem as the “consecutive source word Xor
problem”. Later on we will look at a similar case that
degrades the performance of Offset-Xor-S.

Generally speaking, encodings that use transition
signaling perform poorly when the code word includes
many 1’s. In this paper, we present a new code, called
Offset-Xor with Stride and Mapped-offset or Offset-
Xor-SM for short, which addresses this shortcoming

by applying a mapping function to the offsets in
Offset-Xor-S code.

3 LOW POWER CODES

3.1 T0-C Code

The proposed code is an extension of T0 code. It
improves T0 code in a number of important ways.
First of all, it eliminates the redundant bit. Second, it
results in higher power saving on the bus. Similar to
T0 code, the basic saving happens as a result of
freezing the bus when addresses are sequential.

Suppose that we suppress the redundant bit in T0
code. In other words, when b(t) and b(t-1) are
sequential addresses, we simply freeze the bus, and in
all other cases, we send the original source word on
the bus. This simple scheme would fail, for example,
when we encounter backward branches where the
branch target address is the same as the current
(frozen) bus value. Consider the following simple
example:

b(t) B(t)

39 39
40 39
41 39
39 39 ?

As it can be seen, when we reach the last row of the
table, no valid code word can be generated for source
word 39. If we use 39 as the code word, the receiver
(decoder) cannot determine whether the source word
was 39 (backward jump) or 42 (next sequential
address). So the problem occurs when the data on the
bus is equal to the branch target itself. That is why
spatial redundancy was originally introduced into the
T0 code. However, there is a better way to resolve this
problem. To correctly handle backward branches with
target addresses equal to the current bus value, a
special pattern has to be sent to the receiver. However,
this cannot be a fixed pattern because we assume that
jumps to any and all addresses are allowed (picking
any fixed pattern to designate this case may create a
potentially large activity on the bus, and at the same
time, requires that the fixed pattern not be used as a
regular jump address).

In T0-C when such a case occurs, we set the code
word to b(t-1) + S. The reason is that this is the
only pattern that the receiver should not expect from
the sender. Notice that when the receiver sees a value
of b(t-1) + S, it knows that the sequential
addressing has been stopped because the bus value has
changed. On the other hand, when it computes the new
jump address, it recognizes that this jump address is
the same as the next sequential address. Therefore, if
in fact a special case were not encountered, there
would be no need for the sender to unfreeze the bus
value. This special case is, of course, when the target
of the backward jump is the same as the current value
on the bus. The decoder is aware of this, and the

ambiguity is resolved! To-C encoder works as
follows:

if {b(t) == b(t-1) + S}
B(t) = B(t-1)

else if {B(t-1) != b(t)}
B(t) = b(t)

else
B(t) = b(t-1) + S

On the receiver side, when the b(t-1) + S value is
received, the previous value on the bus is regarded as
the branch target. For the previous example we will
have:

b(t) B(t)

39 39
40 39
41 39
39 42
40 42

Now to make sure that this scheme works in all cases,
let us consider the case when {b(t) = b(t-1)}.
This is a jump instruction where the branch target is
the branching instruction itself, that is, the instruction
is waiting for an external event. Obviously, the first
time this instruction iterates, B(t-1) is not equal to
b(t). Therefore, because we have a simple jump in
this case, we simply send b(t). The next time this
instruction executes, the encoder recognizes it as the
special case and will thus send b(t-1) + S on the
bus. This case is illustrated below.

b(t) B(t)

39 39
39 40
39 39
39 40

The T0-C code decreases switching activity on an
address bus about 14% more than T0 code.

3.2 Offset-Xor-SM Code
Our objective is to improve Offset-Xor-S code by
properly encoding jumps with negative offset so as to
reduce the bus activity.

Based on statistics reported in [8], more than 95% of
all the branches in any program have offsets that need
less than 8 bits to be binary coded. If we encounter a
backward jump in an instruction trace, the resulting
offset will be negative. This negative number tends to
have a small magnitude, and therefore, when it is
encoded in two’s complement form, it will contain
many 1’s.

In a typical application program, many small
backward jumps exist, and the offsets of all these
jumps are small negative numbers. Consider these
offsets are to be transition-signaled over the bus, a
large number of bit switching occurs on the bus
because of them. For this reason, the performance (in
terms of the average activity on the address bus) of the
Offset-Xor and Offset-Xor-S codes is poor compared

to known coding techniques such as T0. We will refer
to this problem as the “small negative offset problem.”

In practice, although T0-Xor and Offset-Xor are very
much alike, T0-Xor code outperforms Offset-Xor code
noticably [9]. This is because of the fact that the
“small negative offset problem,” which is the
Achille’s Heel of Offset-Xor code, shows up much
more frequently than the “consecutive source word
Xor problem,” which is the key problem for T0-Xor
code. Indeed, as reported in [9], the switching activity
reduction for T0-Xor is 74% versus 41% for Offset-
Xor.

In the following paragraphs, we describe a new coding
technique (i.e., Offset-Xor-SM) to solve the “small
negative offset problem.”

Offset-Xor-SM encoder works as follows:

B(t)= B(t-1) ⊕ LSBInv((b(t)-b(t-1))-S)

where the LSBInv(x) function inverts all bits of x
except the most significant one.

In Offset-Xor-SM code, when the offset – S is
positive, it is transition-signaled over the bus.
Therefore, sequential addresses do not cause any
activity on the bus (Offset – S = 0). However, if the
Offset – S is negative, then all the bits except the MSB
bit are inverted and then transition-signaled over the
bus. This inversion will cause the following mapping
for a typical 32-bit bus.

Original offset Modified offset

FFFFFFFF, (-1) 80000000
FFFFFFFE, (-2) 80000001
FFFFFFF5, (-10) 80000009

80000000 FFFFFFFF

Unlike the two’s complement representation, in
Offset-Xor-SM small negative numbers cause only a
few transitions on the bus. The extra hardware that this
method imposes on Offset-Xor is negligible. With this
mapping we can achieve more than 40% improvement
over Offset-Xor code and about 5% improvement over
T0-Xor code as they are reported in [9].2

3.3 Offset-Xor-SMC Code
Using a more complex encoder and decoder can
decrease bus switching activity further. This method
can be easily trimmed to fit to a specific application.

2 The well-known sign magnitude representation is not
used to solve the problem. The reason is that
converting numbers represented in the two’s
complement to the sign-magnitude representation
requires more complex hardware compared to our
proposed scheme. Furthermore, the greatest negative
number in two’s complement form does not have any
representation in the sign-magnitude form.

The more capacitive the external buses are, the more
complex encoding circuits can be used and the more
power will be saved. In the following, we describe a
new code called Offset-Xor with Stride, Offset-
mapping and Codebook or for short Offset-Xor-SMC
that uses a fixed codebook to reduce the number of 1’s
in the code words.

The idea is to embed a K-bit to K-bit mapping
function (or codebook) in both the sender and the
receiver sides. The K least significant bits of the
output of Offset-Xor-SM are used to index into the
codebook, producing a K-bit code word that will
replace the original K LSB bits of the code word. In
practice, we use K=10 because, based on [8], most of
the branch displacements of a typical program need
maximum of 10 bits to be represented. In general, K
can be determined depending on the magnitude of the
most frequent jumps in a program and constraints on
the size of the codebook. In order to decrease the
switching activity by this mapping, numbers are
mapped in a manner such that smaller numbers map to
numbers with few number of ones in them. If x1 and
x2 are two K-bit numbers and F(x1) and F(x2) are the
corresponding values from the codebook (i.e., the code
words of x1 and x2), then F must be defined in such a
way that:

If (x1 < x2) then

NumOnes(F(x1)) <= NumOnes(F(x2))

where NumOnes(y) denotes the number of ones in
binary representation of y.

Offset-Xor-SMC works as follows:

B(t)= CB(LSBInv(b(t)-b(t-1)-S)) ⊕ B(t-1)

CB(x) modifies the K LSB bits of the offset.

In our experiment, 10 bits are mapped by the
codebook. The first code word of the codebook is 0,
and the next 10 code words are 10-bit binary numbers
that only have a single 1. The next 45 entries are 10-
bit numbers with exactly two 1’s, and so on. An
important point in the actual implementation of the
codebook is that if two numbers are complements of
each other, their code words will also be complements
of one another. This observation is used to divide the
number of entries in our codebook by a factor of two
and thus significantly reduces the codebook hardware
overhead. Offset-Xor-SMC code yields an extra 4%
saving compared to Offset-Xor-SM code.

4 IMPLEMENTATION RESULTS
To evaluate the proposed encoding techniques, we
generated detailed address bus traces for a number of
SPEC95 benchmarks using a simulator called
simplescalar [10]. The SPEC95 programs were chosen
primarily because precompiled codes were already
available for them. For each test bench, more than 10
million addresses were generated by simulation. Then
different encoding techniques were applied to measure
the change in switching activity. The simulation

results can be seen in Table 1. The “base case” in
Table 1 refers to the total switching without encoding.
Other columns show the corresponding bit-level
transition counts for different encoding techniques and
their percentage reduction.

For the set of programs that we used the switching
activity saving of Offset-Xor and Offset-Xor-S is less
than what has been reported in [9]. In fact as it can be
seen for one of the benchmark programs, Offset-Xor-S
is actually increasing the activity. On the other hand,
Offset-Xor-SMC reduces the switching activity on the
address bus by an average of 83.1%. If the codebook
size were reduced so as to map only the 8 LSB bits,
the average saving would be 81.4%.

Figure 2, 3 and 4 show the encoders for the three
proposed encoding techniques. The decoders have not
been shown because the decoders simply do the
reverse functions on the code words to extract the
source word, and therefore, are easy to construct.

To estimate the actual overhead of the above encoders
circuits, first, we generated the net list of each

encoder/decoder circuit in Berkeley Logic Interchange
Format (BLIF). The netlists were optimized using the
SIS script.rugged and mapped to a 1.5-volt, 0.18µ
CMOS library using the SIS technology mapper. I/O
voltage was assumed to be 3.3v. Instruction addresses
of the benchmark programs were then fed into a gate-
level logic simulation program named sim-power to
estimate the power consumption of the encoders. The
results for a 100 MHz system clock are reported in
Table 2. In Figure 1, percentage of total power saved
versus IO capacitance per line is compared for
different encoding techniques.

5 CONCLUSION
We introduced three different encoding techniques in
this paper, the first two need very simple piece of
hardware, the third method, although the most
effective in decreasing the switching activity has
more hardware overhead. The idea of putting a
codebook in sender and receiver and combining this
with previous methods opens a gateway to a new class
of bus encoding techniques to be explored in future.

Table 1- Switching activity of SPEC 95 traces in millions for different codings / percentage saving

Benchmark Base
Case T0 T0-C Offset-Xor-S T0-Xor Offset-Xor-SM Offset-Xor-

SMC

7.628 1.164 0.937 6.470 0.928 1.120 0.868Compress

0% 84.7% 87.7% 15.1% 87.8% 85.3% 88.6%

33.576 14.118 10.217 25.959 10.249 7.964 6.681Li

0% 57.9% 69.5% 22.6% 69.4% 76.2% 80.1%

33.480 11.934 8.779 19.102 7.930 6.194 5.146Go

0% 64.3% 73.7% 42.9% 76.3% 81.4% 84.6%

34.868 16.729 11.816 33.806 12.523 8.527 7.195M88ksim

0% 52.0% 66.1% 3.0% 64.0% 75.5% 79.3%

24.479 12.174 7.342 36.041 3.751 5.101 3.912Vortex

0% 50.2% 70.0% -47% 84.6% 79.1% 84.0%

21.458 8.003 6.088 13.957 5.691 4.489 3.920Perl

0% 62.7% 71.6% 34.9% 73.4% 79.0% 81.6%

Average saving 0% 62.0% 73.1% 11.9% 75.0% 79.4% 83.1%

Table 2- Encoder hardware synthesis and power estimation

T0-Xor T0-C Offset-Xor-SM Offset-Xor-SMC

Number of literals 440 767 661 2693

Area of Encoder (in thousands) 334 410 399 1043

Number of gates 306 386 379 1136

Power dissipated by encoder & decoder (uW) 266 642 740 1822

Percentage of Total Powr Saved

65%

67%

69%

71%

73%

75%

77%

79%

81%

10 15 20 25 30 35 40 45 50

IO Capacitance (pF)
Offset-Xor-SMC Offset-Xor-SM T0-Xor T0-C

Figure 1- Comparison of total power savings of different encoding techniques

Figure 2- T0-C Encoder

Figure 3- Offset-Xor-SM Encoder

Figure 4- Offset-Xor-SMC Encoder

6 REFERENCES
1. M. R. Stan, W. P. Burleson, “Bus-Invert Coding

for low-Power I/O,” IEEE Transactions on Very
Large Scale Integration Systems, Vol.3, No. 1,
pp. 49-58, Mar. 1995.

2. L. Benini, G. De Micheli, E. Macii, D. Sciuto, C.
Silvano, “Asymptotic Zero-Transition Activity
Encoding for Address Buses in Low-Power
Microprocessor-Based Systems,” IEEE 7th Great

Lakes Symposium on VLSI, Urbana, IL, pp. 77-
82, Mar. 1997.

3. L. Benini, G. De Micheli, E. Macii, D. Sciuto,
and C. Silvano, “Address Bus Encoding
Techniques for System-Level Power
Optimization,” Design Automation and Test in
Europe, pp. 861-866, 1998.

4. L. Benini, G. De Michelli, E. Macii, M. Poncino,
and S. Quer, “System-Level Power Optimization
of Special Purpose Applications: The Beach
Solution,” IEEE Symposium on Low Power
Electronics and Design, pp. 24-29, Aug. 1997.

5. E. Musoll , T. Lang, J. Cortadella, ”Exploiting
the locality of memory references to reduce the
address bus energy,” Int’l Symposium on Low
Power Electronics and Design, pp.202-207,
1997.

6. M. Ikeda, K. Asada, “Bus Data Coding with Zero
Suppression for Low Power Chip Interfaces”,
Int’l Workshop on Logic and Architecture
Synthesis, pp.267-274, Dec. 1996.

7. S. Komatsu, M. Ikeda, K. Asada, “ Low Power
Chip Interface based on Bus Data Encoding with
Adaptive Code-book Method”, Ninth Great
Lakes Symposium, pp368-371, 1999.

8. Hennessy, Patterson, Computer Architecture, A
Quantitative Approach, Second Edition, Morgan
Kaufmann Publishers, 1996

9. W. Fornaciari, M. Polentarutti, D.Sciuto, and C.
Silvano, “Power Optimization of System-Level
Address Buses Based on Software Profiling,”
CODES, pp. 29-33, 2000.

10. http://www.simplescalar.org/.

