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SUMMARY After analyzing the limitations of the traditional description of CMOS circuits at the gate
level, this paper introduces the notions of switching and signal variables for describing the switching states
of MOS transistors and signals in CMOS circuits, respectively. Two connection operations for describing
the interaction between MOS transistors and signals and a new description for MOS circuits at the switch
level are presented.  This new description can be used to express the functional relationship between inputs
and the output at the switch level. It can also be used to describe the circuit structure composed of MOS
switches. The new description can be effectively used to design both CMOS circuits and nMOS pass
transistor circuits.
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1.   Traditional Description of CMOS Circuits at Gate Level

      The traditional description of CMOS circuits is based on Boolean algebra. Its elementary points are:

(1) Boolean variables are used to represent signals in circuits. The two values of a variable, 1 and 0 are
physically represented by two levels of a signal, for example 5V and 0V.

(2) The basic operations among variables in Boolean algebra are NOT, AND and OR operations. Usually,
two composite operations, NAND and NOR, are also introduced. These operations are realized by the
corresponding basic circuit units called gates, such as NOT gate (inverter), AND gate, OR gate, NAND
gate and NOR gate.

(3) NOT, AND and OR operations form a complete set and can be used to express any functions. Besides,
NAND alone (or NOR alone) can form a complete basis by itself.

Therefore, as long as we get the function expression we can obtain its corresponding circuit configuration
by using gates from the complete set. For example, the Exclusive-OR function is given by its truth table
shown in Fig.1 (a). Based on the Boolean algebra, we can describe the Exclusive-OR function of x and y by
the following expression:

  x y x y x y x y x y⊕ = =( ) ( ) ( ) ( ),Ι Υ Ι Ι Ι Ι

Which yields the corresponding circuits in Fig. 1(b) and (c), respectively. This example explains how the
description is used for both the function and the circuit structure at the gate level.
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Fig.1 Definition and circuits for Exclusive-OR operation  (a) truth table, (b) circuit composed of NOT,
AND and OR gates, (c) circuit composed of NOT and NAND gates.

      We should also point out the following limitations of the traditional description.

 (1) The internal structure of a gate cannot be described, or derived from the function expression. For
example, Boolean algebra cannot describe the internal structures of CMOS inverter and CMOS NAND
gate shown in Fig. 2 (a) and (b).

(2) A compound gate, which also realizes the Exclusive-OR function, is shown in Fig. 2 (c). Boolean
algebra cannot describe the structure because it is not composed of gates. Reference [1] introduces the
following procedure to derive the structure from its Boolean expression. First, we obtain the inverted
expression: x y x y x y⊕ = ( ) ( )Ι Υ Ι . For the n-side of the CMOS structure, we take the non-inverted
expression ( ) ( )x y x yΙ Υ Ι . Here the operations Ι  and Υ  may be considered connections of nMOS
transistors in series and in parallel. After having the n-structure, a dual p-structure can be derived and the
whole configuration is obtained as shown in Fig. 2 (c).  Obviously, the procedure is not included in
Boolean algebra.

(3) NOT, AND and OR operations in Boolean algebra form a complete set, but they cannot be used to
describe the relationship of the output to the inputs of a CMOS circuit that has a high-impedance state φ.
The output of a simple CMOS transmission gate shown in Fig. 2 (d) is expressed as f c x x= ( ) ( )Ι Υ ΙΦ  in
some textbooks. However, we do not define the operations related to the high-impedance state F in
Boolean algebra.

Fig .2 Switch structure of a few CMOS gates  (a) inverter, (b) NAND gate, (c) composed Exclusive-OR
gate, (d) transmission gate.

      According to the above discussion, Boolean algebra can be used to describe the CMOS circuit
structure at the gate level, but cannot be used to describe the switching states of MOS transistors in the
circuit and the circuit structure at switch level. The description at switch level is however desired for the
switch-level techniques [2,3].

      In the recent past, there has been renewed interest in pass-transistor logic circuits because they
comprise of fewer transistors and exhibit smaller stray capacitance, compared conventional static CMOS
circuits [4,5], and hence lead to lower power dissipation. A number of papers on pass-transistor logic have
been published, for example, CPL (Complementary Pass-transistor Logic), DCVSPG (Differential Cascade
Voltage Switch with Pass-Gate), DPL (Double pass-transistor Logic), SRPL (Swing Restored Pass-
transistor Logic), and SAPL (Sense-Amplifying Pass-transistor Logic) [6-10]. However, pass transistor
logic has not succeeded in playing a major role in practical LSI designs. In particular, pass transistors are
used only in a small portion of arithmetic macros or XOR logic. One reason is that no synthesis tools are
available for pass-transistor based design. The other reason is that the nMOS pass-transistor circuits are
generally perceived to have poor low-voltage performance compared to their full static CMOS
counterparts which raises doubts about their future applicability.

Figure 1

Figure 2



3

      Reference [11] investigates various issues relative to the design of nMOS pass-transistor circuits. A cell
library and an automatic synthesis tool utilizing the functionality of pass-transistors are constructed. The
preliminary results appear to be quite positive. By designing some small arithmetic circuits, the others
demonstrate excellent quality of pass-transistor logic in terms of area, delay time, and power dissipation. In
addition, the authors find that the low-voltage performance of nMOS-based pass-transistor circuits is better
than the conventional CMOS circuits down to 1V, when the threshold voltage is 0.4V. However, a number
of key issues related to direct synthesis of pass-transistor circuits from a Boolean description remain.

      Up until now, the pass-transistor design and the traditional fully complementary logic design have been
considered to be very different design methods [12]. In this paper we will show that these methods are
based on the same switch-level view of the MOS transistor. Therefore, by focusing on the switching
process, we derive a relationship between the two methods, which then enables us to solve the problem of
synthesizing pass-transistor circuits. The remainder of this paper is organized as follows. Section 2 gives a
new description that describes both signal and switching state of transistors in MOS circuits and reflects the
circuit structure, where each MOS transistor is recognized as a switch for transmitting its source signal to
its drain. Sections 3 and 4 present application of the new description to the design of CMOS and nMOS
pass-transistor circuits. Section 5 contains our concluding remarks.

2.  Description of MOS Circuits at Switch Level

      To describe the MOS circuit structure, we introduce an additional variable that describes switches in
circuits; we should distinguish the new variable from the variable that is used to describe signals.

(1) Assume α, β …  are switching variables that take two values, T and F, which in turn represent the two
opposite states of on and off for a MOS transistor. The basic operations related to switching variables are
NOT, AND and OR. Their definitions are as follows:

NOT operation

~α
α
α=

⎧
⎨
⎩

T             if    = F,

F             if    = T;
                                                                    (1)

AND operation

                                                        α β
α β

⋅ =
=⎧

⎨
⎩

T             if    = T

F             otherwise
                                                            (2)

OR operation

                                                         α β
α β

+ =
=⎧

⎨
⎩

F             if    = F

T            otherwise
                                                          (3)

Based on the above basic operations, a binary switching algebra is established.

(2) Assume x, y, … are binary signal variables. They take two values, 1 and 0, which represent the two
signal levels, high and low, in a circuit. They have a precise magnitude and can be identified by comparing
their magnitude with a threshold value, denoted by 0.5. The basic operations that are related to binary
signal variables are Complement, Minimum and Maximum. Their definitions are as follows:

Complement operation
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                                                     x
x

x
=

=
⎧
⎨
⎩

1             if    = 0

0             if    1
                                                                       (4)

Minimum operation

                                                       x y
x y

Ι =
=⎧

⎨
⎩

1             if    = 1

0            otherwise
                                                              (5)

Maximum operation

                                                    x y
x y

Υ =
= =⎧

⎨
⎩

0             if    0

1             otherwise
                                                                (6)

Based on the above basic operations, binary signal algebra is formed.

      Therefore, we have two kinds of binary algebra systems; it can be shown that the two systems are
isomorphic. However, in the existing literature they are always substituted for one another confused
without considering their essential differences and their isomorphism. Therefore, gates that realize
Complement, Minimum, and Maximum operations are traditionally named NOT, AND and OR gates.

      Taking the inverter in Fig. 2(a) as an example to explain two kinds of variables, we can use x, x , αp

and αn to express the input and output signal, and the switching states of pMOS and nMOS transistors,
respectively. Their relationship is given in Table 1.

Table 1 Relationship between signals and switching states in a CMOS inverter.

      We can further introduce operations between two kinds of variables for describing the connection
between the on-off states of switching elements and the voltage levels of the signals, as shown in Fig. 3.
They are:

Connection operation I – which describes the physical process of how the binary signal controls the on-off
state of an element.

Connection operation II – which describes the physical process of how the on-off state of an element
controls the transmission of the binary signal.

Fig. 3 Connections between binary switching variables and binary signal variables.

      In a CMOS digital circuit, the on-off state of a MOS transistor is dependent on the comparison
between the gate signal and the threshold. Therefore, we define the connection operation I as follow:

High-threshold comparison operation

                                                           
⎩
⎨
⎧

=<
=>

=
)0.,.(5.0    if             F

)1.,.(5.0    if             T5.0

xeix

xeix
x

(7)

Low-threshold comparison operation

Table 1

Figure 3
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⎩
⎨
⎧

=>
=<

=
1)  x (i.e.,  0.5      if             F

0) x(i.e.,  0.5      if             T5.0

x

x
x

(8)

In Eqs. (7) and (8), the gate signal x ∈{ ,0  1} and 0.5 indicates that the detection threshold is set in the
middle of two logic levels, 0 and 1. If x assumes an intermediate value other than 0 or 1, then the switching
state of the MOS transistor will be indeterminate. This case is not allowed. Note that these two equations
represent the high-active switching characteristic of a nMOS transistor and the low-active switching
characteristic of a pMOS transistor, respectively.

      The following properties can be easily verified by use of the above definitions:

                                                                    x x x0 5 0 5 0 5. . .
~

= = ,                                                                     (9)

                                                                    0 5 0 5 0 5. . .
~

x x x= = ,
(10)

Which state that the two threshold comparison operations can be transformed by complementing the signal
variable.

                                                                    0 5 0 5 0 5. . .( )x y x yΙ = ⋅ ,                                                                (11)

                                                                    0 5 0 5 0 5. . .( )x y x yΥ = + .                                                               (12)

In Eqs. (10)-(12) the corresponding relationships between Complement, Minimum and Maximum in binary
signal algebra and NOT, AND and OR in switching algebra are established by use of the high-threshold
comparison operations. Furthermore, the high-threshold comparison operation penetrates through a
function f x y( , , ; , , )Λ Ι Υ− in binary signal algebra as follows:

                                                  0 5 0 5 0 5. . .( , , ; , , ) ( , , ; ~, , )f x y f x yΛ Ι Υ Λ− = ⋅ +  .                                                (13)

On the other hand, the on-off state of a MOS transistor determines whether the source signal is transmitted
to the drain or not. Therefore, we may introduce the connection operation II as follows.

Transmission operation

                                                                     c∗ =
=
=

⎧
⎨
⎩

α
α
α

c      if     T

     if     FΦ
                                                        (14)

Where the binary variable c is called transmitted source signal, and a represents the switching state of a
transmission switch network. If α = T, signal c is transmitted to the output; if α = F, the switch network is
off and its output is in the high-impedance state, denoted by symbol φ. The switch network is composed of
a nMOS transistor, if c = 0, or a pMOS transistor, if c = 1.

      To denote the joining of the outputs of two (or more) transmission branches, we define the following
operation further.

Union Operation

                                                     c c
c c

c c1 1 2 2
1 1 2 2

2 2 1 1

∗ ∗ =
∗ ∗ =
∗ ∗ =

⎧
⎨
⎩

α α
α α
α α

#
        if     

        if     

Φ
Φ

                                              (15)
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In Eq. (15), the transmission operation * takes priority over the Union operation #. Note that 1 # Φ = 1
and 0 # Φ = 0. We notice that if c1 ≠ c2 there must be α α1 2⋅ =  F , so that a voltage conflict between
sources c1 and c2 is avoided. As an example, we can use the above operations to re-express x  in Eq. (4) at
switch level:

                                                                      x x x= ∗ ∗1 00 5 0 5. .# ,                                                              (16)

Which exactly describes the circuit structure in Fig.1(a) and its working process shown in Table 1. We find
that the exclusive relationship between two switching functions ( x x0 5 0 5. ., ) is naturally conformed.

      It can be proved that the following laws related to the transmission operation and union operation hold.

Serial transmission law

                                                                 ( ) ( )c c∗ ∗ = ∗ ⋅α α α α1 2 1 2 ,                                                          (17)

Parallel transmission law

                                                                c c c∗ ∗ = ∗ +α α α α1 2 1 2# ( ) ,                                                         (18)

Commutation law

                                                              c c c c1 1 2 2 2 2 1 1∗ ∗ = ∗ ∗α α α α# # ,                                                      (19)

Associative law

                               ( # )# #( # ) # #c c c c c c c c c1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3∗ ∗ ∗ = ∗ ∗ ∗ = ∗ ∗ ∗α α α α α α α α α ,                 (20)

Distributive law

                                               ( # ) ( )# ( )c c c c1 1 2 2 3 1 1 3 2 2 3∗ ∗ ∗ = ∗ ⋅ ∗ ⋅α α α α α α α ,                                              (21)

      We can use the connection operations to derive a new canonical function form. For example, a two-
variable function f (x, y) has the following canonical expansion form at the switch level:

                       f x y f x y f x y f x y f x y( , ) ( , ) ( )# ( , ) ( ) # ( , ) ( )# ( , ) ( ). . . . . . . .= ∗ ⋅ ∗ ⋅ ∗ ⋅ ∗ ⋅0 0 01 1 0 110 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5               (22)

In comparison, the two-variable function f (x, y) has its traditional min-term expansion at the gate level:

                           f x y f x y f x y f x y f x y( , ) [ ( , ) ] [ ( , ) ] [ ( , ) ] [ ( , ) ]= 0 0 0 1 1 0 11Ι Ι Υ Ι Ι Υ Ι Ι Υ Ι Ι                    (23)

Equation (23) shows how the circuit is realized by using gates, which could be renamed Complement gate
(inverter), Minimum gate (AND gate) and Maximum gate (OR gate), as show in Fig.4 (a). However, Eq.
(22) explains how four signals, f (i, j), are transmitted to the output through two switches in series, as
shown in Fig.3 (b). These equations illustrate the difference in philosophy between switch-level and gate-
level descriptions. In fact, the structure shown in Fig.4 (b) is relative to the pass transistor circuits.
Therefore, the above new description for CMOS circuits is also suitable to nMOS pass transistor circuits.

Fig. 4 Circuit realizations of a two-variable function (a) at gate level, (b) at switch level.

3.    Application to Designing CMOS Circuits

Figure 4
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      Since in Eq. (22) the expansion coefficient f (i, j) ∈ {0,1}, we can factor coefficients 1 and 0,
respectively, and obtain the following form:

                                                                      f f# f. .= ∗ ∗1 00 5 0 5 ,                                                              (24)

Where 0 5. f  and f 0 5.  are complementary. They are the switching functions of source 1 and source 0,
respectively. By using Eq. (9) the above equation can be rewritten as

                                                                      f f# f. .= ∗ ∗1 00 5 0 5 .                                                                (25)

      If we have the simplified function expression f x y( , , ; , , )Λ Ι Υ−  in traditional binary signal algebra, we can

easily derive its corresponding switch-level expression 0 5.
( , , ; , , )f x y Λ Ι Υ−  by using Eq. (13). The latter

shows how to use serial and parallel nMOS switch connections for controlling the transmission of source 0.

According to 0 5 0 5. .
~

f f=  in Eq. (25) and De Morgan’s Law, the two switch-level expressions, 0 5. f  and 0 5. f ,
are dual. And that is the principle of the design procedure presented in [1].

      Taking f x y1 = Ι  and f x y2 = ⊕ as examples, we have f x y1 = Ι  and f x y x y2 = ( ) ( )Ι Υ Ι . Then the
following switch-level expressions can be obtained:

                                                   0 5
1

0 5 0 5. . .f x y= ⋅    And    0 5
2

0 5 0 5 0 5 0 5. . . . .f x y x y= ⋅ + ⋅ .                                            (26)

The above two expressions describe the n-branches in Fig.2 (b) and (c). By De Morgan’s Law, we have the
following dual expressions for describing the corresponding p-branches:

                                         0 5
1

0 5 0 5. . .f x y= +     And  0 5
2

0 5 0 5 0 5 0 5. . . . .( ) ( )f x y x y= + ⋅ + .                                    (27)

In fact, the duality between p-part and n-part in a CMOS circuit is unnecessary. Because f x y2 = ⊕  also can
be expressed as f x y x y2 = ( ) ( )Ι Υ Ι , we have the following expression instead:

                                               0 5
2

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . . .f x y x y x y x y= ⋅ + ⋅ = ⋅ + ⋅ .                                               (28)

The above expression will guide a new pMOS connection model, which would eliminate the internal
connection in the p-branch in Fig. 2(c).

      Another example is given in design of a combinational adder as follows. For a circuit with output
inverting buffers, we can design a circuit with inverse outputs, C+  and S , first. From Eq. (25) we have

                                                                    C C # C
. .

+ + += ∗ ∗1 0
0 5 0 5 ,                                                           (29)

                                                                    S S# S
. .= ∗ ∗1 0

0 5 0 5 .                                                                 (30)

Based on the traditional Boolean algebra the following expressions are derived:

                                             C A B A B C+ = ( ) [( ) ]Ι Υ Υ Ι ,                                                              (31)

                                             C A B A B C+ = ( ) [( ) ]Ι Υ Υ Ι ,                                                              (32)

                                             S A B C C A B C= +[( ) ] ( )Υ Υ Ι Υ Ι Ι ,                                                    (33)

                                             S A B C C A B C= +[( ) ] ( )Υ Υ Ι Υ Ι Ι .                                                    (34)

Note that in the above expressions C+ andC+ , S and S  are symmetric rather than dual with each other. By
using Eq. (13), their corresponding expressions at switch-level are:
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                                                    0 5 0 5 0 5 0 5 0 5 0 5. . . . . .( )C A B A B C+ = ⋅ + + ⋅ ,                                                      (35)

                                                    0 5 0 5 0 5 0 5 0 5 0 5. . . . . .( )C A B A B C+ = ⋅ + + ⋅ ,                                                              (36)

                                                   0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . .( )S A B C C A B C= + + ⋅ + ⋅ ⋅+ ,                                       (37)

                                                   0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . .( )S A B C C A B C= + + ⋅ + ⋅ ⋅+ .                                                   (38)

Therefore we obtain the corresponding circuit design at switch level, as shown in Fig. 5 [1]. Obviously, the
p-branch and n-branch in the optimized schematic are symmetric.

Fig. 5 CMOS design of a full adder.

      In addition to transformation from the traditional Boolean expression, the switch-level expression can
be also derived directly from truth table or Karnaugh map. Figure 6 shows three Karnaugh maps for
outputs of the NAND gate, the transmission gate, and the Exclusive-OR gate. From the mapping synthesis
shown in Fig.6 (a), we directly obtain the switch-level expression:

                                                      x y x y x yΙ = ∗ + ∗ ⋅1 00 5 0 5 0 5 0 5( )# ( ). . . . .                                                        (39)

The above expression describes how the source 1 (VDD) transmitted through two p-transistors in parallel to
the output, and the source 0 (Ground) transmitted through two n-transistors in series to the output, as
shown in Fig. 6(a).

      According to the mapping in Fig. 6(b), we use the variable c as its transmitted source and obtain the
switch-level expression:

                                                                    f c x= ∗0 5. .                                                                          (40)

      The above expression shows that the source c is transmitted by an n-transistor. To avoid the poor
transmission for c = 1 we rewrite the expression as:

                                                               f c x x= ∗ +( ). .0 5 0 5 ,                                                                    (41)

Where two terms, 0 5. x  and x 0 5. , are equal based on Eq. (9). However, they describe that the variable source
is transmitted by a complementary MOS construction, as shown in Fig. 6(b).

Fig. 6 Mapping synthesis of some CMOS circuits at switch-level (a) NAND gate, (b) Transmission gate,
(c) Exclusive-OR gate.

      Based on the previous example, we can synthesize Exclusive-OR by its Karnaugh map in Fig. 6(c):

                                                 x y y x x x y x y⊕ = ∗ + ∗ ∗( )# ( ) # ( ). . . .0 5 0 5 0 5 0 51 0 .                                                 (42)

Notice that the parts overlapped in Karnaugh map have been realized by y x x∗ +( ). .0 5 0 5 , and therefore the

branch with source x (term x y( ) .1 0 5∗ ) only has to transmit a 1 and never a 0, and the branch with source x

(term x y( ) .0 0 5∗ ) only has to transmit a 0 and never a 1. Hence each of these transmission branches can be
realized with a single MOS transistor as shown in Fig. 6(c). This simple circuit realization previously has

Figure 5

Figure 6
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been considered as something that “… does not follow from any systematic (design) method'' [13].
Comparing all three designs of Exclusive-OR gate in Fig. 1(c), Fig. 2(c) and Fig. 6(c) we find that the
number of transistors in the circuits are 16, 12 and 6, respectively. Besides, the numbers of internal nodes in
circuits are 5, 3 and 2, respectively. This means that the design based on switch-level description may lead
to a circuit with a simpler structure as well as higher quality (delay and power).

      It should be pointed out that the description of MOS circuits at switch-level also offers a new method
for analyzing and optimizing circuits. However, since there are physical capacitance and resistance
associated with the MOS transistors, the permutation of the inputs to a series chain of transistors will lead
to different input pin loads and pin dependent delays. It is well known that the signal to pin assignment in a
CMOS logic gate has a sizable impact on the propagation delay through the gate [14]. Besides, researchers
have pointed out that the assignments of input signal with different probability of assuming a controlling
value (zero for nMOS and one for pMOS), or input signal with different switching activity when all other
inputs are set to their non-controlling values must be considered for power reduction [14,15]. Therefore,
we have to describe the circuit more accurately at switch level. It means that each transistor in series-
connected structure should be located exactly. In fact, by weakening the communication law of switching
variables, those two switching variables in Eq. (17) cannot be permuted. Thus, the order of AND’ed
switching variables will represent corresponding location accurately in the series-connected structure.
Taking the Exclusive-OR gate shown in Fig. 2(c) as the example, its output can be expressed as

                                          x y x y x y x y x y⊕ = ∗ + ⋅ + ∗ ⋅ + ⋅1 00 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5[( ) ( )]# [ ]. . . . . . . . .                                   (43)

The above expression indicates that the two nMOS transistors, which are controlled by signals x and x are
close to Ground since their corresponding switching variables, are near the source 0 in the above
expression. Obviously, the other two nMOS transistors are close to the output terminal. Therefore, the
proposed description of CMOS circuits is modified to locate each transistor in the circuit. It is expected
that the new switch-level description will provide a basis for analyzing and optimizing delay and power
dissipation of CMOS circuits.

4.    Application to Designing nMOS Pass Transistor Circuits

      An nMOS pass-transistor circuit, as shown in Fig.7 (a) has a structure similar to the one in Fig.4 (b)
except for the following differences:

(1)  Each switch in the transmission branches is a nMOS transistor independent of the signal value, 0 or 1,
to be transmitted. In contrast, if the transmitted signal f (i, j) in Fig.4 (a) is a variable source, each
switch in the branch should be a transmission gate, which consists of a pair of complementary MOS
transistors.

(2)  Since nMOS transistor has a poor transmission for high level, it is necessary to restore the output level
using an output inverter, as shown in Fig.7 (a). This inverter consists of three MOS transistors, as
shown in Fig.7 (b). The feedback to the pull-up pMOS transistor improves the slope of transient pass-
transistor output waveform if the input of the inverter is at high level. If the load capacitance is
extremely large, an extra feedback inverter should be added to avoid its influence on the feedback
action [11]. We notice that in Fig.7 (a) all source signals are inverted because of the output inverter.

Figure 7
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Fig. 7   (a) A nMOS pass-transistor circuit, (b) output inverter.

      By explaining the differences between conventional CMOS transmission circuit and nMOS pass-
transistor circuit we can modify the new description for CMOS circuit and use it to describe and design
nMOS pass-transistor circuits as follows.

      In the design of CMOS circuits, since source 1 should be transmitted by pMOS transistors, 0.5f in Eq.
(25) have to be expressed by arguments x0.5, y0.5, etc. However, source 1 in nMOS pass-transistor circuit is
also transmitted by nMOS transistors, therefore, the low threshold comparison operations x0.5, y0.5, etc.
should not appear. For example, consider f x y x y1 = =Ι Υ  and f x y x y x y2 = ⊕ = ( ) ( )Ι Υ Ι  as in the last
section we obtain following expressions, in place of Eqs. (27). (Note that Eq. (26) remains unchanged).

  0 5
1

0 5 0 5. . .f x y= +  And   0 5
2

0 5 0 5 0 5 0 5. . . . .f x y x y= ⋅ + ⋅ ,                                                (44)

Fig.8 nMOS pass-transistor circuits with constant source (a) x yΙ , (b) x y⊕ .

The above expressions describe the nMOS pass-transistor circuits for realizing f1 and f2, as show in Fig.8
(a) and (b). If we add an output inverter to restore the logic level, the source signals should be inverted. If
comparing the above nMOS designs with CMOS designs in Fig.2 (b) and (c), we cannot see any advantage
with the nMOS design. In fact, the feature of nMOS pass-transistor circuits is that nMOS transistor is used
to transmit both source 0 and source 1. This means that a single nMOS transistor can be used to transmit a
variable source. The use of variable signal sources rather than constant sources frequently allows simpler
circuit to be designed. As an example, we can rewrite x y⊕  as

     x y x y x y
y x

y x
⊕ = =

=
=

⎧
⎨
⎩

( ) ( )
, ;

, .Ι Υ Ι
     if 

     if   

0

1
                                                      (45)

By using the high threshold comparison operation the above equation can be transformed into a switching
expression:

           x y y x y x y x y x⊕ = =* # * * # *. . . .0 5 0 5 0 5 0 5 .                                                         (46)

The corresponding nMOS pass-transistor circuit is shown in Fig.9 (a), which is much simpler than the one
in Fig.8 (b). (In fact, if the two nMOS transistors controlled by x and the two nMOS transistors controlled
by x in Fig.8 (b) are merged respectively, we get the design of Fig.9 (a).) The example indicates that as
long as a Boolean function f x y( , , , , )Λ Ι Υ is expressed in a MUX form by using the Shannon expansion:

                                        f x y f y x f y x( , , , , ) [ ( , , , , ) ] [ ( , , , , ) ]Λ Ι Υ Λ Ι Υ Ι Υ Λ Ι Υ Ι= 0 1

(47)

We will have its corresponding switching expression:

                                                      f x y f y x f y x( , , , , ) ( , , , , )* ( , , , , )*. .Λ Ι Υ Λ Ι Υ Λ Ι Υ= 0 10 5 0 5 # ,                                
(48)

Which will lead its realization with nMOS pass-transistor MUX. Notice that in the above expression the
exclusive relationship of two switching functions is met by 0 5 0 5. .x x F⋅ = .

      Taking conventional two-variable Boolean operations, x yΙ and x yΥ as examples we have

Figure 8
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           x y y x y y x yΙ Ι Υ Ι= =( ) ( ) * *. .0 0 0 5 0 5 #  ,
(49)

            x y x y y x y yΥ Ι Υ Ι= =( ) ( ) * *. .1 10 5 0 5 #  .
(50)

The corresponding nMOS pass-transistor circuits are shown in Fig.9 (b) and (c). If we add the output
inverter to restore level, all transmitted sources in these circuits should be inverted.

Fig.9 nMOS pass-transistor circuits with variable source (a) x y⊕ , (b) x yΙ , and (c) x yΥ .

      Furthermore, we take the full adder as a practical design example. If we introduce C A Bp = ⊕ , which is

the carry propagation term, as an intermediate variable, we obtain the following Boolean expressions:

                                                              C A B B A B Ap
= ⊕ = ( ) ( )Ι Υ Ι ,

(51)

                                                              C A C C Cp p+ = ( ) ( )Ι Υ Ι ,

(52)

                                                              S C C C Cp p= ( ) ( )Ι Υ Ι .

(53)

Based on the above design procedure we can construct the nMOS pass transistor circuit with simple nMOS
MUX, as shown in Fig.10 (a). In the circuit only 14 MOS transistors are used. However, the simple nMOS
MUX without output inverter cannot work well. If we use the inverted nMOS MUX with output inverter
in Fig.7 (b) instead, we can obtain the improved design by inserting inverters into the circuit of Fig.10 (a),
as shown in Fig.10 (b). The basic building cell is framed by dotted line in Fig.10 (a). The conventional
design shown in Fig.5 requires 28 MOS transistors. However, our nMOS pass-transistor design only needs
23 MOS transistors and has an extra carry propagation output CP, which is useful for carry look ahead
technique.

Fig. 10 nMOS pass-transistor design of a full adder

(a)  With simple nMOS MUX, (b) with inverted nMOS MUX.

      The above design procedure of nMOS pass-transistor network is based on the binary division expressed
by Eq. (48). The exclusive relationship between two switching functions is guaranteed for each division
operation. This procedure makes the design of nMOS pass-transistor circuits as same as the synthesis for
MUX networks. In fact, this procedure also conforms to the representation of BDD. Therefore, the
designed circuit construction based on Eq. (48) can be described by its corresponding BDD representation.
For example, for circuits in Fig.9 and Fig.10 (a) we have their corresponding BDDs, as shown in Fig.11.
An effective synthesis method of pass-transistor network based on BDD has been developed [16]. As long
as the reduced BDD is obtained it can be mapped to nMOS transistor circuit easily (e.g. we derive circuits
in Fig.9 and Fig.10 (a) from BDDs in Fig.11). We notice that in Fig.11 (d) we adopt super-node labeled by
CP in the BDD [17]. It can reduce number of transistors and delay.

Figure 9

Figure 10
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Fig.11 BDDs (a) x y⊕ , (b) x yΙ , (c) x yΥ , (d) C+, S and CP.

      However, we should point out that synthesis of nMOS pass transistor network does not have to be
confined to binary division given by Eq. (48). For example, we can express x y zΙ Ι as follows:

                              x y z x y z y z x y z y zΙ Ι Ι Ι= = × ×* ( )# * ( ) *( )# *( ). . . . . .0 5 0 5 0 5 0 5 0 5 0 50 0
(54)

The corresponding circuit realization is shown in Fig.12 (a). This circuit is not mapped from BDD.
Therefore, the synthesis of nMOS transistor network based on BDD is just one canonical design method by
using the new description of MOS circuits at switch level. A bridge-connected circuit shown in Fig.12 (b)
gives another example. It is difficult to analyze its function by traditional method. However, we can
describe it at switch level as follows. If c = 1, the above bridge transistor conducts and the below one shuts
off. Based on the switch connection we can get

                                  f c a b d e a b d e( ) *[( ) ( )]# *[ ]. . . . . . . .= = + ⋅ + ⋅ + ⋅1 1 00 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5  .                             (55)

Similarly, if c = 0, we have

                                  f c a d b e a d b e( ) *[ ]# *[( ) ( )]. . . . . . . .= = ⋅ + ⋅ + ⋅ +0 1 00 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5  .
(56)

It is easy to prove that two switching functions in Eq. (55) (or Eq. (56)) are exclusive with each other. It
guarantees that the circuit shown in Fig.12 (b) is source-conflict free.

Fig.12 (a) Three AND gate, (b) nMOS circuit with bridge connection.

From Eq. (25) we obtain

                                   0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5. . . . . . . . . . .[( ) ( )] [ ]f c a b d e c a d b e= ⋅ + ⋅ + + ⋅ ⋅ + ⋅  .

Thus, we have

                                             
f c a b d e c a d b e

c a e b d a d b e

=

=

{ [( ) ( )]} { [( ) ( )]}

{ [( ) ( )]} [( ) ( )]
Ι Υ Ι Υ Υ Ι Ι Υ Ι
Ι Υ Ι Υ Υ Ι Υ Ι  

                                  (57)

With the traditional AND-OR operation symbols the above equation can be expressed as

                                                        f c a e b d a d b e= × × + × + × + ×( ) ( ) .

Obviously, the BDD representation for the above function will have a different and more complicated form
compared to the circuit in Fig.12 (b). From the above discussion, we demonstrate that the new description

Figure 11

Figure 12
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for MOS transistor promises a more comprehensive circuit construction than BDD. Besides, we find that in
the circuit two bridges transistors are used to connect two signals. Thus, the bi-directional characteristic of
MOS transistor is used in the design.

5.   Conclusion

      The traditional description of CMOS circuits is based on Boolean algebra, where three basic
operations, NOT, AND and OR, are used to describe functional relationship between inputs and the output,
and to describe the circuit structure composed of gates. However, it cannot be used to describe the internal
structure of MOS transistor switches. Besides, there exist some problems with Boolean algebra when
describing complex gates or gates with high-impedance state. This paper introduced another variable to
describe the switching state of transistors in addition to original variable, which describes signal in the
circuit. The two variables have their own independent operations. Since there exists a mutual relationship
between the on-off states of switch elements and the signals, we proposed two connection operations for
describing their interaction, whereby a new description for CMOS circuits at the switch level is presented.
Based on the new description the design of CMOS circuits at switch level can be realized. For CMOS
circuits the traditional inverting-logic stage design and pass-transistor design have been considered to be
two different design methods. However, the new description proposed in this paper can unite the two and
overcome other difficulties in the traditional theory. The theory is also applicable to the description and
design of nMOS pass-transistor circuits.
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Figure captions

Fig.1 Definition and circuits for Exclusive-OR operation  (a) truth table, (b) circuit composed of NOT,
AND and OR gates, (c) circuit composed of NOT and NAND gates.

Fig .2 Switch structure of a few CMOS gates  (a) inverter, (b) NAND gate, (c) composed Exclusive-OR
gate, (d) transmission gate.

Fig. 3 Connections between binary switching variables and binary signal variables.

Fig. 4 Circuit realizations of a two-variable function (a) at gate level, (b) at switch level.

Fig. 5 CMOS design of a full adder.

Fig. 6 Mapping synthesis of some CMOS circuits at switch-level (a) NAND gate, (b) Transmission gate,
(c) Exclusive-OR gate.

Fig. 7   (a) A nMOS pass-transistor circuit, (b) output inverter.

Fig.8 nMOS pass-transistor circuits with constant source (a) x yΙ , (b) x y⊕ .

Fig.9 nMOS pass-transistor circuits with variable source (a) x y⊕ , (b) x yΙ , and (c) x yΥ .

Fig. 10 nMOS pass-transistor design of a full adder

(a)  With simple nMOS MUX, (b) with inverted nMOS MUX.

Fig.11 BDDs (a) x y⊕ , (b) x yΙ , (c) x yΥ , (d) C+, S and CP.

Fig.12 (a) Three AND gate, (b) nMOS circuit with bridge connection.

Table captions

Table 1 Relationship between signals and switching states in a CMOS inverter.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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Table 1

x αp αn x

0 (low level) T (on) F (off) 1 (high level)
1 (high level) F (off) T (on) 0 (low level)


