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ABSTRACT - This paper presents a set of techniques and a new design flow to be used
in the synthesis of high-performance deep-submicron logic circuits. The design flow
consists of circuit partitioning into tree-like clusters, floorplanning, global routing, and
timing analysis/budgeting steps, followed by simultaneous technology mapping and
linear placement of each cluster. The strength of this approach lies in the dynamic
programming-based algorithms used in performing simultaneous technology mapping
and linear placement of the logic clusters. The two algorithms we propose, one for exact
total (gate plus routing) area minimization and the other for total (gate plus routing)
delay minimization, generate a set of non-inferior solutions for each cluster enabling
designers to perform trade-offs between total-area and total-delay. Experimental results
on a large number of MCNC benchmarks prove the effectiveness of the proposed flow.

I. INTRODUCTION

During the process of designing high performance VLSI circuits, designers often find that their
implementations do not meet the timing and/or area constraints after layout. This condition is primarily
caused by the weak interaction between logic synthesis and physical design tools. Logic synthesis which
is capable of significantly altering the circuit timing and area as it proceeds from Boolean network
optimization to technology mapping, uses relatively simple models for wires. In contrast, physical design
which has accurate wire information from back-end extraction tools, does not have the ability to alter the
circuit structure and node functionality and therefore cannot drastically change the timing/area profile of
the circuit.

This problem is compounded as feature sizes shrink to a quarter micron and below exposing IC
designers to a new era characterized by the following phenomena:
♦ The dominance of interconnect delay and area due to faster and smaller gates, yet increasing chip

dimensions.
♦ Design iterations due to discrepancies in post and pre synthesis delay calculations.
♦ Adverse affects of complicated second-order effects such as cross-coupling and ground bounce on

chip performance.
♦ Sharp increases in the number of nets at performance risk.
♦ Failure of existing delay calculators to guarantee consistent timing across the design stages.
♦ Sheer complexity of multi-million gate chips which overwhelms the existing design tools.
Design technologies must be improved for design flows, methodologies, tools, and standards to enable
the production of chips with a 100 million or more transistors using the same number of designers in the
same time it takes today for a 5 million transistor chip. Without these enhancements, semiconductor and
electronics industries will die economically as they fall off the productivity curve [Bu97].
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There are generally three different approaches to solve this problem: synthesis centric, physical design
centric, and unification-based. The logic synthesis centric approach focuses on the innovation of more
powerful synthesis techniques. During each step of a logic synthesis flow, local iterations of logical and
physical techniques are performed with different coarseness. For example, RT-level floorplanning is
used during technology independent logic synthesis to more accurately estimate the global interconnect,
whereas gate placement is used during technology mapping. The physical design centric approach
focuses on the improvement of physical design techniques. Logic synthesis is performed as post-layout
restructuring and re-synthesis techniques to meet various timing/physical constraints. The unification-
based approach which is the most powerful approach, attacks the deep submicron problem by
considering several design steps simultaneously such that the optimization is performed concurrently for
all these steps.

The work presented in this paper on logical-physical co-design belongs to the class of unified
techniques. It offers a solution to some of the design difficulties by introducing two new algorithms,
SiMPA-E and SiMPA-D, in addition to a novel design flow, FPD-SiMPA, which properly takes advan-
tage of the capabilities of these two algorithms. SiMPA-E (Simultaneous Technology Mapping and
Linear Placement Algorithm for Exact Area Minimization) is a polynomial complexity, dynamic
programming based algorithm that simultaneously performs technology mapping and linear placement
on tree-like circuits. This algorithm minimizes the total (gate plus routing) area by generating and
propagating gate area versus cut cost trade-off curves. SiMPA-D (Simultaneous Technology Mapping
and Linear Placement Algorithm for Delay Minimization), an algorithm similar to SiMPA-E, can
perform optimization with respect to both total-delay and total-area by generating three dimensional gate
area, cut cost, and total-delay trade-off curves. Every trade-off curve, in both SiMPA-E and SiMPA-D,
contains a set of non-inferior points, each representing a distinct implementation for the input tree-like
circuit. SiMPA-E guarantees the exact minimum total-area implementation to be among the non-inferior
solutions of its final trade-off curve. Similarly, the best solution found by SiMPA-D with respect to area,
is proved to be, at worst, a constant factor away from the optimal solution. This shows that SiMPA-D,
which is capable of delay minimization, is an approximation algorithm with respect to total-area, and not
simply a heuristic with unbounded error.

FPD-SiMPA (Floorplan Driven Simultaneous Technology Mapping and Linear Placement Algorithm)
exploits the capabilities of SiMPA-E and SiMPA-D to perform optimization on general DAG-structured
circuits. FPD-SiMPA partitions a given circuit into a set of non-overlapping trees (clusters) and then
floorplans the generated clusters using their corresponding estimated area and delay. Subsequently, it
performs global routing for the inter-cluster connections and calculates the delays of the global wires.
The next step is computing the area and delay budgets and assigning them to the clusters. For each tree,
SiMPA-E or SiMPA-D is called to generate and pick the implementation which satisfies the budgets
generated in the earlier stage. Finally, FPD-SiMPA refines the floorplan solution to eliminate overlaps
and generate the final chip layout. FPD-SiMPA can take either an unmapped or a mapped circuit as its
input. In standard FPD-SiMPA flow, the input circuit is unmapped and the area/delay of the tree clusters
are estimated prior to the floorplanning stage. In remapping FPD-SiMPA flow, the input circuit is
already mapped and the area/delay values are computed using the mapped solution, and only a selective
set of tree clusters will be remapped/re-placed to enhance the performance of the circuit. In this paper
due to space limitations only the standard FPD-SiMPA flow is introduced and discussed.

This paper is organized as follows: In section II, background and prior work on placement, synthesis and
the methodologies combining these two are introduced. In section III, SiMPA-E, SiMPA-D, and the
related techniques used in this methodology are introduced. Section IV describes the proposed design
flow (FPD-SiMPA) in which the combined placement and technology mapping method works for
general circuits. In section V, experimental results are presented and analyzed. The concluding remarks
are stated in section VI.
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II. BACKGROUND AND PRIOR WORK

II.1. Technology Mapping
The problem of optimally binding a DAG-form subject graph to an arbitrary library of components is
NP-hard [HS96]. In 1987, Keutzer [Ke87] pointed out the similarity between the library binding problem
and optimal code generation in a compiler. In his algorithm, the circuit is partitioned into tree sub-graphs
and then each sub-graph is mapped using a dynamic programming algorithm that finds the minimum
gate area mapping of the tree in polynomial time. This work was later extended by Rudell [Ru89] to
minimum delay technology mapping and by Touati et al. [TMBW90] to minimum area mapping under
delay constraints. In that approach, a range of required times at each node is computed and divided into
equal intervals. Then, during a traversal from primary inputs to primary outputs, the best mapping
solution for each of the required times is generated and stored at the node. Finally, the best solution is
generated during a traversal from primary outputs to primary inputs. In [CP92], Chaudhary and Pedram
presented a dynamic programming algorithm to construct the set of all possible mappings of a tree with
different area-delay trade-offs. A general disadvantage of all the above techniques is that they all assume
the dominance of area and delay of gates over interconnects which leads to a considerable amount of
design errors in the current technologies.

For future reference, the pseudo code of Keutzer’s algorithm, which is referred to as KA in this paper, is
included below. The inputs to this algorithm are a tree network, N, and a technology library, L.

Figure 1, by a simple example, demonstrates how KA works on a tree. In this example, a match, μ, is
being considered for node n. The gate area up to this point is calculated by summing the gate areas of its
three inputs (input0, input1,  input2) and the gate area of μ itself.

Figure 1 : Illustration of Keutzer’s Algorithm

KA(N, L)
INPUT: A tree-network, N, and a technology library, L

OUTPUT: A mapped network

1. Decompose N using a technology decomposition algorithm

2. Perform a reverse depth-first search (DFS) from the primary inputs to the primary outputs

3. Foreach node, n, in the reverse DFS order

4. Foreach match, μ, of n

5. gateArea = accumulated sum of gateArea over all the inputs of μ + gateArea of μ
6. Store the best gateArea, and its corresponding match and inputs at n

7. Select the best area solution at the primary output, and recursively build the mapping

solution for the whole circuit

inpu t0

inpu t1

inpu t2

m atch  m

node n

μ
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For completeness, the following lemma about KA is presented.

Lemma 1 Keutzer’s algorithm gives the minimum gate-area mapping of a tree [Ke87].

II.2. Linear Placement
The linear placement problem of a graph has been studied extensively by many mathematicians. MIN-
SUM is a variation of that problem in which the objective is to find a placement with the minimum total
interconnecting wire length. Likewise, the goal of the MINCUT linear placement problem is to find a
placement with the smallest maximum cut-width. Both MINSUM and MINCUT problems are NP-
complete for the general graphs [GJ79]. For MINSUM, Shiloach [Sh79] introduced an algorithm with
O(n2.2) complexity which solves that problem for (rooted) trees. The complexity of that technique was
later reduced to O(n1.58) by Chung [Ch84]. In solving the MINCUT problem, Lengauer [Le82] invented a
polynomial time algorithm for (rooted) trees whose worst case cut-width is within a factor of two of the
optimal solution. More recently, Yannakakis [Ya85] introduced an O(n×logn) dynamic programming
algorithm which optimally solves the MINCUT problem for trees. This paper focuses on the MINCUT
problem and relies on Lengauer’s and Yannakakis’ algorithms.

Subsequent to introducing the following two definitions, the Lengauer’s and Yannakakis’ solutions to
the MINCUT are briefly introduced and discussed.

Definition 1 For a linearly-placed tree, the heavy side is defined as the side (with respect to the
placed root) which includes the maximum cut-width, and the other side is called the light side.

Definition 2 A linear placement of a tree with equal maximum cut-on each side of the placed root is
called a balanced placement.

II.2.1. Lengauer’s Algorithm
Lengauer’s algorithm (LA) gives an approximate solution to the MINCUT placement problem of a tree,
where at worst, the cut-width of its output placement is within a factor of two away from the minimum
cut-width. LA is a dynamic programming based algorithm which solves the problem for sub-trees and
then merges these solutions to construct the complete solution. At each step of dynamic programming,
LA preserves the already constructed placement solution for each sub-tree, sorts these solutions in
descending order with respect to their cut-widths (ties are broken by giving priority to balanced
placements), and places them in that order and in an alternating manner around the root node (see Figure
2 for details.) Therefore, the farthest sub-trees (on the right and left) are those with the highest cut-width.
Furthermore, LA places the sub-solutions such that their heavy side faces away from the root [Le82].
Figure 2 shows the heavier sides of sub-trees with thicker lines. For one level of dynamic programming,
the pseudo-code of LA is presented below. The inputs to the algorithm are the current root, and the list of
its immediate sub-trees, which are assumed to have already been placed.

The following statements formally define Cut-width and Balance-bit Cost Function (CBCF) which is the
cost function used by LA.

Definition 3 For a linear placement, T, CBCF(T) is defined as a two-tuple of (cutWidth(T) ,
balanceBit(T)), where cutWidth(T) is the cut-width of T and balanceBit(T)=1 when T is a balanced
placement (it is 0 otherwise).

Definition 4 α=CBCF(T) is defined to be smaller than β=CBCF(T' ) (denoted as α<β) if and only if
α is lexicographically smaller than β. In other words, cutWidth(T)<cutWidth(T' ) or when
CBCF(T)=CBCF(T' ) then balanceBit(T)< balanceBit(T' ).
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The following lemma states that Definition 4 imposes an order on CBCF’s. Therefore, a set of CBCF’s
can be sorted and represented on an axis.

Lemma 2 The ‘<’ relation on CBCF’s (cf. Definition 4) is a transitive relation.

Proof: Suppose α<β and β<γ, where γ=CBCF(T' ). Following Definition 4, it is shown that
cutWidth(T)<cutWidth(T' ) or when CBCF(T)=CBCF(T' ) then balanceBit(T)< balanceBit(T' ).
Therefore, it is proved that α<γ. �

Figure 2 : Illustration of Lengauer’s Algorithm

Lemma 3 At worst, the maximum cut-width of a placement generated by LA is twice the cut-width of
its corresponding optimal linear placement [Le82].

Lemma 4 LA( r , p1 , p2 , … , pk ), which is a call to one level dynamic programming of YA, has
O(k×log(k)) worst-case runtime complexity, where k is the number of input sub-placements.

Proof: Sorting the input sub-placements with O(k×log(k)) worst-case runtime complexity dominates the
other operations. �

II.2.2.  Yannakakis’ Algorithm
Yannakakis’ algorithm (YA) is an exact solution for the tree MINCUT problem. It is a dynamic pro-
gramming-based, bottom-up algorithm that extends LA to achieve the optimal solution. At each level of
dynamic programming, YA does not preserve the already constructed placement solution for the sub-
trees; instead it merges them together in a complicated manner in order to achieve the optimal solution.

II.2.2.1. Cut Cost Function
LA uses CBCF of a placement as the cost function during its operation whereas YA uses a generalized
form of that cost function, called Cut Cost Function (CCF), which is briefly defined and discussed
below.

Definition 5 The cut cost function of a linearly placed tree, P, is a k-tuple of integers that captures the
maximum and minimum cut-width locations in the placement.

LA( r, p1 , p1 , … , pk )
INPUT: A root node, r, and the list of its already placed immediate sub-trees
OUTPUT: The placement of the tree rooted by r
1. Sort the placed sub-trees in non-increasing order w.r.t. their CBCF’s;

rename them as P0 , P1 , P2 , …, Pk

2. Generate and return a placement, P = P0 P2 … r … P3 P1 , such that for
each Pi, the heavy side is facing away from the root

T1
T3 T4

T2

r
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Suppose that tree T with root r corresponds to the linear placement P. The CCF is calculated as a (finite)
sequence CCF(P)=< g1 , h1 , g2 , h2 , ... > as follows:

1. If the maximum cut, g1, occurs on only one side of P, then return CCF(P)=< g1 >
2. Else, let p1 and p2 be the two points closest to r on each side where g1 occurs
3. If p1 and p2 are right next to r, then return CCF(P)=< g1 , g1  >
4. Else, let h1 be the minimum cut between p1 and p2

5. If h1 occurs only on one side in the interval of [p1 , p2], then return CCF(P)=< g1 , h1  >
6. Else, let q1 and q2 be the two points closest to r in the interval of [p1 , p2] where h1 occurs, and let g2 be the

maximum cut between q1 and q2

7. If g2 occurs only on one side in the interval of [q1 , q2], or g2  = h1, then return  CCF(P)=< g1 , h1 , g2 >
8. Else, let P'   be the restriction of P to the interval of [q1 , q2] and return CCF(P) = < g1 , h1 , CCF( P′ ) >

The example in Figure 3 shows how a CCF is calculated for a placement, P. In CCF(P), 4 comes first
because the maximum cut-width of P is 4. Since max-cut 4 occurs on both sides of P and they are not
located adjacent to the root r, we continue to find the minimum cut-width between these two maximum
cut-width locations, which is 1. That minimum cut-width again occurs on the both sides of root r. We
therefore call CCF recursively to find the CCF of P’, where P’ is the restriction of P between where the
two 1’s occurred. Again, we first have to find the maximum cut-width of P’, which turns out to be 3.
There are 3’s on both sides of r which are not right next to it, so we find the minimum cut between them,
which is 2. Again, 2 occurs on both sides of r. Between the two 2’s, the maximum cut is now the same as
the minimum cut 2. We stop here (as in step 6 of CCF calculation method given above), and return the
cut cost function CCF as CCF(T)=<4,1,3,2,2> .

Figure 3 : An Example for Cut Cost Function

Definition 6 α=CCF( P1 ) is defined to be smaller than β=CCF( P2 ) (denoted as α<β) if  and only if
α is a prefix of β or α is lexicographically smaller than β.

The following lemma states that Definition 6 imposes an order on CCF’s. Therefore, a set of CCF’s can
be sorted and represented on an axis.

Lemma 5 The ‘<’ relation on CCF’s (cf. Definition 6) is a transitive relation.

Proof: It is proved by a simple manipulation following Definition 6. �

Figure 4 shows three linear placements P1 , P2 , and P3 (roots are shown by larger circles). For these
placements, we have: CCF(P1)=<2>, CCF(P2)=<2,1> and CCF(P3)=<2,2> and according to the
definition CCF(T1)<CCF(T2)<CCF(T3).

Figure 4 : Ordering on CCF’s

r

4
1

3 2 2
1

3 4

P1 P2 P3

r r r
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Intuitively, CCF’s reflect the degree of difficulty involved in performing the MINCUT optimization on a
placement. Suppose that the linear placements shown in Figure 4 are to be merged with another
placement, say P . Using P1, the maximum cut of the combined placement remains unchanged if P is
placed on the right side of P1, however, for P2 regardless of the relative position of P, the maximum cut-
width of the combined placement is increased by one. Both P2 and P3 have the maximum cut-width of
two on both sides, however, P2 has a minimum cut of one on its left side which can be used for
performing further mincut optimizations by breaking P2 at that location and inserting P between the two
parts. YA actually relies on the optimization techniques similar to one mentioned for P2 in order to
construct the optimal solution. More details will be given in section II.2.2.2.

Lemma 6 Assume CCF(P) is the cut cost function of a cut-width optimal linear placement P. The
following two formulas give bounds on the cardinality of CCF(P):

|CCF(P)| ≤ num(P) + 1

|CCF(P)| ≤ cutWidth(P) + 1

where num(P) and cutWidth(P) denote the number of nodes and the maximum cut-width in the
placement, P, respectively [Ya85].

Lemma 7 Assume P is a cut-width optimal linear placement of a fixed degree tree T. Then,
cutWidth(P)≤ log(|P|), where |P| denotes the number of nodes in P [Ya85].

II.2.2.2. Exact MINCUT Linear Placement Algorithm
Yannakakis’ algorithm is a relatively complicated algorithm and in this section only the skeleton of the
algorithm will be presented. Interested readers are referred to [Ya85] for more details. The following
pseudo-code briefly describes the main steps of YA in one level of its dynamic programming.

YA( r , p1 , p2 , … , pk )
INPUT: A root node, r, and the list of its already placed immediate sub-trees
OUTPUT: The placement of the tree rooted by r

1. Sort the placed sub-trees in non-increasing order w.r.t. their CCF’s; rename
them to P0 , P1 , P2 , …, Pk ; form a placement, P, similar to Lengauer’s
Algorithm

2. Return P unless one of the following cases occurs:
Case A: The maximum cut-width occurs only once in P (on the left side of r)

inside the placement P2t . Return the refined placement after
applying function OP1 as shown in Figure 5

Case B: The maximum cut-width occurs on both sides of r . Among the
placements on the right side of r in which the maximum cut-width
occurs, choose the one with the largest index, say T2t+1 . Return the
refined placement after applying function AN1 as shown in Figure 5
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Figure 5 : Illustration of Yannakakis’ Algorithm

Initially, YA places the sub-trees in a manner similar to LA except that it sorts them with respect to their
CCF’s instead of their cut-width and balance bits (CBCF’s). Then, it performs some refinement
operations on the resulting solution so that the optimal placement is achieved. During a refinement
operation (such as OP1 or AN1), YA may break a placement along one or more of its mincut solutions
(to prevent avoidable increases in the cut-width), and inserts the rest of the placement in the generated
gap. Figure 6 demonstrates two of these break up schemes. In that figure, the drawing on the left shows
that a placement is broken into two parts and subsequently the rest of the placement, P′, is inserted in
between them to form the final placement. The drawing on the right demonstrates a case where P is
broken into three parts (left, middle, and right) and P′ is divided into two parts (right and left). The left
section of P′ is inserted between the left and middle parts of P, and similarly the right part of P′ is
inserted between the middle and right parts of P . As mentioned earlier, the placements are ordered based
on their CCF’s because the mincut information reflected in the CCF’s is essential to the aforementioned
refinement operations. Note that there are many other breaking and inserting schemes in the YA which
can be found in [Ya85].

Figure 6 : Refinement Operations in Yannakakis’ Algorithm

Lemma 8 YA finds the minimum cut-width placement of a tree [Ya85].

Lemma 9 YA is monotone with respect to CCF’s, that is, while combining the input placements at one
level of dynamic programming, the CCF of the generated placement becomes larger if other placements
with larger CCF’s replace one or a subset of the original input placements. [Ya85]

Lemma 10 YA( r , p1 , p2 , … , pk ), which is a call to one level dynamic programming of YA, has O(k×l)
worst-case runtime complexity, where k is the number of input sub-placements and l is the summation of
|CCF(pi)| for 1≤ i≤ k. [Ya85]

Case A

T0
T1

T2t+1T2t

OP1

Case B

T0
T1

T2t+1T2t

AN1

Pleft Pright

P'

gapgap

Pleft Pright

Pmiddle

P'left P'right
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II.2.3. An Example of Linear Placement
Figure 7 shows a 15-node tree that has been linearly placed using three different algorithms: linear
projection algorithm, LA, and YA. The linear projection method preserves the order on the projection of
nodes of the input tree to the x-axis and performs no optimization. In this example, that approach has
resulted in a placement with the maximum cut-width of 4 whereas Lengauer’s algorithm via some
optimization techniques, has been able to reduce it to 3. For instance, LA has flipped over the sub-tree
rooted by node 4 such that its heavy side is facing away from the root. Yannakakis’ algorithm further
reduces the maximum cut-width to 2 by splitting sub-tree placements. For instance, the sub-tree rooted
by node 2 is broken into two parts, and the rest of the placements (node 1 and 3) are inserted in the
generated gap.

Figure 7 : An Example of Linear Placement

II.3. Combining Synthesis and Physical Design
Bridging the gap between the synthesis and physical design phases has been accomplished by three
approaches. The first approach starts with synthesis techniques and extends downward to the world of
physical design. By contrast, the second approach begins with physical design techniques and extends
upward to the synthesis domain. The last approach is based on a hybrid strategy and eliminates the gap
by unifying the design steps.

II.3.1.  From Synthesis to Physical Design
Pedram and Bhat’s work in [PB91a] was the first attempt in combining physical design with logic
synthesis. They introduced the notion of coupled mapping and placement in order to consider the effect
of wires during mapping. The key idea was to generate a “companion” placement during the mapping
phase. The placement information is used to evaluate the cost of a gate match during the mapping
process. The placement is dynamically updated in order to maintain the correspondence between the
logic and layout representations. At the conclusion, a mapped network along with a placement solution is
generated. The placement solution is then globally relaxed in order to produce a feasible placement
according to the target layout style. This algorithm assumes that during the bottom-up process of
concurrent mapping and placement, the dynamic programming principle holds, which is only an
approximation. The same authors extended this idea to logic restructuring and technology decomposition
in [PB91b].

II.3.2. From Physical Design to Synthesis
Physical design consists of a myriad of techniques designed specifically for the variety of problems
which arise in this field, ranging from physical partitioning and floorplanning to placement and routing.
Most of the connections already created between this field and synthesis are established through
placement. Placement algorithms that apply local netlist transformations, after an initial placement, have

1
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the advantage of using accurate information about delay and area for performing a good synthesis. The
algorithm proposed in [KSF94] starts from an initial placement followed by timing optimization using
fanout buffering and gate resizing transformations. Estimations of the net delays based on the initial
placement are used for selecting the most useful transformations. In Chuang et al. they applied a linear
programming approach for resizing and relocating of critical gates [CH94]. In [LPPD93], the authors
proposed re-synthesizing the logic in the most congested regions of the chip so as to reduce the routing
area. Stenz et al. in [SRRJ97] proposed a technique that performs iterative timing driven netlist
transformations on a companion placement. All of these techniques perform re-synthesis on an already
mapped and placed circuit while using different types of re-synthesis techniques. None of these
techniques integrate placement and synthesis.

II.3.3. Unified Approach
Simultaneously performing logic synthesis and physical design eliminates the problem of weak
interaction between the two steps. Technology mapping is the last transformation during logic synthesis
in which a considerable amount of freedom in changing the circuit netlist exists. In addition, placement
is among the operations performed very early during physical design that can largely alter the physical
implementation of the circuit. The algorithms provided in [LSP97] and [LSP98] (which are the earlier
presentations of the algorithms proposed in this paper) for the first time merge the aforementioned
design steps and provide a unified design step. The details of this approach and the proposed algorithms
are given throughout this paper.

III. SIMULTANEOUS TECHNOLOGY MAPPING AND LINEAR
PLACEMENT

During the process of VLSI circuit design, the size of the solution space becomes so large that in many
cases achieving the optimum implementation is impractical, or nearly impossible. In certain situations
however, there are special algorithms capable of handling large solution spaces by locating the optimum
solution with relatively little effort. Otherwise, designers have to employ one or a combination of the
following two strategies to solve their design problems: adopting heuristic algorithms, or reducing the
complexity by dividing design tasks into several sub-tasks. The first strategy sacrifices quality in order to
improve the algorithm efficiency. In the latter case, even if the optimal solution for each sub-task is
found, overall optimality is not guaranteed. Thus, it sacrifices optimality for reduced complexity as well.

The general forms of technology mapping and linear placement problems are NP-hard. As described
earlier, YA and KA optimally solve these problems for tree-structured circuits. The sequential
application of YA and KA does not however produce a global optimal mapping and placement solution
even for this restricted class of circuit structures. This paper addresses this shortcoming by proposing
SiMPA (Simultaneous Technology Mapping and Linear Placement) which constructs a concurrent
mapping and placement solution by searching in the combined solution spaces of these design tasks. In
particular, two major variations of SiMPA are proposed here: SiMPA-E and SiMPA-D. SiMPA-E (E
stands for Exact Minimum Total-area) optimally finds the implementation with the least total
(gate+wiring) area. SiMPA-D (D stands for Total-delay Minimization) is an approximation algorithm
which finds a set of non-inferior solutions with respect to both area and delay. These algorithms are
introduced and discussed in detail in this section. Note that throughout this paper, the input library of
gates is assumed to be finite.
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III.1. SiMPA-E
Problem formulation: Given a library, L, and a decomposed tree-structure circuit, N, develop an
algorithm for performing technology mapping and linear placement for N which results in minimum
total (gate+routing) area.

Before describing the details of our proposed algorithm, the model used for calculating the total-area as
well as other issues fundamental to SiMPA-E, are presented and discussed below.

III.1.1. Total-area Calculation
SiMPA targets the standard-cell design style and consequently the area model given here calculates the
total-area of such designs. This model captures the two main geometric characteristics of the standard-
cell design: uniform gate height and proportionality of the routing area with the maximum cut-width of
the linear placement. Figure 8 illustrates how these characteristics are used in total-area modeling and
calculation.

Figure 8 : Total-area Calculation

In Figure 8, the lower box shows the space taken by gates (denoted by a), all of which have the same
height, h. The lines above it demonstrate the interconnections. Also, the space between every two
neighboring wires is a constant β, and the maximum cut-width of placement is denoted by c. This
equation is exact for two-layer routing technologies. For α-layer routing, with α′ horizontal routing
layers, one must simply use ⎡c/α′⎤ instead of c.

The above equation used as the cost function of SiMPA-E, shows that the total-area of a row in a
standard-cell layout is proportional to the product of the gate-area (a) and the cut-width (c). In this
algorithm, gate area is optimized by KA and cut-width is optimized by YA.

Observation 1 The gate area of any linear placement for a mapped circuit is the summation of the
areas of its gates.

III.1.2. Gate Area versus CCF Curves
At every stage of a bottom-up decision making scheme, solutions are built on top of the existing sub-
solutions made available by previous calls to the same procedure. However, if the cost function is uni-
variable at each level, all the generated solutions except the one minimizing the cost function are
discarded. For the case of KA, the cost function is the total gate area (a) which is a uni-variable function.
Similarly, YA employs a uni-variable cost function called CCF and always carries the solution with the
lowest CCF (cf. Definition 6). This pruning process does not have an adverse effect on the optimality of
these algorithms, but results in their polynomial complexity.

SiMPA-E’s objective is to minimize the total-area of the final implementation. However, total-area
cannot be used as the cost function during SiMPA-E’s dynamic programming approach. The counter
example given in Figure 9 demonstrates a case in which the optimality of the algorithm is compromised
if total-area is used as the cost function.
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Figure 9 : A Counter-Example

Figure 9 demonstrates a dynamic programming step in which the solutions of two sub-problems are to be
combined. Let’s assume that for the first sub-problem one solution, S1, is available and for the other, two
solutions, S2,1 and S2,2, have already been generated. As shown above, the total-area of S1 , S2,1 , and S2,1

are 24, 30 and 35 units, respectively. If total-area was to be used as the cost function, S2,2 would have
been deemed inferior with respect to S2,1 and thus dropped. However, the above figure shows that the
combination of S1 and S2,2 yields an implementation with lower total-area (63 units) compared to the
combination of S1 and S2,1 (70 units). Therefore, total-area, if used as the cost function of a bottom-up
algorithm, may eliminate solutions which can potentially lead to better solutions in subsequent steps.
This discussion shows that total-area is not a proper cost function and may result in the loss of
optimality. However, by explicitly storing the two variables of which total-area is a function (i.e. CCF
and gate-area), it becomes possible to guarantee optimality.

Fortunately, the dynamic programming nature of KA and YA facilitates their coupling in SiMPA-E.
Through the bottom-up solution generation, KA and YA explicitly require the gate-area and CCF
information associated with each solution in order to generate the optimal solutions. Therefore in
SiMPA-E two-dimensional solution curves (CCF versus gate-area) are generated and stored at each step
of dynamic programming. Later in this section, it is proved that this scheme optimally solves the
problem of minimum total-area simultaneous technology mapping and linear placement. Figure 10
illustrates a simple two-dimensional CCF versus gate-area solution curve. Note that although CCF is a k-
tuple, the ordering relation defined in Definition 6 enables us to one-dimensionally sort CCF’s and have
curves like the one below with one axis for CCF.

Figure 10 : A CCF versus Gate Area Curve

Definition 7 Assume Ω is a CCF versus gate-area solution curve. Solution σ∈ Ω is defined to be
inferior (dominated), if there exists a γ ∈ Ω  where CCF(γ)≤CCF(σ) and gateArea(γ)≤gateArea(σ).
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Back to the example of Figure 9, according to Definition 7, S2,2 is not dominated by S2,1. Therefore, both
solutions are preserved for the next level of dynamic programming. This resolves the problem described
previously and enables SiMPA-E to find the implementation with the minimum total-area.

III.1.3. SiMPA-E in Detail
SiMPA-E, using a bottom-up strategy, generates and propagates CCF versus gate-area solution curves in
order to find the minimum total-area implementation of a circuit. The algorithm consists of two major
steps, the merge and prune operations, which are introduced below while describing SiMPA-E’s pseudo-
code.

SiMPA-E takes a tree-like circuit and a library of gates as its inputs. In line 1 of the above pseudo-code,
SiMPA-E decomposes the input circuit, as a required transformation prior to performing technology
mapping. Then it starts visiting and processing all the nodes of the decomposed tree network in reversed
depth-first order (line 2) and executes the following operations on each node.  For each visited node,
SiMPA-E tries all the possible matches in the library and identifies the sub-trees connected to the inputs
of each match (line 3 and 4). Note that the bottom-up dynamic of SiMPA-E guarantees the correct
processing order for the sub-trees by SiMPA-E and the availability of their corresponding two-
dimensional curves.

The solution curves of the sub-trees are combined by the merge operation (lines 5 through 8). In line 5,
all combinations of non-dominated solutions (implementations) for each input sub-tree are enumerated.
Next, for every combination along with the current match YA is called to generate the optimum
placement (line 6.) The generated implementation corresponding to the current combination has a gate-
area that is simply the summation of the gate-areas of the sub-solutions (line 7.) In line 8, the two cost
function values for the newly generated solution (gate-area and CCF), the pointers to the corresponding
sub-solutions, and the match are inserted into the solution curve of the current node.

Having called the merge operation for all of the input sub-solution combinations, SiMPA-E investigates
the generated solution set (curve) and deletes the dominated ones (line 9.) This is referred to as the prune
operation whose execution is defined by Definition 7. The prune operation eliminates the inferior
solutions since, according to the following theorems, they cannot be used in any optimal solution.
Therefore, this operation, which maintains the polynomial complexity of SiMPA-E, is safe as far as the
optimality of SiMPA-E is concerned.

SiMPA-E( N , L )
INPUT: A tree network N and a library L
OUTPUT: A mapped and linearly placed network
1. Decompose N
2. Foreach node, n, in reverse depth-first order from the primary inputs to the primary

output of N
3. Foreach match μ of node n
4. Let IN1 , … , INα(μ) be pointing to the roots of the sub-trees connected to the

to inputs of μ
5. Until all combinations of (s1 , … , sα(μ) ) where si ∈INi are enumerated do

6. p = YA( μ , s1 , … , sα(μ) )

7. g =

8. Add <g,CCF(p)> along with ( μ , s1 , … , sα(μ)) to the solution curve of n
9. Prune the inferior points in the 2-D solution curve of n
10. Find the best solution in the primary output’s 2-D curve and recursively trace back its

constituent sub-solutions

∑
∀i

isgateArea )(



- 14 -14

In line 10, SiMPA-E has visited all the circuit nodes from the primary inputs through the primary output.
The solution set associated with the primary output, final curve, contains all the non-inferior
implementations of the circuit (including the minimum total-area implementation) and the designer has
the option to choose the one with desired aspect ratio. Once a solution in the final curve is picked, the
pointers to its constituent sub-solutions (cf. line 8) are traced back and the details of the implementation
are retrieved.

Generating, propagating, and maintaining solution curves are the main tasks performed by SiMPA-E.
Before stating the properties of SiMPA-E, the following statements describe the characteristics of those
operations and their related issues.

Lemma 11 The number of non-inferior points on any gate-area versus CCF curve is O(n), where n is the
number of nodes in the technology decomposed tree circuit.

Proof: Suppose A is the largest area of a gate in the input library. A (loose) upper bound on the
maximum gate-area of sub-solutions is nA. By normalizing that value with respect to the smallest
difference between two gate areas δ, an upper bound on the number of possible distinct gate-area values,
nA/δ, is obtained. The prune operation keeps at most one solution per each distinct gate-area value in a
curve, therefore the maximum number of points in a gate-area versus CCF curve is O(n). �

Theorem 1 The worst-case runtime of the merge operation in SiMPA-E, excluding the time for linear
placement generation, is O(nk), where k is the maximum number of inputs to any gate in the library.

Proof: The merge operation combines at most k curves at a time. Lemma 11 states that the number of
solutions in each curve is bounded by O(n). Also, the merge operation examines all combinations of the
input sub-solutions in line 5 of the pseudo-code. Therefore, the worst-case runtime of the merge
operation is O(nk). �

The following theorem justifies the claim that the prune operation is safe with respect to the overall
optimality of SiMPA-E.

Theorem 2 At each step of the dynamic programming where SiMPA-E is generating the solution curve
of node α , adding a point S2 (which is assumed to be inferior to S1) to an input curve cannot add a non-
inferior solution to the curve of node α.

Proof: This is a proof by contradiction. Assume S2 along with an arbitrary combination of sub-solutions
for the other inputs of α generates a non-inferior solution S′2, i.e. S′2 is made of {σ1,…,σb-1,S2,σb+1,…,σk}.
Also, consider another possible implementation S′1 which is made of {σ1,…,σb-1,S1,σb+1,…,σk}.

1. The only different constituent sub-solutions of S′2 and S′1 are S2 and S1; Furthermore, it is assumed that
gateArea(S2)≥gateArea(S1). Since the gate-area of a solution is the summation of the gate-areas of its
constituent sub-solutions (cf. Observation 1), gateArea(S′2)≥gateArea(S′1).

2. The only differing constituent sub-solutions of S′2 and S′1 are S2 and S1; Furthermore, it is assumed that
CCF(S2)≥CCF(S1). The CCF-monotone property of YA (cf. Lemma 9) implies that CCF(S′2)≥CCF(S′1).

The above inequalities prove that S′2 must be inferior with respect to S′1, which is a contradiction. �

In the rest of this section, the term ‘solution space’ refers to a set consisting of all mappings of the
decomposed circuit, each optimally placed with respect to the total-area.

Theorem 3 The final solution curve, generated by SiMPA-E at the root of tree T, includes all the non-
inferior gate-area versus CCF solutions for the simultaneous technology mapping and linear placement
problem of T.

Proof: Without the use of the prune operation, SiMPA-E would visit all the points of the solution space
including every non-inferior solution. That is because, at each level, SiMPA-E exhaustively examines all



- 15 -15

the combinations of input sub-solutions and calls YA to generate the minimum total-area implementation
for each. Note that for a mapped circuit, YA generates the minimum total-area placement since h, β, and
W (cf. Observation 1) are constants. Despite the use of the prune operation, SiMPA-E is still guaranteed
to visit all the non-inferior solutions, since according to Theorem 2 the dropped sub-solutions can never
be used in any non-inferior implementation. �

The following two corollaries are useful for post-layout logic re-synthesis purposes. Using the gate-area
versus CCF final curve, SiMPA-E is capable of performing constrained re-synthesis, i.e. it guarantees to
find the best solution to meet a user-specified constraint.

Corollary 1 Given an upper bound on the number of tracks (channel height), SiMPA-E finds the
minimum gate-area (total cell width) implementation satisfying this constraint.

Corollary 2 Given an upper bound on the gate-area (total cell width), SiMPA-E finds the minimum
cut-width (channel height) implementation satisfying this constraint.

Lemma 12 For a decomposed circuit as input, suppose that MKA is the mapping generated by KA. The
gate-area of the left-most point in the final curve generated by SiMPA-E is equal to the gate-area of MKA.

Proof: The optimality of KA with respect to gate-area guarantees that the gate-area of the MKA is the
lowest among all the mappings. Therefore, the solution with that gate-area and the lowest CCF, S, is a
non-inferior solution. Theorem 3 proved that the final curve includes all the non-inferior solutions
including S, and since there is no solution with a lower gate-area, S always stands on the left-most point
of the final curve.

Lemma 13 Assume that CYA is the minimum cut-width of the implementations generated by calling YA
on all possible mappings of the input circuit. In the final curve, the cut-width of the right-most point is
exactly CYA.

Proof: The proof is similar to the one given for Lemma 12.

Theorem 4 The final curve includes the minimum total-area implementation of the input circuit.

Proof: From Theorem 3, the final curve generated by SiMPA-E includes all the non-inferior solutions.
So, it is sufficient to prove that the minimum total-area is a non-inferior solution. Call the minimum
total-area implementation of the input tree-like circuit Smin . This is a proof by contradiction, so assume
that Smin is an inferior solution. Therefore, there must be a solution, say Sd, with
gateArea(Smin)≥gateArea(Sd) and CCF(Smin)≥CCF(Sd). By referring to the equality defining total-area, it
is clear that the above inequalities result in totalArea(Smin)≥totalArea(Sd) which contradicts the initial
assumption about Smin. �

Theorem 5 The memory usage of SiMPA-E is O(n2).

Proof: According to Lemma 11, the number of points in each solution curve is O(n). There are at most n
solution curves, one for each node in the decomposed circuit. Therefore, the memory requirement is
bounded by O(n2). �

Lemma 14 The linear placement step in SiMPA-E (cf. Line 6 in the pseudo-code) has O(log(n)) worst-
case runtime complexity where n is the total number of nodes in the decomposed circuits.

Proof: A call to YA has O(k×l) worst-case runtime complexity (cf. Lemma 10). In SiMPA-E, k (the
number of fanins) is bounded in the input library. Also, l=Σ |CCF(si)|≤Σ log(|si|), where |si| denotes the
number of nodes in si (cf. Lemma 7), and Σ in this proof means the summation of the argument over
1≤ i≤k. Using algebraic manipulations,
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O(k×l)= O(Σ log(|si|))=O(log((Σ|si|/k)k))=O(log((n/k) k))=O(k× log(n)-k× log(k))=O(log(n)) �

Theorem 6 The worst-case runtime complexity of SiMPA-E is O(nk+1×log(n)), where k is the maximum
number of inputs to a gate in the library.

Proof: In SiMPA-E, YA has O(log(n)) worst-case runtime complexity for each call to its dynamic
programming based procedure (cf. Lemma 14). During the inner loop of SiMPA-E which is repeated nk

times (cf. Theorem 1) YA is called each time. Also, that loop is repeated for every node in the
decomposed circuit and therefore the worst-case runtime complexity of SiMPA-E is O(nk+1×log(n)). The
prune operation is basically a sorting operation, so its worst-case runtime is O(n×log(n)). It therefore has
no effect on the overall worst-case runtime complexity. �

III.2. SiMPA-D
As discussed earlier, SiMPA-E optimally generates the implementation with the minimum total-area.
Although in practice SiMPA-E achieves a moderate post-layout delay improvement, it does not perform
explicit delay optimization. The employment of YA causes the invalidation of the already calculated
delay values, mainly because it breaks the linear placement of the sub-solutions prior to combining them.
By using an approximate linear placement algorithm (LA), SiMPA-D is able to explicitly perform area-
delay trade-off in three dimensional solution curves by maintaining and employing the available delay
information. SiMPA-D can work with many simple and/or detailed delay models; sub-section III.2.1
introduces a suitable delay model which has been used in this work. Following that, sub-section III.2.2
gives a detail discussion of SiMPA-D.

III.2.1. Total-delay Calculation
The arrival time of a signal at the output of a gate, OutTime(G), is calculated based on the following
equations:

OutTime(G)=MAXi {OutTime(Gi)+WireDelay(Gi , Pini )+GateDelay(i ,load)}
where:

InTime(Pini) is the signal arrival time at the ith input pin of G.

WireDelay(Gi , Pini ) is the delay through the wire connecting the output of ith fanin gate to Pini of
G.

GateDelay(i ,load) is the delay through G from Pini to the output of G.

Figure 11 : Delay Calculation

There are many different models for gate delay calculation. In SIS [SSLM92], both rise and fall gate
delays are calculated using this equation:

GateDelay(i,load)=K1,i+K2,i× load

where K1,i and K2,i are the intrinsic gate delay and the load dependent fanout delay, respectively. This
delay equation, which uses a linear model, is pin-dependent and assumes step input signals. This simple
delay equation however turns out to be inaccurate, especially in deep sub-micron process technologies.

In this work, a four-parameter delay model which captures the effect of the input slew-rate will be used:

Wire DelayGate Delay

Gi

load
GPini
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GateDelay(i,load)=K1,i + K2,i× load + TransitionTimei× (K3,i+K4,i× load)

where K1,i to K4,i are constants and TransitionTimei denotes the transition time of the signal at input pin i.
A similar equation is used for calculating the transition times for the gate outputs (obviously with a
different set of coefficients). The constants of this pin-dependent delay model are obtained by curve
fitting for each library cell using the results of extensive circuit-level HSpice simulations.

For wire delay calculations, the Elmore delay model [El48] is used as shown in the following figure:

Figure 12 : Elmore Delay Model

In SiMPA-D, both physical and logical information are available, therefore the total (gate+wire) delay is
accurately calculated. The example in Figure 13 demonstrates a gate g with three inputs where the sub-
trees connected to the inputs of g are already mapped and placed. Consequently, the signal arrival time at
the output of g can accurately be calculated.  Note that the accuracy is somewhat reduced due to the so-
called unknown load problem. This problem refers to the uncertainty about the mapping and routing in
front of the output of g.

Figure 13 : Total-delay Calculation

In SiMPA-D, the unknown load is assumed to be a constant value equal to the input capacitance of a
minimum-size two-input NAND gate plus a statistically estimated wire load (cf. [VP95].) In subsequent
steps when the mapping and placement of the fanout become available, the original estimated delay is
corrected according to the accurate information about the load. This technique prevents the propagation
and accumulation of the error encountered by assuming a constant load ahead.

III.2.2. SiMPA-D in Detail
SiMPA-D targets the problem of simultaneous technology mapping and linear placement for total area-
delay optimization. It generates and propagates three-dimensional (cut-width and gate-area versus total-
delay) solution curves throughout its bottom-up algorithm and allows the designer to choose the
implementation which satisfies the timing and area constraints. The dynamic of this algorithm is similar
to that of SiMPA-E, with some important differences as described below.

Figure 14 demonstrates a simple example where YA breaks the placement of a sub-solution T into two
parts, Tleft and Tright, and inserts P′ in the gap. The length (load) of the wire connecting the two broken

rS: wire resistance of S
cS: wire capacitance of S
CS: total capacitance rooted at S

S

S

Delay(S)=rS × (cs /2+CS )

g

T 1 T 3
T 2

g1' g3'g2'
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parts, wire1, is significantly altered by this operation invalidating the prior delay calculations for T.  In
contrast, LA preserves the placement of the sub-solutions and consequently their calculated delays while
combining them. This opportunity allows SiMPA-D to use a three-parameter cost function (cut-width,
gate-area, and total-delay) and perform optimization with respect to both geometry and timing at the
same time.  Note that in the cost function and the solution curves, CCF is replaced with cut-width
because LA uses cut-width and a balance-bit (CBCF) as its cost function.

Figure 14 : Violation of the Dynamic Programming Principle

At every step of dynamic programming, three-dimensional solution curves are generated (merge
operation) and the inferior points are dropped out (prune operation) in order to maintain the polynomial
complexity of the algorithm.

Definition 8 Assume Ω is a cut-width and gate-area versus total-delay solution curve. Solution σ∈ Ω
is defined to be inferior (dominated), exactly when there exists a γ ∈ Ω  and the following conditions
hold: CBCF(γ)≤CBCF(σ) , gateArea(γ)≤gateArea(σ) , and totalDelay(γ)≤totalDelay(σ).

As previously stated, LA produces a placement solution whose cut-width can be at most 2X away from
the optimum value. Therefore, SiMPA-D, unlike SiMPA-E, does not guarantee finding the minimum
total-area implementation. Inherently, SiMPA-D is an approximation algorithm with respect to total-area
with 2X upper bound. However in practice, that upper bound is barely hit and the increase is usually
within the range of only a few tracks.

The pseudo-code for SiMPA-D is identical to the one given for SiMPA-E except that in line 6 of the
pseudo-code (cf. III.1.3), SiMPA-D calls LA instead of YA.

The following statements describe the characteristics of SiMPA-D.

Lemma 15 The number of non-inferior points on any three-dimensional gate-area, cut-width, versus
total-delay curve, generated by SiMPA-D, is bounded by O(n×log(n)), where n is the number of nodes in
the technology decomposed form of the tree circuit.

Proof: The proof of Lemma 11 shows that the maximum number of distinct gate-area values is bounded
by nA/δ. Lemma 7 states that the cut-width of a cut-width optimal linear placement is bounded by log(n).
The cut-width of any placement generated by LA is at worst 2X larger than the optimal value. Therefore,
in SiMPA-D the cut-width of the sub-solutions is bounded by 2log(n). Subsequently, there are
2log(n)×nA/δ  distinct values for (gate-area, cut-width) tuples. In a solution curve, for every possible
combination of gate-area and cut-width values the implementation with the least total-delay is stored and
therefore the maximum number of non-inferior solutions in such curves is bounded by O(n×log(n)). �

Theorem 7 The worst-case runtime of the merge operation in SiMPA-D is O(nk×logk(n)), where k is the
maximum number of inputs to any gate in the library.

Proof: The merge operation combines at most k curves at a time. It calls LA for all the combination of
the input solutions and calculates the gate-area of the resulting placement. Considering that the
maximum number of fanins is bounded by a constant determined by the input library, a call to LA has

T left T right

P'

wire 1
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O(1) worst-case runtime complexity (cf. Lemma 4). Lemma 15 states that each curve contains at most
O(n×log(n)) solutions and therefore the worst-case runtime of the merge operation is O(nk×logk(n)). �

LA is monotonic with respect to the cut-width as stated by the following statements.

Lemma 16 Suppose that the root of tree, T, has a set of a immediate sub-placements, T={s1, s2, …, sa}.
T'   is similar to T except in one sub-placement, say sα , which is replaced with sα′. If CBCF(sα′ )≤
CBCF(sα) then CBCF(T' )≤ CBCF(T) after calling LA for T and T' .

Proof: Without any loss of generality, suppose that s1 , s2 , … , sα , … , sβ , sβ+1 , … , sa are sorted
decreasingly with respect to their CBCF’s, and also assume that CBCF(sβ+1)≤CBCF(sα′)≤CBCF(sβ).
Therefore, the resulting sorted list would be s1 , s2 , … , sα−1 , sα+1 , … , sβ , sα′ , sβ+1 , … , sa. By
comparing T'  with T, it is clear that every sub-placement in T is replaced with another with lower or
equal CBCF. Also, it must be noted that in a placement the number of wires going above a sub-
placement is a function of the position of that sub-placement in the sorted list and not a function of its
CBCF. Therefore, that replacement would result in the decrease of the cut-width of T'  compared to
T. �

Theorem 8 Two trees T and T'  are similar except in certain sub-trees, s1, s2, …, sδ in T and s1′, s2′, …,
sδ′ in T' . If 0<i<δ+1, CBCF(si′)≤ CBCF(si) then CBCF(T' )≤ CBCF(T).

Proof: By replacing one sub-placement at a time and applying Lemma 16 to the resulting placement, the
above claim is proved. �

Lemma 17 For a mapped tree circuit, the placement given by LA is at most 2X away from the
corresponding minimum total-area implementation.

Proof: Regardless of the linear placement order, the total width W is constant, (cf. Observation 1.) For a
given library, h and β are constants too. Call the minimum possible cut-width of a tree cmin. From Figure
8 and Observation 1, the total-area of the minimum area implementation of the circuit is
Amin=W×(h+β×cmin). The cut-width of the placement built by LA (cLA) is at most 2X larger than cmin

(Lemma 3.) Thus, ALA=W×(h+β×cLA), is at most 2X away from the optimum value (Amin). This upper
bound is reached where h=0 and T is a balanced tree [Le82].   �

Lemma 18 The total-area of every implementation in the three-dimensional solution curve is at most 2X
larger than the total-area of its corresponding optimal placement.

Proof: The proof follows from Lemma 17 and the method by which SiMPA-D calls LA and prunes the
inferior points. �

Theorem 9 For any total-area optimal solution S (the solution found by SiMPA-E), there exists a
solution S′ on SiMPA-D’s final curve with a less than or equal gate-area and a total-area that is at most
2X larger than that of S.

Proof: In SiMPA-D’s final curve, if there exists a solution with the same mapping of S, the proof
directly follows from Lemma 17. Otherwise, assume S′′ to be a solution built by running LA on the
mapping of S. The total-area of S′′ is at most 2X larger than S according to Lemma 17. S′′ must be
inferior with respect to a solution in the final curve S′. The mapping of S′′ differs from the mapping of S′ 
in certain minimal sub-trees. These mappings and their corresponding LA placements have been dropped
during SiMPA-D by their corresponding solutions in S′ which posses lower gate-area and cut-width.
Therefore considering Theorem 8, the total-area of S′ is smaller than or equal to the total-area of S′′ , and
hence within 2X of S. �

Theorem 10 The memory usage of SiMPA-D is O(n2×log(n)).
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Proof: According to Lemma 15, the number of points in each solution curve is O(n×log(n)). There are at
most n solution curves, one for each node in the decomposed circuit. That proves the above claim. �

Theorem 11 The worst-case runtime complexity of SiMPA-D is O(nk+1×logk(n)), where k is the
maximum number of inputs to a gate in the library.

Proof: In SiMPA-D, the merge and the prune operations are executed n times, once for every node of the
decomposed circuit. Theorem 7 states that each call to the merge operation costs O(nk×logk(n)). In
addition, the prune operation works by sorting the solutions, so it takes O(n×log(n)). Obviously, for any
reasonable library k≥1, and therefore the merge operation dominate the prune operation in terms of
worst-case runtime. Consequently, the overall worst-case runtime of SiMPA-D is, as claimed,
O(nk+1×logk(n)). �

III.3. Improving Performance
In the previous sub-sections, it was proved that SiMPA-E and -D both have the worst-case polynomial
runtime and memory complexities, with high-order polynomials. By using the bucketing technique,
those worst-case complexities can be reduced considerably with a small penalty in terms of the quality of
the results. Lemma 11 states that the number of distinct gate-area values is bounded by O(n). However,
the quality of the results is not compromised by much if a constraint on the resolution for distinguishing
the gate-area values is imposed.

Suppose that in every solution curve, the gate-area axis is divided into a maximum number of m buckets
(intervals). Consequently, the solutions with gate-areas within the same bucket are considered to have
the same gate-area. This technique bounds the number of distinct gate-areas by O(m). Therefore, the
worst-case runtime and memory complexities of SiMPA-E and –D are considerably reduced, as shown
below. Note that m is not a function of the problem size, hence O(mk) =  O(1).  

Upper-bound on the
number of non-

inferior points in
every solution curve

Worst-case Runtime
Complexity

Worst-case Memory
Complexity

SiMPA-E O( m ) O( mk × nlog(n) ) O( m × n )

SiMPA-D O( m × log(n) ) O( mk × n logk(n) ) O( m × n log(n) )

IV. FLOORPLAN-DRIVEN SiMPA

FPD-SiMPA (Floorplan-Driven Simultaneous Technology Mapping and Linear Placement Algorithm)
extends SiMPA-E and SiMPA-D and effectively employs their capabilities to achieve high quality
results for any direct acyclic circuit. FPD-SiMPA consists of tree partitioning, floorplanning, global
routing, slack assignment, and the SiMPA step. It can also be changed to a re-synthesis flow by applying
a set of simple modifications.

Definition 9 The Primary graph is defined to be the DAG corresponding to the input circuit.

Definition 10 Considering that the clustering step partitions the primary graph into a set of maximal
tree clusters, the secondary graph is defined to be the reduction of the primary graph in which every
cluster is replaced with a node. All edges that entirely lie inside the cluster disappear from the secondary
graph.
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IV.1. FPD-SiMPA in Detail
FPD-SiMPA consists of a set of design steps shown in Figure 15. Below, each step is graphically
depicted in the right side column by showing the effect of the corresponding transformation on the
circuit. The detailed desription of each step is given later in this section.

Figure 15 FPD-SiMPA Flow

Tree partitioning:  As the first step, FPD-SiMPA clusters the primary graph into locally maximal trees
(clusters). Subsequently, a secondary graph is generated out of the primary graph by replacing each
cluster with a node. Each cluster is later implemented separately.

Area estimation: In this step, all the clusters are unmapped and their areas are estimated using area
predictors. One such predictor uses the number of literals in the expression describing the functionality
of the cluster. Another more accurate, although more time-consuming, predictor uses the area of the
minimum area technology mapping of the cluster. The minimum area mapper runs quite fast for trees
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and it is indeed a practical approach for predicting the area. In fact, the area predictor used at this stage is
not required to be highly accurate. The estimated values are used by the floorplanner to place the
secondary graph on the plane. Consequently, small errors in the area estimates of individual nodes do not
have a big impact on the final layout.

Earlier, it was mentioned that the tree clusters must be maximal in the sense that they cannot grow in the
primary graph while maintaining their tree structure. In some cases, however, a cluster may become too
large which is not desirable. This is mainly because clusters are placed linearly and therefore the large
ones may become very long and narrow compared to the others. This scenario may generate large dead
spaces and subsequently a considerable amount of area and delay penalty in the final layout. Figure 16
demonstrates this situation and depicts a simple solution used in this work for tackling this problem.
Having estimated the area of each cluster, FPD-SiMPA detects the relatively large clusters and simply
breaks them into smaller trees such that the variations in their areas are reduced.

Figure 16 Breaking a Large Tree

Floorplanning: Using the estimated areas for nodes of the secondary graph, the clusters are properly
placed on a two-dimensional plane. A range of height and width is assigned to each cluster based on the
corresponding estimated area. Due to the lack of exact implementation information at this stage, the
assigned height and width ranges are considered as soft constraints, i.e. the clusters are treated as flexible
shape blocks.

Global routing: Prior to timing analysis, it is essential to have the global routing information available.
This step produces the global connection topology and routes for multi-pin nets on the floorplan
solution, and hence provides accurate estimates of the routing capacitances.

Timing analysis: The timing information is required by the delay budgeting step later during the FPD-
SiMPA flow. Using a delay predictor, the timing analysis begins with estimating the delay of the nodes
in the secondary graph. This prediction can be performed using the logic-level description and the
loading information. The load ahead of a node consists of two parts, the input capacitance of the fanout
node and the load associated with the wires connecting the node to its fanouts. Every node’s input
capacitance is approximated with the input capacitance of a moderate size two-input NAND gate of the
library. Since the floorplan and the global routing information are known in our design flow, the wire
loads can be calculated accurately. As expected in deep sub-micron technologies, global wires constitute
a major part of the overall interconnections. Therefore, during the timing analysis the error due to
employing delay predictors and applying approximations is not generally significant because in FPD-
SiMPA the global wires are planned earlier in the design flow.

Delay budgeting: Using the results of the timing analysis step, FPD-SiMPA measures the slack of every
path in the secondary graph. For a path, p, the slack, Sp , is defined as the difference between the required
time and the arrival time at the output of p. Then, the Sp values are used to assign a slack value to each
node of the secondary graph. The slack assigned to a node represents the degree of freedom (in terms of
delay) which is allowed during the implementation of that node.
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Observation 2 In the secondary graph, for an arbitrary path, say p, the sum of the assigned node
slacks is not to exceed the path slack. In other words:

where  k is the number of nodes located on p, and Si is the slack value assigned to the i’th node.

The path slacks can be distributed in many ways among the nodes on the path. No matter what method is
used the above equation should remian valid for all the paths in the secondary graph.

Area budgeting: In the standard-cell design style, all the gates are aligned on rows and the distance
between every two neighboring rows is determined by the routing congestion in that area. After the area
estimation and floorplanning steps, FPD-SiMPA identifies the tallest macro-cell in each row.

Definition 11 The difference between the height of a cell (cluster) and the height of the tallest cell in
the same row is called the height slack.

The height slack of a cluster is used to determine how much space is available on top of it. That space is
traded for smaller width and/or higher performance with no adverse effect on the height of the design.

Figure 17 Height Budget Assignment

Definition 12 The difference between the width of a row and the longest row in the layout is called the
width slack of that row.

The width slack of a row is distributed among the clusters of that row. Each cluster uses its width slack
to determine how much space is available on its sides for trading for lower height and/or higher
performance with no adverse effect on the width of the whole design.

Figure 18 Width Budget Assignment

SiMPA: Depending on the design objective and constraints, SiMPA-E and/or SiMPA-D are called for
every node of the secondary graph. SiMPA (either –E or –D) returns a set of implementations for every
tree cluster, each with different specifications. Based on the estimated geometrical and timing values and
slacks for every cluster a proper implementation is chosen. It is clear that SiMPA-E solely focuses on the
geometrical aspects of the design and returns a set of implementations including the minimum total-area
implementation. So, it may not be appropriate to employ SiMPA-E in places where trade-off between
area and delay is required. However, it is a good choice for those clusters which are not delay critical and
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their minimum implementations are required. SiMPA-D, on the other hand, provides the opportunities of
trading-off delay for area with a bounded sacrifice on the minimum total-area implementation. So, the
application determines which SiMPA algorithm is more appropriate to be used.

Final layout generation: After implementing each cluster, it is possible to see overlaps between the
clusters mainly because of the mismatches between the predicted and the actual area values for the
clusters. Therefore, a DOMINO-type local optimization algorithm is called to remove cell overlaps and
delete empty spaces between cells in the same row. Note that these two conditions could arise since the
area estimates used during floorplanning are not exact. After all, detailed routing is performed on the
layout.

IV.2. An Example of FPD-SiMPA
In this sub-section, a set of screen shots demonstrate the operations FPD-SiMPA performs on a
benchmark (pcle). Figure 19, Figure 20, and Figure 21 show the netlist, floorplan, and final layout of
pcle generated by FDP-SiMPA.

Figure 19 : Netlist of pcle
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Figure 20 : Floorplanned pcle

Figure 21 : Final Layout of pcle

IV.3. A few Comments about FPD-SiMPA
1. As previously mentioned, FPD-SiMPA decomposes DAG-like circuits into tree clusters, a

requirement imposed by the use of SiMPA-E and -D. However, a general floorplan-driven approach
can partition the input decomposed circuit into sub-DAG clusters and heuristically implement each
separately.

2. Cluster implementations generated by SiMPA-E and -D consist of one-dimensional placements. This
restriction is not in contrast with the general two-dimensional IC design style, since the current
circuits are decomposed into a large number of clusters and the clusters are placed on a two-
dimensional plane prior calling SiMPA-E or -D.

3. In our implementation of FPD-SiMPA, we employed Bear-FP in the floorplanning step. However,
FPD-SiMPA may use any floorplanning or two-dimensional placement tool in its floorplanning step.
The current circuits are generally so large that they are decomposed into many tree clusters and the
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size of each cluster is small compared to the overall circuit. Consequently, a timing-driven global
point placement (such as SPEED [RE95]) can be used instead of floorplanning.

V. EXPERIMENTAL RESULTS

FPD-SiMPA has been implemented in the SIS environment [SSLM92]. In this implementation, the 4-
parameter delay equation and the Elmore delay model (as presented in Section III.2.1) have been
employed to calculate circuit delays. The library used in these experiments is a CASCADE-generated
standard cell library in a 0.5u HP CMOS process.

Before presenting the experimental results of FPD-SiMPA, Table 1 and Table 2 show the results of
SiMPA-E and SiMPA-D for tree-like circuits. In the left most columns of these tables, the suffix after
the name of the tree denotes its corresponding number of inputs. The experimental results show that on
average SiMPA-E is able to reduce the total (gate plus wire) area by 14% without any significant impact
on their corresponding delays. Table 2 reports that on average SiMPA-D is able to simultaneously
reduce the total-delay and the total-area by 25% and 7%, respectively.

Table 1 : Experimental Results of SiMPA-E

Table 2 : Experimental Results of SiMPA-D

To assess the effectiveness of the simultaneous technology mapping and placement approach on general
DAG-structured circuits, the following experiments have been set up and the results are presented in
Table 3. The three design flows reported in Table 3 are described below:

• The first flow, introduced as the conventional flow, uses SIS to perform technology mapping,
GORDIAN-L [KSJA91] for placement, DOMINO [DJS91] for updating the placement, TimberWolf
[SS86] for global routing, and finally YACR [RSS85] for detail routing.

• The second flow, named as the MINCUT flow, employs SIS’s technology mapping, followed by
clustering the mapped network into maximal tree clusters. Those clusters are floorplanned using

Circuit Conventional SiMPA-E
Gate Area Cut Delay Total Area Gate Area Cut Delay Total Area Area Ratio Delay Ratio

tree6 7260 3 1.71 10428 7260 2 1.82 9372 89.87% 106.43%
tree8 10054 3 0.89 14441 10347 2 0.81 13357 92.49% 91.01%
tree16 17732 4 1.08 28049 18002 2 1.23 23239 82.85% 113.89%
tree20 30536 5 1.55 52744 31224 3 1.62 44849 85.03% 104.52%
tree32 38665 6 1.81 72409 39149 4 1.88 61927 85.52% 103.87%
tree48 66396 7 2.58 133999 68432 4 2.38 108247 80.78% 92.25%

86.09% 101.99%

Circuit
Gate Area Cut Delay Total Area Gate Area Cut Delay Total Area Area RatioDelay Ratio

tree6 9482 3 1.55 13620 10103 2 1.22 13042 95.76% 78.71%
tree8 13444 4 0.75 21266 15154 3 0.61 21767 102.35% 81.33%
tree16 22304 5 0.98 38525 19098 4 0.65 30210 78.42% 66.33%
tree20 51030 6 1.03 95565 54342 5 0.78 93863 98.22% 75.73%
tree32 48468 6 1.27 90767 50015 5 0.89 86390 95.18% 70.08%
tree48 90342 7 1.92 182327 85796 6 1.47 160673 88.12% 76.56%

93.01% 74.79%

RatioSiMPA-DConventional

Average:
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Bear-FP [PK92] and then each is linearly placed by the Yannakakis’ algorithm. Afterwards,
DOMINO, TimberWolf, and YACR are called for updating the placement, global routing, and
detailed routing. In contrast to the previous flow, this flow partitions the circuit into a set of tree
clusters and linearly places each. However, it still differs from the FPD-SiMPA flow since the
mapping and the placement steps are not performed simultaneously.

• The third flow, introduced as the MINSUM flow, is similar to the second flow except in the linear
placement step where a minsum-based linear placement algorithm [Sh79] instead of Yannakakis’
MINCUT algorithm is used.

Table 3 demonstrates that the differences between these three runs is rather small. This proves that FPD-
SiMPA’s effectiveness is due to its properly integrated mapping and placement technique.

Table 3 : Comparison of Conventional Flows

In Table 4, FPD-SiMPA is quantitatively compared against the conventional flow. All the input circuits
are unmapped and therefore the standard FPD-SiMPA flow has been utilized to generate the
experimental results. The area and delay reported here are the total chip area and the total chip delay
after detailed routing. In this table, the conventional flow is the same as the one introduced in Table 3. In
the FPD-SiMPA flow, Bear-FP is used to floorplan the tree clusters using their estimated areas. Having
finished the global routing and budgeting steps, SiMPA is called to synthesize the clusters. DOMINO
and TimberWolf are then executed to update the chip layout, and finally YACR performs the detailed
routing.

In Table 5, the runtime of FPD-SiMPA flow is compared against the runtime of the conventional flow.
Two separate comparisons are provided in that table. The first set of runtimes compares the complete
FPD-SiMPA and the complete conventional flows against each other. In this case, TimberWolf is the
most time consuming step. In order to evaluate the real runtime of SiMPA, the second set of experiments
reports the same experiments this time excluding the time taken by TimberWolf. As it can be seen,
SiMPA runs faster for some circuits because technology mapping step in the conventional flow for non-
tree circuits is much slower than the technology mapping performed by SiMPA for its tree-like clusters.
For relatively small size circuits, the overhead of SiMPA is completely absorbed by this factor.

Circuits
Area Delay Area Delay Area Delay Area Delay Area Delay

alu2 1550995 18.00 1462677 18.01 1645847 18.50 0.94 1.00 1.06 1.03
apex6 3764845 12.66 3856989 12.83 3843396 11.84 1.02 1.01 1.02 0.94
b9 550940 4.36 527307 4.25 496015 4.17 0.96 0.97 0.90 0.96
cordic 208936 2.65 204672 2.58 213200 2.58 0.98 0.97 1.02 0.97
frg1 528515 6.20 556895 6.24 537911 6.16 1.05 1.01 1.02 0.99
pcle 260000 4.29 255000 4.29 255000 3.99 0.98 1.00 0.98 0.93
z4ml 176085 3.88 173349 3.75 164045 3.75 0.98 0.97 0.93 0.97
C1908 2169180 16.98 2217684 16.80 2065490 17.28 1.02 0.99 0.95 1.02
C880 1589525 13.48 1578927 13.23 1574758 13.74 0.99 0.98 0.99 1.02
C3540 10101300 27.63 9673587 26.09 9749415 26.98 0.96 1.31 0.97 1.34

0.99 1.02 0.98 1.02

III over I

Average:

I. Conventional II. MINCUT III. MINSUM II over I
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Table 4 : Experimental Results on FPD-SiMPA

Circuit
area delay area delay

alu2 2458623 13.13 2016738 8.60 0.82 0.65
alu4 4258415 22.89 3725073 11.89 0.87 0.52
apex6 4554276 12.01 5106345 6.82 1.12 0.57
apex7 1253996 6.45 1316772 4.31 1.05 0.67
b9 619830 3.62 597806 2.57 0.96 0.71
cm150a 225624 3.22 215424 1.42 0.95 0.44
cm151a 167657 2.97 94221 1.46 0.56 0.49
cm162a 229200 2.50 234024 1.82 1.02 0.73
comp 640710 2.84 543582 2.22 0.85 0.78
con1 82530 1.55 92805 0.76 1.12 0.49
cordic 375683 2.74 266000 1.90 0.71 0.69
dalu 6355808 19.45 5958750 14.75 0.94 0.76
duke2 3282904 10.16 2707709 8.64 0.82 0.85
e64 1601895 8.29 1647555 9.13 1.03 1.10
f51m 299712 5.76 369891 4.42 1.23 0.77
frg1 645414 3.34 687990 2.47 1.07 0.74
k2a 7555270 15.96 9421164 12.37 1.25 0.78
lal 560190 4.09 536934 2.60 0.96 0.64
misex3 3374076 12.89 3558875 10.73 1.05 0.83
mux 221200 3.03 233784 1.46 1.06 0.48
pcle 471075 3.66 299936 2.41 0.64 0.66
pcler8 601614 3.90 569734 3.00 0.95 0.77
ritex 337344 2.16 298920 1.84 0.89 0.85
rot 4747557 8.91 4864220 8.20 1.02 0.92
term1 710710 3.92 777777 2.72 1.09 0.69
z4ml 266696 3.45 182360 1.66 0.68 0.48
5xp1 641190 7.66 545846 4.23 0.85 0.55
b12 393419 3.81 355239 1.97 0.90 0.52
bw 1017282 9.33 845445 5.77 0.83 0.62
clip 688974 7.85 767637 3.61 1.11 0.46
misex2 517047 4.03 513918 2.48 0.99 0.62
rd53 225624 3.16 154997 2.00 0.69 0.63
rd73 335243 3.78 345703 2.73 1.03 0.72
rd84 857033 7.01 766945 4.61 0.89 0.66
sao2 815022 6.20 777849 3.49 0.95 0.56
table3 5014467 55.17 5355504 53.51 1.07 0.97
vg2 543235 3.66 462223 2.67 0.85 0.73
C17 40050 0.78 40762 0.37 1.02 0.47
C432 2809631 11.91 1328756 12.28 0.47 1.03
C1908 4287597 17.46 2538349 14.17 0.59 0.81
C880 2672775 9.53 2376701 10.74 0.89 1.13
C1355 2452165 8.84 2683512 7.84 1.09 0.89
C499 2304419 8.64 2702085 6.55 1.17 0.76
C2670 4678425 8.40 4596994 7.17 0.98 0.85
C3540 10101300 27.63 6984801 22.20 0.69 0.80
C5315 11231622 16.03 10201209 16.22 0.91 1.01
C7552 12738138 24.53 14157864 11.77 1.11 0.48

0.93 0.71

RatioFPD-SiMPAconventional

Average:
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Table 5 : Runtime Comparison

The above experimental results show that FPD-SiMPA is able to improve the delay by as much as 53%,
and reduce the area by more than 50%. On average, the performance improvement is 29% while the
total-area is reduced by 7%. For some circuits, such as C7552, FPD-SiMPA has been able to reduce the
delay by more than 50% while keeping the area in an acceptable range (10% area increase). For many
other circuits, it has reduced both the delay and the area. However, in a rare case like e64, FPD-SiMPA
has been unable to improve either delay or area. An explanation for such a result is that the missed inter-
cluster optimization opportunities due to the tree-clustering step are so large that floorplanning and
SiMPA cannot compensate for them. A possible solution for such cases is to use a non-tree partitioning
technique that enables FPD-SiMPA to perform optimization across the tree boundaries (see Section
IV.3).

VI. CONCLUSION

This paper presents two novel algorithms SiMPA-E and SiMPA-D, which perform simultaneous
technology mapping and linear placement for tree-structured circuits targeting minimum total chip area
and/or delay. The proposed dynamic programming based algorithms generate and propagate solution
curves which contain a set of non-inferior implementations and provide the designer with a variety of
geometrical and timing trade-offs. This paper also describes a new methodology FPD-SiMPA, which
exploits these algorithms to synthesize high-performance sub-half micron logic circuits. This
methodology is capable of controlling the trade-off between area and delay, and produces circuit
implementations with highly predictable performance characteristics. The experimental results have
proved the effectiveness of our proposed flow and algorithms.

Conventional FPD-SiMPA Diff Conventional FPD-SiMPA Diff
alu2 146 178 21.9% 48 42 -12.5%
apex7 63 67 6.3% 10 24 140.0%
cm150a 15 22 46.7% 4 4 0.0%
cm151a 11 15 36.4% 2 3 50.0%
cm162a 16 17 6.3% 3 3 0.0%
duke2 146 152 4.1% 27 56 107.4%
k2a 519 753 45.1% 159 435 173.6%
rot 215 312 45.1% 36 121 236.1%
table3 243 265 9.1% 144 96 -33.3%
C1908 255 291 14.1% 109 73 -33.0%
C880 155 199 28.4% 37 32 -13.5%
C1355 191 243 27.2% 74 73 -1.4%
C3540 663 711 7.2% 255 262 2.7%

22.9% 47.4%Average: Average:

Including TimberWolf Excluding TimberWolf
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