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Abstract 
Process technology and environment-induced variability of gates 
and wires in VLSI circuits make timing analyses of such circuits a 
challenging task. Process variation can have a significant impact on 
both device (front-end of the line) and interconnect (back-end of 
the line) performance. Statistical static timing analysis techniques 
are being developed to tackle this important problem. Existing 
timing analysis tools divide the analysis into interconnect (wire) 
timing analysis and gate timing analysis. In this paper, we focus on 
statistical static timing analysis of coupled interconnects where 
crosstalk noise analysis is unavoidable. We propose a new 
framework for handling the effect of Gaussian and Non-Gaussian 
process variations on coupled interconnects. The technique allows 
for closed-form computation of interconnect delay probability 
density functions (PDFs) given variations in relevant process 
parameters such as the line width, metal thickness, and dielectric 
thickness in the presence of crosstalk noise. To achieve this goal, 
we express the electrical parameters of the coupled interconnects in 
a first order (linear) form as function of changes in physical 
parameters and subsequently use these forms to perform accurate 
timing and noise analysis to produce the propagation delay and 
slew in the first-order forms. This work can be easily extended to 
consider the effect of higher order terms of the sources of variation. 
Experimental results show that the proposed method is capable of 
accurately predicting delay variation in a coupled interconnect line. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids. 

General Terms 
Algorithms,  Measurement, Performance, Design, Sensitivity. 

Keywords 
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1. Introduction 
As technology scales down, timing verification of digital integrated 
circuits becomes an exceedingly challenging task. This is mainly 
due to the effect of process variation in gate and wire delays. 
Advanced analysis tools must be developed that are capable of 
verifying the changes in the circuit timing that stem from various 
sources of variations. However, static timing analysis (STA) is 
corner-based. As the number of sources of variations increases, it is 

impossible to analyze all corners, in this manner; some of the 
corners omitted by the STA may result in failures after the chip is 
manufactured [6]. Furthermore, the identification of the corner-
point is a complicated task, which is dependent on the precise 
interconnect and gate structure [6]. Statistical timing analysis 
(denoted by σTA) provides an effective solution to this key 
problem [1][3][4][3][6][11].  

As technology scales down, interconnects are going to be the 
limiting factor for high speed digital circuits. They are also 
responsible for large capacitances, therefore causing major 
dynamic power dissipation. Finally interconnects are often 
associated with several signal integrity problems as they can be 
both the source and the spreading medium for on-chip electrical 
noise [2] [7]. 

The drastic down scaling of layout geometries to 90nm and 
below along with the increase in the operational frequency of VLSI 
circuits to multiple of GHz have resulted in the aggravation of 
capacitive crosstalk effects in these circuits. As a result, crosstalk 
analysis and management have been classified among the most 
important problems in the IC design flow.  

Statistical interconnect timing analysis has been addressed 
recently. The authors in [2] express the resistance and capacitance 
of an interconnect line as a linear function of random variables and 
then use these r.v.’s to compute the circuit moments. These 
variation-aware moments are used in standard closed-form delay 
metrics such as the Elmore metric to compute interconnect delay 
PDF’s. In [4], the authors combine known closed-form delay 
metrics such as Elmore and AWE-based algorithms to take 
advantage of the efficiency of the first category and the accuracy of 
the second. Unfortunately, these methods may lead to erroneous 
results due to the inaccuracy of the closed-form delay metrics. In 
[3], authors directly calculate the impulse response transfer 
functions in the variational form and then approximate the timing 
quantities for a step input as a linear function of the sources of 
variation. However, the above-mentioned works did not directly 
address crosstalk noise and delay variation in coupled 
interconnects. Authors of [8] address the problem of analyzing 
behavior of coupled interconnects with uncertain signal arrival 
times. The method utilizes delay-change characteristics due to 
changes in relative arrival time between an aggressor and the 
victim. The stochastic nature of this work is based on the 
uncertainty in the arrival time of the inputs and does not address 
the problem of delay variation as a function of changes in the 
physical parameters. In [7], authors used simple L-shaped lumped 
RC models for each interconnect line along with a single coupling 
capacitance. Next, they apply circuit simulation in a statistical 
sampling framework to determine the voltage distribution of the 
victim line. However, they do not provide a closed form expression 
for the delay distribution as a function of changes in the physical 
parameters. In addition, the electrical model for the coupled 
interconnect is over-simplistic and may lead to erroneous results. 

Crosstalk noise and delay are highly sensitive to back-end 
process variation such as ILD thickness, metal width and metal 
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thickness. Therefore, in this work we express crosstalk noise and 
delay directly as a function of changes in the physical parameters. 
The advantages of such a formulation are that it preserves all 
correlations and that it can be very useful in evaluating noise and 
delay sensitivities due to changes in various physical dimensions. It 
can be further utilized for optimization purposes. 

The specific contributions of this work are as follows: (i) we 
propose a method to find a closed form for crosstalk delay 
distribution as a function of changes in line width, metal thickness 
and the distance between metal layer and the ground plate (This 
may include both inter-layer dielectric and inter-metal dielectric 
thickness). The obtained delay sensitivity coefficients to the 
sources of variation can be further utilized for optimization 
purposes. (ii) delay analysis is handled not only for the Gaussian 
sources of variation but also for the cases where the sources of 
variation exhibit non-Gaussian distributions. (iii) we use Π model 
for coupled interconnect which is more accurate in comparison 
with L model used in [8]. (iv) not only the worst case scenario in 
measuring coupling noise (when the aggressor noise peak matches 
the victim switching time in the same or opposite direction) but 
also any arbitrary relative arrival time between the aggressor and 
the victim can be handled.  

Although, the analysis and mathematical formulation in this 
paper are presented for the case of two coupled lines and Π model 
is adopted for coupled interconnects, the framework is independent 
of the model and can be applied to many other coupled structures 
and electrical models. We also point out that, although in the 
remainder of this paper we will mainly focus on the first order 
random variables to represent the performance quantities of interest 
as a function of process variation, the work itself is not limited to 
the first-order approximation of these quantities. In fact, it is 
straightforward to extend the approach to more complex (e.g., 
second-order) forms for parameter variations.  

The remainder of this paper is organized as follows. In section 
2, we review the background of statistical timing analysis. We also 
present the technique which converts a statistical function into a 
first order form. Delay model for coupled interconnect is presented 
in section 3. Statistical timing analysis of coupled interconnects is 
presented in section 4. Experimental results are given in section 5. 
Conclusions and future work are discussed in section 6. Notice that 
notations in Table 1 are used throughout this paper. 

Table 1: Notation and descriptions 
Notation Description 

hr(t) Impulse response in time domain 
HR(s) Impulse response in Laplace domain 
sr(t) Step response in time domain 
SR(s) Step response in Laplace domain 
rr(t) Ramp response in time domain 

RR(s) Ramp response in Laplace domain 

A
℘

 

Random variable A as a function random sources of 
variations in the general  
(non- first order) form 

A
<>

 
Random variable A in the first order form 

2. Background  
In σTA, it is required to evaluate the distribution of the delay and 
slew of the critical paths. Conventionally, this goal has been 
achieved by calculating the mean and variance of the distributions 
of the delay and slew. However, the sources of variation may 
exhibit non-Gaussian distributions [11][12] and therefore, result in 
Non-Gaussian delay distributions. Hence, in addition to calculating 

the mean and variance of the timing parameters, as a better 
approximation, we shall also calculate the skewness of their 
distributions. 

Definition 1: The degree of asymmetry of a distribution is 
called skewness (denoted by κ.) A distribution, or data set, is 
symmetric if it looks the same to the left and right of the center 
point. The skewness for a normal distribution is zero. Negative 
values for the skewness indicate data that are skewed left whereas 
positive values for the skewness indicate data that are skewed right. 
By skewed left (right), we mean that the left (right) tail is heavier 
than the right (left) tail. The skewness of a distribution is defined to 

3
3κ μ σ= where μ3 is the 3rd central moment and σ2 is the 

variance (second central moment.).  

Definition 2: 
3d

X Y=  if mean, variance, and the skewness of X 
and Y are equal. (i.e., they have the same first three central 
moments.) Notation 2~ ( , , )X Dist μ σ κ  is used for approximating 
the distribution of X with its mean, variance and skewness. 

The following lemma will be used throughout this paper. 
Lemma 1:  Suppose ΔX1,…,ΔXn are n independent random 
variables with distributions ΔXi ~ Dist(μ=0, σ2=1, κi). Then,  
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Proof: It is omitted for brevity. 

2.1 First order model for electrical and timing 
parameters 
Variation in the physical dimensions of a wire causes change in the 
resistance and capacitance of the wire, thereby, making the 
propagation delays and slew times of the wire and its driver to vary 
accordingly [10]. Therefore, we need to capture the effect of 
geometric variations on the electrical parameters of the wire. This 
can be done by a linear approximation as shown below: 

0 1 2 0 1 2 3;r r a W a T c c c W c T c H= + Δ + Δ = + Δ + Δ + Δ
<> <>

 (1) 

where r0 and c0 represent nominal resistance and capacitance 
values, computed when the wire dimensions are at their nominal 
values. ΔW, ΔT, and ΔH are the variations in metal width, metal 
thickness and Interlayer Dielectric (ILD) height, respectively. We 
assume that ΔW, ΔT, and ΔH have known mutually-independent 
distributions (Note that for the metal layers above M1, H includes 
all of the inter-metal dielectrics plus M1 to substrate ILD). ri and ci 
( 0i ≠ ) are the sensitivity coefficients of resistance and capacitance 
with respect to the sources of variations, respectively. To compute 
sensitivity coefficients, we use the empirical equations presented in 
[13]. These equations have been widely used in industrial 
extraction tools. With appropriate scaling of the sensitivity 
coefficients, we can assume that ΔW, ΔΤ, and ΔH have 
distributions with μ=0 and σ2=1 and skewness=κ denoted by 
Dist(μ=0, σ2=1, κ).  

As we discussed earlier, we express the timing quantity of 
interest as a function of changes in the physical parameters.  We 
explain our method for three sources of variation (metal width, 
metal thickness and ILD height) but there is no restriction on the 
number of random variables in the proposed methodology. We 
present the timing quantity in the following form: 
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 (2) 
where t0 is the nominal value; ΔW,  ΔT and ΔH are the 

variations in metal width, metal thickness and Interlayer Dielectric 
(ILD) height respectively. tW, tT and tH are the sensitivity of timing 
quantity t to each of the sources of variation. By calculating the 
sensitivity coefficients (tW, tT and tH) and by using Lemma 1 we can 
compute mean, variance and the skewness of the delay distribution.  

Observation: Invariant Functional Form Property: This property 
states that: ( ) ( )y f x Y f X

℘ ℘

= ⇔ = . In other words, the form of function 
f is independent of its input type (deterministic or statistical.) 
2.2 Converting a statistical function into the first 
order form 
As mentioned earlier, it is important to represent timing and 
electrical quantities in the first order form. This in turn enables one 
to propagate first order sensitivities to different sources of variation 
through the circuit timing graph [6]. In addition, it makes statistical 
computation efficient and practical and provides timing diagnostics 
at a small cost in run time. The remaining question is how to 
convert a quantity of interest into the first order form. In general,

 suppose that G is a nonlinear function of m random sources of 
variation. To represent G in the first order form, we differentiate 
the

 function with respect to the sources of variation (ΔXi’s), and we 
set the variations to zero to find the linear coefficient. Therefore it 
can be written as:
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(3) 

where the distribution of
 G
<>

  
can be calculated using Lemma 1.

   
As an example, we explain how to calculate RC segment 

propagation delay in the first order form. Let αVDD crossing time 
( 0 1α≤ ≤ ) denote the instance of time at which a target electrical 
waveform crosses the αVDD level. Consider an RC segment which 
is driven by a unit step input. Suppose r and c are in the first order 
form as a function of m sources of variation,ΔXi’s, with the 
distribution of ΔXi ~ Dist (μ=0, σ2=1, κi). The following equation 
shows how to derive the first order form, tα

<> , of any αVDD crossing 
delay for the far-end of an RC segment relative to its near end. We 
can write: 
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(4) 

By using Lemma 1, we can calculate the distribution of tα  as:  
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3. Delay Model for Coupled Interconnect 
We consider two parallel coupled interconnects with drivers and 
loads attached as depicted in Figure 1. For our analysis we use an 
equivalent Π model circuit (as in [9]) for interconnects as shown in 
Figure 2. We analyze noise and delay at the far end of the 
interconnects. Although we consider one aggressor line, our 
analysis can be easily extended to the case of more than one 
aggressor line for a given victim line. 

 
Figure 1. Parallel Coupled interconnects 

We use Figure 2 for our analysis purposes. Rd1 and Rd2 are the 
effective on-resistances of drivers of the victim and aggressor lines, 
respectively; R1 and R2 are total resistances of the victim and 
aggressor lines; Cv1, C’v2, Ca1 and C’a2 are the near-end and far-end 
ground capacitances of the victim and aggressor lines; and finally 
Cc1 and Cc2 are the near-end and far-end coupling capacitances 
between the two lines. We define:  Cv2= C’v2+ CL1 and Ca2= C’a2+ 
CL2. The voltage at the far end of the victim line in Laplace domain 
can be written as: 

1 1 2 2

22
3 41 2

1 22 2
1 2 1 2

1
1 1

( ) ( ) ( ) ( ) ( )

( ) ( )

vicV s V s H s V s H s

a s a sa s a sV s V s
b s b s b s b s

= ⋅ + ⋅

++ +
= ⋅ + ⋅

+ + + +

 (5) 

 
Figure 2. Π Model for coupled interconnects 

where a1,a2,a3,a4,b1, and b2 can be represented as functions of the
 electrical parameters of the circuit [9].

 

To simplify the presentation of various equations, we set 
VDD=1. We analyze crosstalk noise and delay considering ramp 
inputs applied to the inputs of aggressor and victim lines. The 
expression for ramp input in frequency domain is  

2

1 sT

s T
e−−  where T 

is the transition time of the ramp input. Crosstalk noise can be 
analyzed when the victim line is steady at zero volt, while the 
aggressor line is switching, for example, from low to high. 
Therefore, solving Eqn. (5) with V1(s)=0 results in noise 
computation at the far end of the victim line in frequency domain. 
The corresponding time domain expression is given by 

11
22

( )( )
agg

s Tagg

eL H s
sT

n t −−
⎧ − ⎫
⎪ ⎪= ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

 (6) 

where L-1 indicates the inverse Laplace transform and Tagg is the 
transition time of the aggressor ramp input. Similarly, when the 
aggressor line is quiet (i.e. V2(s)=0) and the victim line is changing 
from low to high,  the noiseless voltage at the far end of the victim 
line is given by 

1
12

1 ( )( )
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e
L H s

vic

sT
v t −⎧ − ⎫⎪ ⎪− ⋅⎨ ⎬
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=  (7) 

where Tvic is the transition time of the aggressor ramp input. When 
both victim and aggressor lines are switching (in the opposite 
direction) the voltage at the far end of the victim line is given by 
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where Tvic and Tagg are the transition times of the ramp inputs 
applied to the victim and aggressor lines respectively and T0 is the 
relative arrival time of the aggressor with respect to the victim. If 
the aggressor line is switching in the same direction to the victim 
line, then Eqn. (8) may be rewritten as 

0
( ) ( ) ( )

vic noiseless T
v t v t n t= + . 

Note that inverse Laplace transform calculation in Eqns. (6), (7) 
and (8) are computationally inexpensive and can be easily 
performed. 

4. Statistical Static Timing Analysis of 
Coupled Interconnect 

Problem Statement: Two parallel coupled interconnects with 
drivers and loads attached are given (cf. Figure 1.) They have been 
modeled with an equivalent Π circuit as shown in Figure 2. 
Electrical parameters of the interconnects (r and c) are in the linear 
form as a function of changes in physical parameters. Considering 
ramp inputs applied to the victim and aggressor lines, the objective 
is to calculate the minimum mean squared error (MSE) fit of the 
distribution of the αVDD (for simplicity of the presentation we 
assume VDD=1) crossing time at the far end node of the victim 
line in the first order form as a function of changes in physical 

parameters such that 
2

( )vicE v tα α
℘⎧ ⎫⎪ ⎪⎡ ⎤−⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

<>

is minimized. 

vvic(t) is the voltage of the far end node of the victim line in the 
time domain.  

We are interested in calculating the coupled interconnect 
delay and slew as a function of changes in physical parameters. 
Assuming ramp inputs are applied to the victim and aggressor lines, 
the following theorem shows how to evaluate αVDD crossing time 
at the far end of the victim line in the first order form as a function 
of changes in physical parameters.  

Theorem: Consider coupled interconnects excited by ramp inputs. 
Assume that the electrical parameter (r and c) are in the first order 
form as a function of variation in physical parameters. The 
minimum MSE fit of the distribution of the αVDD crossing time at 
the far end node of the victim line is calculated as follows: 

, , ,,0 W T Ht t t W t T t Hα α α αα
= + Δ + Δ + Δ
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(11) 

Similarly, by replacing W with T or H (ΔW with ΔT or ΔH), tα,T or 
tα,H  can be computed. Finally, from Lemma 1 the distribution of tα 
can be  calculated as follows: 
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Proof: See appendix. 
Eqn. (10) (which is simply the inverted form of vvic(tα,0)=α ) 

implies that to calculate tα,0 (i.e., the nominal value of the αVDD 
crossing time), we must perform delay analysis with all the circuit 
elements set to their respective nominal values, which has already 
been solved in STA (cf. section 3.) H1(s) and H2(s) are as explained 
in section 3 where we showed coefficients of H1(s) and H2(s) (ai’s 
and bj’s) as functions of electrical parameters. However, due to the 
variability of the electrical parameters, ai’s and bj‘s are not 
deterministic scalar values. Instead, by using the invariant 
functional form property and the technique in section 2.2, we 
represent them in the first order form. Thus, we can rewrite these 
transfer functions in Laplace domain as: 
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where ai,0 and bj,0 are nominal values of the coefficients of si and sj, 
respectively; ai,W , ai,T and ai,H (bi,W , bi,T and bi,H ) denote 
sensitivities of ai (bi) to ΔW,  ΔT, and ΔH, respectively. 

sr1(tα,0) and sr2(tα,0) in Eqn. (11) are the step response of H1(s) 
and H2(s) at time tα,0 when the circuit is in its nominal condition 
and they can be calculated as follows: 
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 ΛW(tα,0) is equal to the inverse Laplace of the derivative of 
H1(s) with respect to ΔW (evaluated when the sources of variations 
are set to zero) multiplied by the ramp input in frequency domain. 
After writing H1(s) in the statistical format as in Eqn. (13), the 
derivative of H1(s) with respect to ΔW evaluated at the nominal 
conditions can be calculated as follows: 
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Therefore, the evaluation of ΛW(tα,0) is not computationally 
difficult. Similar set of steps can be performed to calculate ΨW(t). 
Finally, Eqn. (12) provides the distribution of tα. Note that, Eqn. 
(11) is for the case when the victim and the aggressor lines are 
switching in the opposite directions. Similarly we can solve the 
problem for the same type transitions. Figure 3 presents the 
summary of the algorithm for Statistical static timing Analysis of 
Coupled Interconnects, called SACI. 
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Figure 3: General SACI Algorithm 
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5. Experimental Results 
To validate our analysis we have considered two adjacent M4 
interconnects used in a real design for 90 nm CMOS technology. 
We assumed identical interconnects are driven by identical 
inverters and that the loads at the end of the two lines are also 
identical inverters. The nominal values of metal width and 
thickness are 0.2μm and 0.35μm.  The nominal value of ILD 
thickness is 0.45μm and the nominal value of the distance between 
M4 layer and the ground is 3.0μm. We investigated different 
configurations for the values of the interconnect length, width, and 
spacing as reported in Table 2. We assumed 3-sigma variations 
over their respective nominal values of 25% for the metal width, 
metal thickness, and the distance between the metal line and the 
ground plate. We also assumed that the sources of variation are 
skewed with different skewness values. We assumed fixed pitch 
size for the adjacent interconnects (i.e. W/2 + spacing + W/2 = 
constant).  We used empirical capacitance modeling equations [13] 
to compute the capacitances values and the coefficients 
(sensitivities) of the first order model. The mean, variance, and 
skewness of the delay at the far end node of the victim line were 
calculated by using SACI. We used 0.5VDD crossing time to 
compute the interconnect delay from the output of the driver to the 
next inverter input. In the case of multiple crossings of the 0.5VDD 
level (due to the effect of coupling noise), we considered the last 
crossing point result. We also performed Hspice-based Monte 
Carlo simulation with 10,000 samples (for different values of 
changes in physical parameters) for each test case and recorded the 
best fit for the mean, variance, and skewness of the delay. The 
average percentage errors between the results obtained by the 
Monte Carlo (Actual) and the results based on SACI are reported. 
The nominal values of the interconnect parameters of the model in 
Figure 2 can be calculated in terms of the interconnect parameters 
given in Table 2; R1=R2=Rint , Cv1=Ca1=Cgnd/2, Cv2=Ca2=Cgnd/2+CL, 
Cc1=Cc2=Ccoupling/2. The load capacitance (CL) due to the inverter 
gate capacitance is 64.5fF for all of the cases. The victim and 
aggressor driver resistances (Rd1 and Rd2) are assumed to be 200Ω. 
Table 2: Interconnect parameters (nominal values) for different cases. 

Case Width 
(μm) 

Spacing 
(μm) 

Length 
(μm) Rint (Ω) Cgnd 

(fF) 
Ccoupling-

(fF) 

1 0.2 0.2 800 211.9 26.4 50.19 
2 0.2 0.2 4000 1059 131.7 243.7 
3 0.4 0.2 8000 1060 415.9 450.3 
4 0.2 0.6 800 211.9 57.5 19.7 

 First, we assume identical transition times for both aggressor 
and victim lines. The transition time is chosen to be Tvic=Tagg={40, 
72, 104, 136, 168}ps. The relative arrival time of the aggressor 
with respect to the victim line is chosen to be T0={0.65, 0.70, 0.75, 
0.80, .85}ns. We assumed the same skewness for all of the three 
sources of variation and we did our experiment with the skewness 
of 0, 0.5 and 1. We used SACI to compute the nominal value and 
the sensitivity of the delay to the sources of variation, and mean, 
variance and skewness of the delay. Table 3 presents the average 
percentage errors between the results obtained by the Monte Carlo 
and the results based on SACI for the case when the aggressor line 
is switching opposite to the victim line. Table 4 shows the result for 
the equi-directional transitions on the victim and the aggressor 
lines. We also considered different transition times for the 
aggressor and the victim lines. The transition time of the victim line 
is chosen to be constant (Tvic= 104ps) while the aggressor transition 
times vary from 40ps to 296ps (step size of 32ps.) The relative 

arrival time of the aggressor with respect to the victim line is also 
swept from 0.6ns to 0.8ns (step size of 50ps.) The average errors 
are presented in Table 5 (Table 6) for the opposite (same) transition 
directions of aggressor and victim lines. 

Table 3: Average error (%) for the victim line delay for the opposite 
transition types with equal transition time 

 Delay 

Average error Case 1 Case 2 Case 3  Case 4 

Mean 2.5 4.6 6.8 2.3 
Variance 2.7 5.9 7.2 2.7 
Skewness 3.3 6.5 7.4 3.1 

Table 4: Average error (%) for the victim line delay for the same 
transition type with equal transition time 

 Delay 

Average error Case 1 Case 2 Case 3  Case 4 

Mean 2.4 4.1 6.5 2.1 
Variance 2.8 5.3 7.3 2.6 
Skewness 3.4 6.1 7.7 2.9 

Case 3 shows larger errors due to longer interconnect, and we 
see smaller error for cases 1 and 4. Case 4 has the smallest coupling 
capacitance, and therefore, it exhibits smaller crosstalk noise as 
well. Note that the SACI algorithm is on average 120 times faster 
than the Monte Carlo-based approach. 

Table 5: Average error (%) for the victim line delay for the opposite 
transition types with different transition time 

 Delay 

Average error Case 1 Case 2 Case 3  Case 4 

Mean 2.7 4.5 6.1 2.4 
Variance 3.1 5.1 7.1 3.0 
Skewness 3.6 6.2 7.7 3.4 

Table 6: Average error (%) for the victim line delay for the same 
transition types with different transition time 

 Delay 

Average error Case 1 Case 2 Case 3  Case 4 

Mean 2.8 4.4 6.4 2.5 
Variance 3.5 5.0 7.3 2.6 
Skewness 3.6 6.5 7.7 2.9 

6. Conclusion 
We proposed a new framework for handling the effect of Gaussian 
and Non-Gaussian process variation on coupled interconnects. 
We expressed the electrical parameters of the coupled interconnects 
in the first order forms as a function of changes in physical 
parameters. We utilized these forms to calculate the closed-form 
formula of the victim line delay distribution as a function of 
changes in the sources of variation. Experimental results showed 
that the proposed method is able to accurately predict delay 
variation through a coupled interconnect while the run time is 120 
times faster than the Monte Carlo simulation with 104 samples. 
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8. Appendix 
Definition 3: The inverse of the Laplace transform can be 
calculated as: 

( ) ( )1
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= ∫  (14) 

where γ is a vertical contour in the complex plane chosen so that all 
singularities of f(s) are to the left of it.  
Proof of Theorem: Since vvic(tα) is a random variable, we must find 
tα in the linear form s.t.  
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The above nonlinear stochastic equations are not easy to 
evaluate, therefore, we approximate vvic(tα) with:  
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(16) 

The distribution of our independent random variables (ΔW, ΔT 
and ΔH) are in the form of ΔXi ~ Dist(μ=0, σ2=1, κi). Therefore, we 

have E(ΔXi
2)=1 and E(ΔXi. ΔXj)=0. Hence, to satisfy the 

minimization in Eqn.(15), we have the following conditions; 
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Eqn. (17) means that to calculate tα,0 we must perform delay 
analysis for ramp inputs with all the circuit elements set to their 
respective nominal values. By using definition 3, the first condition 
in Eqn. (18) may be treated as follows: 
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which proves Eqn (11). Similarly,  the second and the third 
conditions in Eqn.(18) will result in computing tα,T and tα,H. ■
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