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ABSTRACT 
An effective thermal management scheme, called active bank 
switching, for temperature control in the register file of a 
microprocessor is presented. The idea is to divide the physical 
register file into two equal-sized banks, and to alternate between 
the two banks when allocating new registers to the instruction 
operands. Experimental results show that this periodic active bank 
switching scheme achieves 3.4℃ of steady-state temperature 
reduction, with a mere 0.75% average performance penalty.   

Categories and Subject Descriptors 
B.7.2 [Hardware]: Design Aids  
General Terms:  
Design, Reliability  
Keywords 
Thermal model, Temperature-aware Design, Register File 

1. INTRODUCTION 
Peak power dissipation and the resulting temperature rise have 
become a limiting factor to microprocessor performance and a 
significant component of its cost. Expensive packaging and heat 
removal solutions are needed to achieve acceptable substrate and 
interconnect temperatures in high-performance microprocessors. 
Current thermal solutions are designed to limit the peak processor 
power dissipation to ensure its reliable operation under worst-case 
scenarios. However, the peak processor power and ensuing peak 
temperature are hardly ever observed. Dynamic thermal 
management (DTM) has been proposed as a class of micro-
architectural solutions and software strategies to achieve the 
highest processor performance under a peak temperature limit.  

    Most DTM methods are reactive due to the complex nature of 
temperature variation in a processor; when a certain triggering 
temperature is reached, DTM mechanisms become operational. 
For example, in  [1], Skadron et al. introduced a number of DTM 
methods such as temperature driven frequency scaling, localized 
toggling and computation migration to spare hardware units. The 
same authors presented a hybrid DTM technique that combines 
fetch gating and dynamic voltage scaling (DVS) in  [2]. Reference 
 [3] described a feedback control theory based DTM method, 

which determines the aggressiveness of the DTM methods based 
on the distance of triggering temperature from the emergency 
temperature. Recently, reference  [4] introduced a predictive DTM 
method for multi-media applications whereby instruction window 
resizing and switching among active functional blocks were 
utilized to achieve the desired temperature control. All of these 
methods characterize and/or predict the thermal behavior of a 
processor typically on a functional block basis, calculate the 
power density of functional blocks within a fixed time period, and 
apply their temperature control policies as needed. 

    It is known that the register file is the hottest block in a modern 
microprocessor chip  [1] [4]. As such, full-chip DTM methods, 
such as fetch-toggling and instruction cache throttling (where the 
number of fetched instruction is reduced as needed),  [5] [6], have 
been utilized to control this register file temperature. A DTM 
method specifically targeted toward temperature control in the 
register file was presented in  [7]. This method, called activity 
migration, is quite effective, albeit it has a large area overhead.  

    In this paper, we present a DTM method that targets and 
effectively reduces temperature of the register file. Our idea is 
based on the observation that the register file is not fully utilized 
over a program’s execution, i.e., the lifetime of registers/operands 
are short such that we only need a rather small number of physical 
registers to be active during most of the cpu cycles. Therefore, by 
introducing two equal-sized banked structures in the physical 
register file (one active bank and another sleep bank) and 
alternately using these two banks, temperature of both banks can 
be reduced while little performance penalty is incurred.    This is 
similar to what the authors proposed in  [7] except that we do not 
introduce a redundant register file structure. Instead we divide the 
existing register file structure into two banks and alternate 
between the two while monitoring and respond to register file 
utilization of the application program. In addition to area savings, 
our method also avoids processor-wide performance penalty in the 
sense of IPC degradation. 

2. ACTIVE BANK SWITCHING BASED DTM 
2.1 Register File Utilization 
Many 32-bit instruction set architectures (ISA) are designed to 
have 32 architectural registers although modern superscalar 
processors have more than 32 physical registers. This discrepancy 
is handled by register renaming, which assigns architecture 
registers to physical registers while considering data/control 
dependencies among the instructions. In practice, not all of the 
physical registers are used all the time. In  [8], Tran et al. showed 
that physical register usages are typically in the range of 40% to 
60%. This low utilization phenomenon arises mainly from the 
dependencies among instructions in the instruction window. 
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Figure 1 Physical Register File Utilization 

 

     Figure 1 shows the utilization of physical registers according 
to our own simulation data (the simulation methodology will be 
explained later). Here the x-axis represents the number of physical 
registers that are being utilized as a percentage of the original 
register file size (64), whereas the y-axis represents the utilization 
ratio as a percentage of total execution time. For example, for mcf, 
25% of physical registers are actually in use during 42% of the 
execution time. Note that on average for about 90% the time, less 
than a half of the physical registers (32) are actually allocated. 
    Figure 2 shows the performance penalty if the register file size 
is cut in half (from 64 to 32). Notice that for djpeg even though 
for 25% of the execution time more than 32 registers are used, the 
respective performance penalty is only 3%. This is because 
although a new instruction is dispatched and allocated to a 
physical register, much of the time this instruction is not issued 
and executed due to the data dependencies among instructions. 
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 Figure 2 Performance Penalty When the  Register Bank Size Is 

Cut in Half 
 

2.2 Periodic Bank Switching: The Idea 
Based on the above observation, we propose to divide the register 
file into two equal-sized banks and use only one bank at a time, 
i.e., the number of physical registers available at any time is one 
half of the original count and registers are allocated from one of 
these two banks. Here we designate the active bank as a primary 
bank and the other one as a secondary bank. Registers are 
allocated first from the primary bank and only if the primary bank 
is full, the allocation is done from the secondary bank. Since only 
a small number of physical registers are used during most of the 
execution time of typical programs, the duration for which the 
secondary bank will be in-use is relatively small. When bank 
switching occurs, there might still be some references to the non-
active bank. However, these pending references will be relatively 
small compared to the number of references to the active bank. 

2.3 Thermal Zones and Thermal Gradients 
We have carried out detailed analysis of the temperature regions 
in terms of thermal gradients and classified them into two zones: 
1) Fast Temperature Rise (FTR) zone: The rising thermal gradient 
is higher than the falling thermal gradient i.e., the temperature 
rises faster than it falls (when the chip is allowed to cool off). 2) 
Fast Temperature Fall (FTF) zone: The falling thermal gradient is 
equal to or higher than the rising thermal gradient i.e., the 
temperature drops faster than it rises. Note that the DTM methods 
are most effective in the FTF zone.    Based on our simulations 
(cf. Figure 3), the FTF zone is above the FTR zone.  This is 
fortunate because the temperature profile of a microprocessor chip 
is such that DTM techniques become more effective as the chip 
temperature rises. 
 

 
Figure 3 Thermal Gradients and Temperature Zones 

 

    Depending on the type of packaging and cooling solutions, the 
chip’s critical temperature (CT, the temperature beyond which 
chip may not function correctly or may even get damaged) may lie 
in any of these two zones. In the absence of a DTM technique, 
any application program running on a microprocessor chip will 
give rise to a steady-state temperature (ST) depending on the 
program behavior e.g., in terms of its CPI. The goal of our 
proposed DTM method is to minimize the chip ST while meeting a 
performance loss constraint. If the ST lies in the FTF zone, then 
the DTM methods tend to work very well and the new ST of the 
chip will be significantly lower. Otherwise, the DTM techniques 
are expected to be less effective. 

2.4 Thermal Model 
To mathematically support the periodic active bank switching idea, 
we use a thermal model developed by Skadron et al. in  [3]. Based 
on this model, the temperature increase in the processor is 
represented by: 

( )old

th th th

TP
T t

C R C
Δ = − ⋅ Δ

⋅
 (1) 

where ∆t is a time interval, P is the average power dissipated in an 
interval, Rth is a thermal resistance, Cth is a thermal capacitance 
and Told is the initial temperature of a time period, respectively. 
After a time interval, the new temperature becomes:  

new oldT T T= + Δ  (2) 

    Let tinitial and tfinal denote two instances of time (and their 
difference be denoted by ∆t), respectively. Then, the rising 
thermal gradient with respect to time is represented as:  
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    Hence when the active bank is switched, the new active bank’s 
temperature rises according to equation (3). Whereas the other 
bank experiences a temperature drop, and this temperature drop 



follows: 
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 (i.e., we are operating in the FTF zone), then active 

bank switching will be quite effective in reducing the temperature. 
The breakeven temperature (BT or TBE) above which the active 
bank switching will be beneficial is obtained by solving the 
following equation: 

1
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(5) 

    Consider the case where the ST is above the BT. Conceptually, 
we would like to identify a trigger temperature (TT) such that  BT 
≤ TT ≤ ST and then switch between the two banks as soon as the 
temperature of the active bank is about to go above the TT. 
However, in practice, we have found it to be unnecessary to 
identify such a trigger temperature level. More precisely, a simple 
DTM policy where we regularly (i.e., at fixed timing intervals) 
switch between the primary and secondary banks is sufficient. We 
have found that a fixed interval of 10M CPU cycles is adequate 
for our purposes and that the overall reduction in ST is not 
sensitive to the exact length of this interval. 

      Note that the actual falling thermal gradient in the sleep bank 
is smaller than equation (4) since some of the registers previously 
mapped to this bank are alive for certain cycles even after 
switching. Similarly, the actual rising thermal gradient in the 
newly active bank is smaller than equation (3) since some of the 
registers previously mapped to the sleep bank are alive and 
accessed from that bank for certain cycles. However, the idea is 
still the same. 

2.5 Overhead 
It is expected that the banked structure in physical register file 
needs extra control logics and the renaming logic need to be 
changed to allocate new registers from the active bank only. 
However, these area penalties are much smaller than those for the 
activity migration method, which duplicates the entire register file. 
Furthermore, the periodic active bank switching scheme does not 
have self-producing performance penalty as is the case for the 
activity migration method since we do not need to transfer the 
content of registers from one bank to the other. 

3. EXPERIMENTAL RESULTS 
3.1 Micro-architecture Simulation Data 
Table 1 reports the architectural configuration that was assumed 
in our simulations. 

Table 1 Micro-Architecture Parameters 
 

Main Memory Latency 32 cycles 

L1 I/D Cache 32KB 32-way 32Byte block 
1 cycle hit latency I/D-TLB 4-way 1K entries 32 cycles miss latency 

Branch Predictor Bimodal 128 Table 

Functional Units 
4 INT. ALU, 1 INT. MULT/DIV 

4 FP ALU, 1 FP MULT/DIV 
RUU/LSQ size 8/8 

Instruction Fetch Queue 8 

3.2 Methodology 
For the experiments, we integrate SimpleScalar  [9], Wattch  [10] 

and Hotspot  [11] into one simulator The temperature data is 
generated every 50K cycles and the initial/ambient temperatures 
are set by 60/45℃, respectively. For the floor-plan in our thermal 
simulation, we obtain a 2.6GHz Pentium IV 130nm floor-plan 
from  [15], estimate/extract the area information for each of the 
functional unit, and provide this information to our integrated 
simulator. 

 

 

Figure 4 Detailed Floor-plan for the Register File 
     

     Figure 4 (a) shows the ‘integer execution core’ part of the 
tagged die-photo obtained from  [15]. As shown, the register file 
area is in reality smaller than in the original floor-plan and is 
roughly half of the original size. Hence, we divide the original 
register file area into half to match our floor-plan with more 
detailed description (cf. Figure 4 (a)). We position this half sized 
register file in the center of the register file area and the 
surrounding area is kept empty (cf. Figure 4 (b)). Since the 
original register file area corresponds to the size for 128 registers 
whereas in our experiments the register file has a size of 64, we 
further divide this area into half (cf. Figure 4 (c)). For the banked 
structure, we further cut the original register file area (cf. Figure 4 
(c)) into half to denote two banks of size 32 (cf. Figure 4 (d)). 

    Our simulation setup is as follows. For the first 200K cycles of 
each benchmark program run, we obtain the typical power figure 
for the register file (along with other functional units). Next, we 
use this power figure to mimic the thermal simulation without 
actually simulating the application by continuously feeding this 
typical power value to each functional unit. The thermal 
simulation is carried out in order to find the steady-state 
temperature for the register file. Once the steady-state is found, we 
resume the actual thermal simulation of the application. 

    For the test applications, we used SPEC2000INT benchmarks 
 [12] with reference/train input files, Mediabench program  [13] 
and MPEG-2 decoder program  [14]. Input files for mediabench 
are custom made, input file for the MPEG-2 decoder program is 
obtained from  [14] and the input files of all programs are shown 
in Table 3. Each program is compiled with the PISA compiler 
using default optimization option. For the test platforms, two 
Linux machines were used: Intel Pentium IV 2.8GHz with 



512MB memory and Intel Pentium IV 1.8GHz with 2GB memory. 

3.3 Experimental Results 
At first, we ran each application in a monolithic physical register 
file of size 64 and record the ST. Next, we ran the application 
with a banked register file with active bank switching. In a banked 
register file, the total number of physical registers is 64 but they 
are divided into two banks, each of size 32. 

Table 2 Steady-State Temperature and IPC 
 

Steady-state Temp (℃) 
Program Monolithic 

RF (64) 
Banked 

RF (2*32) 

Thermal 
reduction 

(℃) 
IPC 

mcf - inp.in in train 68.0 66.7 1.3 0.7707 

gcc - input.source in ref 76.5 73.7 2.8 1.2748 

bzip - input.log in ref 78.2 75.0 3.2 1.5022 

gzip - input.log in ref 81.7 77.5 4.2 2.1069 

cjpeg - custom.gif 83.0 79.0 4.0 2.2553 

mpeg2dec-hhilong.m2v 82.0 77.7 4.3 2.2729 

djpeg - custom.jpg 82.0 77.0 5.0 2.3825 
 

    In Table 2, the difference of steady-state temperatures between 
the monolithic and the banked register file is shown (cf. the 
thermal reduction column). The average steady-state temperature 
reduction of the active bank switching scheme is 3.4℃. Note the 
relationship between the steady-state temperature and the IPC of 
each program: As a program workload increases, its steady-state 
temperature increases as well. 
 

 
Figure 5 An Example of Thermal Behaviors in gcc 

 

     Figure 5 shows the steady-state temperature behavior of the 
gcc program. The upper thermal curve corresponds to the 
monolithic register file and the lower two thermal curves 
correspond to each bank in the banked register file. Compared to 
the upper curve, note that (a) the application program’s thermal 
behavior is maintained in the lower curves, and (b) the periodic 
active bank switching is observed between the two lower curves. 
Note also that two lower curves lay one upon another with very 
small thermal differences. Each point in the x-axis corresponds to 
10M cycles. 

    Table 3 shows the register file utilization in terms of percentage 
of total execution cycles spent using 1/4, 1/2, 3/4 of the register 
file, respectively. The performance penalties reported correspond 
half sized (32) register file. Note that low performance penalty is 
due to the lower utilization of register file. 

Table 3 Register File Utilization and Performance 
 

Register File Utilization (%) 
Program 

25% 50% 75% 
Performance 
Penalty (%) 

mcf 42 92 96 0 

gcc 43 86 98 0.16 

bzip 54 93 99 0 

djpeg 20 95 99 0.47 

cjpeg 32 75 90 1.25 
mpeg2de

c 
38 91 99 0.69 

gzip 32 75 90 2.68 

4. CONCLUSION 
We presented an effective steady-state temperature reduction 
method by adopting a banked structure in the register file. In our 
scheme, only one bank is active at a time and we keep switching 
between the two available banks. With banking, we achieve a 
sizeable steady-state temperature reduction with a small 
performance penalty.  
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