
1

Abstract-- This paper presents an irredundant encoding
technique to minimize the switching activity on a multiplexed
Dynamic RAM (DRAM) address bus. The DRAM switching
activity can be classified either as external (between two
consecutive addresses) or internal (between the row and
column addresses of the same address). For external switching
activity in a sequential access pattern, we present a power-
optimal encoding, named Pyramid code. Extensions of the
basic code address different types of DRAM devices. The
proposed codes reduce power dissipation on the memory bus
by a factor of two or more.

Index Terms— address bus encoding, DRAM power
minimization, time-multiplexed bus, bus activity minimization

I. INTRODUCTION

Modern electronic systems must maintain a challenging
dichotomy; they need to be low power and high
performance simultaneously. This arises largely from their
use in battery-operated portable (wearable) platforms. Even
in fixed, power-rich platforms, the packaging and reliability
costs associated with very high power and high
performance systems are forcing designers to look for ways
to reduce power consumption. Power-efficient designing
requires reducing power dissipation in all parts of the
design and during all stages of the design process subject to
constraints on system performance and quality of service
(QoS). Sophisticated power-aware, high-level language
compilers, dynamic power management policies, memory
management and bus encoding techniques, as well as
hardware design tools are demanded to meet these often
conflicting design requirements [1] [2]. This paper focuses
on the low power bus-encoding problem. In this section, we
will briefly review the bus encoding techniques and DRAM
device technology.
The major building blocks of a computer system include the
CPU, the memory controller, the memory chips, and the

W. C. Cheng and M. Pedram are with the Department of Electrical
Engineering–Systems, University of Southern California, Los Angeles, CA
90089-2560 USA.

communication channels dedicated to providing the means
for data transfer between the CPU and the memory. These
channels tend to support heavy traffic and often constitute
the performance bottleneck in many systems. At the same
time, the energy dissipation per memory bus access is quite
high, which in turn limits the power efficiency of the
overall system.
In a computer system, the bus can be an on-chip bus, a local
bus between the CPU and the memory controller, or a
memory bus between the memory controller (which may be
on-chip or off-chip) and the memory devices. The emphasis
of this paper is on low power encoding techniques for the
memory bus. We assume the availability of a separate code
memory and data memory. More precisely, we present
encoding techniques to minimize the switching activity on a
multiplexed DRAM address bus.
In the remainder of this section, we give a detailed review
of the power-aware bus encoding techniques followed by a
summary description of the DRAM technology. We provide
the problem formulation for external switching activity
minimization in conventional DRAM in Section II. Pyramid
II code, which uses a much simpler encoding function, is
presented in Section III. Extensions to handle Burst mode
DRAM are described in Section IV. Concluding remarks
are provided in Section V.

A. Memory Bus Encoding

Low power bus codes can be classified as permutation,
algebraic, or probabilistic. Permutation codes refer to a
permutation of a set of source words. Algebraic codes refer
to codes that are produced by encoders that take two or
more operands (e.g., the current source word, the previous
source word, the previous code word, etc.) to produce the
current code word using arithmetic or bit-level logic
operations. Probabilistic codes are generated by encoders
that examine the probability distribution of source words or
pairs of source words and use this distribution to assign
codes to the source words or pairs of source words. In all
cases, the objective is to minimize the number of transitions
when transmitting all of the code words on the bus. The
overhead of the encoder/decoder circuitry is often ignored.

If redundancy is not feasible on the memory bus, the
encoding function becomes a permutation, i.e., a one-to-one
and on-to mapping from a set of source words to itself. In
[3], Su, Tsui, and Despain proposed Gray code to
implement the program counter of a microprocessor to
minimize the switching activity of sequential memory

Power-optimal Encoding for a DRAM Address
Bus

Wei-Chung Cheng and Massoud Pedram

2

accesses. They showed that Gray code is asymptotically
optimal among all irredundant codes. Other examples
include Pyramid code [4][5] and Data Ordering-based code
[6][7].

Bus-Invert code [8] toggles the polarity of the signals
according to the Hamming distance between two
consecutive data values by using an additional line on the
bus. Many variations of Bus-Invert code have been
proposed in the literature, including Partial Bus-Invert code
[9], Interleaving Partial Bus-Invert code [10], and Two-
dimensional code [11]. Similarly, T0 code [12] uses a
redundant signal to indicate if the bus is in normal mode or
increasing address. In the latter case, only one signal needs
to be switched. Variations on the T0 code include T0-XOR
and Offset-XOR codes [13]. Both Bus-Invert and T0 codes
are redundant because they need one extra bit. T0 code is
not suitable for reducing bus activity in a time-multiplexed
address bus. A k-limited-weight code [14] is a code having
at most k one’s per word. This can be achieved by adding
appropriate redundant lines. These codes are useful in
conjunction with transition signaling. Thus, a k-limited-
weight code would guarantee at most k transitions per bus
cycle.
Working Zone code [15] exploits the locality of reference
that is usually present in the software programs. The
proposed encoding technique partitions the address space
into working zones whose starting addresses are stored in a
number of registers. A bit is used to denote a hit or a miss
of the working zone. When there is a miss, the full address
is transmitted on the bus; otherwise, the bus is used to
transmit the offset, which is one-hot coded. Additional lines
are used to transmit the identifiers of the working zone.
Codebook-based code [16] can be thought of as a
generalized version of the Bus-Invert code. The codebook
contains the set of patterns and their corresponding ID’s.
The patterns are chosen so that the average Hamming
distance between a source word and the “best” pattern in
the codebook is minimized.

Entropy-reducing Code [17] refers to a group of codes that
attempt to reduce the entropy rate of the source given a
fixed level of redundancy in the bus. The key idea is to
compute the error between the current source word and its
predicted value followed by a coding algorithm that
minimizes the transition activity. The result is then sent on
the bus using the Transition Signaling technique and is
decoded accordingly. The rationale for this class of codes is
that the power savings obtainable by encoding depend on
the entropy rate of the incoming source data and on the
amount of redundancy in the code. The higher the entropy
rate, the lower the energy savings that can be achieved by
encoding the source words for a specified level of
redundant bits on the bus.
Beach code [18] analyzes the word-level correlations
between source words to assign codes with small Hamming
distance to data words that are likely to be sent on the bus
in two consecutive clock cycles. Beach code is a subset of
the entropy-reducing codes. The Beach encoder and

decoder do not, however, use decorrelator and correlator
blocks.
Probability-based codes [19] are generated based on a
general codec architecture that uses encoder/decoder
functions based on the current and previous values of the
source and code words and decorrelator/correlator functions
that implement a Transition Signaling scheme on the bus.
These codes start with the assumption that a detailed
statistical characterization of the data source is available,
that is, the stationary probability distribution of all pairs of
consecutive values in the input stream is known. For
example, the Exact Encoding function uses an exponential
table (in the bit width of the bus) that stores all possible
pairs of source words and their joint occurrence probability
in order to assign a minimum of transition activity codes to
each pair of source words (Transition Signaling).

The key idea behind all these techniques is to reduce the
Hamming distance between consecutive addresses for a
sequential memory access pattern, e.g., instruction fetching
or large array access. However, these schemes cannot be
applied to DRAM address bus encoding because of the
time-multiplexed addressing scheme used therein, which is
practiced universally and due to technical and legacy issues.

B. DRAM Technology

DRAM is usually laid out in a 2-dimensional array. To
identify a memory cell in the array, two addresses are
needed: row address and column address. The row address
is sent over the bus and latched in the DRAM decoder.
Subsequently, the column address is sent to complete the
address. We refer to this kind of DRAM as conventional
DRAM. As a result, the conventional DRAM bus is time-
multiplexed between the row and column addresses, so that
the pin count for addresses is reduced by a factor of two.
Because the switching activity on a DRAM bus is totally
different from that of a non-multiplexed bus, we need
another Gray code-like encoding scheme to minimize the
switching activity for sequential memory access on a
DRAM bus.
In addition to conventional DRAM, almost every modern
DRAM device supports a page mode. In the page mode,
after the first data transaction, the row address is latched
and then different memory locations in the same row are
read/written by sending only their column addresses. Hyper
Page mode, i.e., Extended Data Out (EDO) mode, is the
same as page mode, except that the Column Address Strobe
(CAS) signal is overloaded with both the CAS and Data
Out.
Synchronous DRAM (SDRAM), named so because it
avoids the asynchronous handshaking used in conventional
and page mode DRAMs, uses the system clock to strobe
data. No Data-Out signal is needed. To boost the
throughput, in burst mode DRAM, several bytes (2, 4, or
more) can be read/written continuously without any
handshaking signal. Double Data Rate (DDR) DRAM uses
both the rising and falling edges to increase the
bandwidth. Rambus DRAM (RDRAM) targets high

3

performance computer systems and has evolved three
generations: Base, Concurrent, and Direct Rambus.
RDRAMs are variable-length packet-switched. Because
their signals are quite different from the previously
mentioned DRAM devices, we exclude RDRAMs from
further consideration in this paper [20].

II. PYRAMID CODE

We focus on minimizing the external switching activity for
a sequential access pattern in this section. The basic
concepts of Pyramid code are presented.

A. Graph Representation

Without loss of generality, consider a DRAM memory
space consisting of 16 (24) locations. Each location is
identified by 4 bits, which are multiplexed on a 2-bit wide
address bus. Our goal is to find a complete ordering of these
16 addresses (e.g., permutation) such that the switching
activity on a multiplexed address bus is at a minimum.
We represent these addresses by a Row/Column graph G1

in Figure 1(a). Hereafter, G1 will be referred to as a RC

graph. The four solid circled nodes represent the row
address set R whereas the four dotted circled nodes
represent the column address set C. For each pair of nodes
u∈ R and v∈ C, there is a forward-edge (u,v) representing
the address <uv>. Each such edge has a weight equal to the
Hamming distance between u and v, H(u,v). This weight is
called the internal (intra-address) switching activity of
address <uv>. Consider two consecutive addresses <u1v1>
and <u2v2>. When transmitting these two addresses on a
multiplexed bus, the external (inter-address) switching
activity on the bus is H(v1, u2). We define the corresponding
edge (v1, u2) as a back-edge (because it goes from C to R).
The back-edges are not shown in G1. Our goal is to
construct a cycle Q* that visits all of the forward edges (i.e.,
all of the addresses) exactly once while minimizing the sum
of the weights of the back-edges (i.e., the total external
switching activity). Notice that the weight of the back-
edges <v,v> is zero and we will use these 0-weighted back-
edges to construct the cycle.
Since R and C have the same labels, we can superimpose
these two sets and get a merged RC graph G2 as shown in
Figure 1(b). G2 is a complete directed graph K4. The nodes
represent row or column addresses and each edge (u,v)
represents a complete address <uv>. These edges
correspond to the forward-edges in G1. We simply ignore
the back-edges of G1 because the 0-weighted back-edges in
G1 become 0-weighted self-edges in G2. We claim that any
Eulerian cycle on G2 is a solution Q*.

Theorem 1: A Eulerian cycle of graph G2 yields a power-
optimal multiplexed code for sequential addressing of the
corresponding address space.

Proof. Consider solving the problem of constructing a
cycle that visits all of the forward edges of G1 exactly once
while minimizing the sum of the weights of the back-edges
of G1. When we traverse a forward edge (u,v) to go from
the R set to the C set, we can return to any vertex in the R
set by following any back-edge that starts from v, that is,
(v,-). Obviously, the back edge (v,v) is the best choice since
its weight is the minimum possible, that it, zero. So our
problem becomes that of finding a cycle that visits all of the
forward edges of G1 exactly once while using only the zero-
weighted back-edges (which can be used as many times as
needed). Finding a Eulerian cycle of graph G2 produces a
power-optimal multiplexed code because along this cycle
all of the forward-edges in G1 are visited exactly once and
only zero-weighted back-edges of G1 are implicitly used.
Therefore, the external switching activity becomes zero.

Sufficient and necessary conditions for a Eulerian cycle to
exist on a graph are that (1) the graph is connected and (2)
for every vertex the in-degree is the same as the out-degree.
Clearly there are a large number of solutions for a complete
graph Ki. One can apply algorithms such as depth-first
search or breadth-first search to get an arbitrary solution.
However, the encoding and decoding functions will have to
be realized in hardware. Simple yet efficient functions are
necessary for practical implementation. The functions

R

00 01

10 11

00 01

10 11

C

(a) G1

(b) G2

0010

0001

0100

1110

11010111
0010

1001

0110

1100

0011

1111

0101

1010

0000

00

10 11

01

1011

Figure 1 (a) The RC Graph. (b) The Merged RC
Graph for a conventional DRAM

4

should not be too complex so as to offset the power saving
from reduced switching activity.

B. Pyramid Code

Let’s denote the Eulerian Cycle Problem on KN as ECPN.
Figure 2 shows the solutions to ECP1 (W1) through ECP4

(W4) with edges labeled by their traversal order. Wi

represents a cycle (v0,v1) (v1,v2)…. (vN,v0) by listing the
vertices in the traversal order [v0,v1,…. ,vN]. The solution to
ECP0 is trivially [0], which means a cycle of only one edge
(0,0) (W1 in Figure 2). To solve ECPk, consider ECPk as a
bipartition Kk-1,1. For example, W3 can be partitioned into

two sets W2 and {v2}. Assuming ECPk-1 has been solved by
Wk-1, introducing the new node vk-1 creates 2(k-1) cut edges
plus the singular self-edge (vk-1,vk-1). Starting from v0, these
edges can be traversed in the order [0, vk-1, 1, vk-1, 2, vk-1, 3,
…, vk-1, vk-2, vk-1, vk-1]. The formal description of this
process is stated as follows:

]0[1 =W

]1,1,2,1,...,2,1,1,1,0[&

)1(

1221

1

!!!!!!! "!!!!!!! #$
!"!#$!"!#$"#$"#$

pairsk

kk

kk kkkkkkWW

−

−−
− −−−−−−=

where ‘&’ denotes concatenate of two strings. For example:

]1,1,0,0[]1,1,0[&]0[2 ==W

]10,10,01,10,00,01,01,00,00[3 =W

]11,11,10,11,01,11,00,10,10,01,10,00,01,01,00,00[4 =W

The corresponding Pyramid Code generated from the
Eulerian cycle W4 is:

{0000, 0001, 0101, 0100, 0010, 1001, 0110, 1010,
1000, 0011, 1101, 0111, 1110, 1011, 1111, 1100}

We name it in this way because of its topology, which looks
like an i-dimensional pyramid -- W1 is a dot, W2 is a line,
W3 is a triangle, and W4 is a tetrahedron. Because of our
DRAM model, only W2j results in the Pyramid code.

C. Pyramid I Encoding Function

In Figure 3, we use a different representation to explain the
Pyramid I encoding function. A four-by-four matrix, H4,4 ,
represents the 16 addresses. The number inside a cell is the
reverse function P -1 of the Pyramid I encoding function P.
For example, P(3)=0100, so the cell in row 1, column 0 is
3. If we rotate the matrix H4,4 by 45 degrees in clockwise
direction and go through the numbers inside the cells
starting from zero and proceeding in an increasing order,
we observe the following pattern: (1) we traverse the cells
in a top-down manner; (2) we move in the same V-shaped
band until we visit all the cells; and (3) we jump back and
forth on both sides of the diagonal line. For the V-shaped
band corresponding to row 2 and column 2 (i.e., for
numbers 4 through 8) the pattern alternates between the left
stripe h2,0 and h2,1 and on the right stripe h0,2, h1,2, and h2,2.
After finishing these five cells, the next V-shaped band of
row 3 and column 3, which consists of 7 cells, will be
processed.
Based on this “seesaw” pattern, the encoding and decoding
functions can be realized. The whole matrix HN,N contains
N2 elements, hi,j. A proper sub-matrix, Hk,k, includes the left
upper portion of HN,N (e.g., the boxed squares H1,1, H2,2 ,
and H3,3). Hk,k has k2 elements. Let’s formally define the V-
shaped band of row k and column k as Bandk = Hk,k – Hk-1,k-

1, where the ‘-‘ sign is a set operation. Obviously, Bandk has
2k-1 elements labeled from (k-1)2 to k2-1 (e.g., 4 to 8 for
Band3). To encode any number x (say 6), there are three
steps: (a) determine whether it is on Bandk by calculating

W2

2

1

0

3

10

W1

0

0

W4

0

3

1

2

2

1

0

3

5

14

6

7

8

9

1011

12

13

15

4

0 1

2

2

1

0

3

6

7

8

5

4

W3

Figure 2 Examples of Eulerian cycles on the merged
RC graphs

5

the square root of x plus one (  316 =+); (b) separate the

numbers by the oddness (i.e., 5,7) or evenness (i.e. 4,6,8) of
their cardinality (this is possible because the numbers on
the same band are alternating on both sides of the diagonal
line); (c) determine offset on the band by subtracting (k-1)2

from x (6-4=2). We need to “right shift” the cells in the left
stripe (5,7) by one cell (i.e., h2,0 and h2,1 are right shifted to
h2,1 and h2,2, respectively). The last element on Bandk (8),
has to be put in the only available cell (h2,0) because its
default cell has been occupied by the second last element
(7).

The Pyramid I encoding function is:

1: edge (k,j,dir) {
2: if (dir==1)
3: return <k,j>;
4: else
5: if (k==j)
6: return <k,0>;
7: else
8: return <j,k>;
9: }
10:
11: Pyramid_I_Encoder (x) {
12:  xp = ;

13: 2pxq −= ;

14: return edge(p,q/2+q%2,q%2);
15: }

Lines 11-15 describe the main function, which decides the
band index p. Lines 1-9 calculate the exact offset on the
band. Lines 2-3 decide if it is in the row (dir=0) or the
column (dir=1) of the band. If it is in the column, Line 3
returns k and j as row and column, respectively. Otherwise,
Line 8 swaps the row and column addresses. Line 6 handles
the special case: the last cell on the band has to be
“wrapped” to the first column.

Theorem 2: The Pyramid I encoding function generates a
power-optimal multiplexed code for a conventional mode
DRAM address bus.

Proof. The Pyramid I encoding function traces a Eulerian
cycle of the corresponding merged RC-graph.

Unlike Gray code, Pyramid code is only optimal for
sequential access with increasing addresses. If the
sequential access pattern is decreasing, then the row and
column addresses have to be swapped to preserve the code
optimality.
In the implementation, we need a flooring square root
function unit, an add/subtract unit and multiplexers. Unlike
the square root function, the flooring square root function
can be calculated in constant time by parallel N-entry table
lookup. The oddness condition and shift operations can be
carried out by the adder and the least significant bit of the
difference between x and (k-1)2. This encoder is integrated
in the memory controller, so a variety of low power
techniques can be applied to reduce its power dissipation
overheard. The Pyramid decoding function can be found by
a similar method. However, because Pyramid code is
irredundant, the decoder is not needed in our proposed
memory organization. It is also possible to implement a
highly efficient Pyramid code incrementor and
decrementor. Details are omitted here due to space
limitation.
If the memory space is not too large, the encoding function
can be synthesized by two or multi-level logic optimization
techniques. Take 24 as an example, the original 4-bit
address b3b2b2b1 will be encoded into Pyramid address
a3a2a1a0. The Boolean functions describing the encoded bits
are given below.

03023 bbbba +=

02302301132 bbbbbbbbbba +++=

023123123021 bbbbbbbbbbba +++=

012013123230 bbbbbbbbbbba +++=

D. Theoretical Analysis

For binary code, the internal switching activity can be
calculated as

12

0

12 2)2(22)2(−

=

− === ∑ N
N

i

NNN
i

NN
I NNCSA .

The total switching activity of binary code is NN 22 , so the
external switching activity is

12222 2)2(2)2(−=−= NN
I

NN
E NSANSA .

Pyramid code virtually eliminates all the external switching
activity if the access pattern exhibits a pure sequential
pattern. As a result, Pyramid code applied to a conventional
DRAM bus can cut the switching activity in half.

E. Experimental Results

The purpose of our experiments is to quantitatively assess
the performance of Pyramid code compared to Binary code.

0 1 4 9

3 2 6 11

8 5 7 13

15 10 12 14

0 1 2 3

0

1

2

3

R

C

Figure 3 Matrix representation used to explain the
derivation of the Pyramid I encoding function

6

We need not compare it to Gray code because Gray code
performance is similar to Binary code performance on
multiplexed busses.
We assume that the total memory space is 64 Kbyte (16-bit
address). The address bus is 8-bits wide and row/column
multiplexed. We also assume that the code address bus and
data address bus are different, so the data addresses do not
disturb the sequential access pattern of the code addresses.
Each instruction is four-bytes long. Because the address is
increased by four each time, we have to make the addresses
consecutive by right-rotating them two bits before the
encoding. The rotation operation has low overhead and can
be integrated into the encoder. We assume that the total size
of the code block is 1024 bytes. To quantitatively evaluate
the effectiveness of the different degrees of address
sequentiality, we divide this code block into segments of 4,
8, ..., 1024 bytes. For example, if the segment size is 8, it
means that we have 128 segments with random starting
addresses and within each segment we have 2 sequential
addresses.
To eliminate bias due to the specific characteristics of an
instruction trace, we apply a statistical sampling technique
to compare Pyramid code to Binary code. More precisely,
we define a sampling unit as the total number of bit
transitions in a code block of 1024 instructions. We then
form a sample by taking the mean of the switching activity
values for 30 randomly generated sampling units. We report
the expected value of the total number of bit transitions per
code block of 1024 instructions by analyzing three sample
results. In our experience, the sample size and number of
samples is sufficient to provide high confidence (90% or
higher) and low error (5% or lower) for the reported results.
Pyramid code is more efficient than Binary code when the
segment size is larger than four (a segment size of four
corresponds to no sequential addressing whatsoever). In
practice, code segments of 8 or 16 bytes are typical. Once
the segment size is larger than eight, the reduction of
switching activity becomes close to 50% because Pyramid
code virtually eliminates all external switching activities.
We also notice that Binary code has similar internal and

external switching activity. Therefore, if the access pattern
exhibits a purely sequential pattern, Pyramid code will cut
the switching activity by a factor of two by eliminating the
external switching activity. Note that for segment size
greater than 32, Pyramid code reduces switching activity by
a little more than 50%. The reason is that when we go
through some arbitarry segments in the memory space, the
internal switching activity of Pyramid code will be different
from that of the Binary code. In these examples, the internal
switching activity of Pyramid code happened to be
smaller than that of Binary code. This is, however, not true
for the general case and, in fact, Binary code may result in
lower internal activity for a different set of examples.
Notice that the magnitude of the change in external
switching activity is much larger than that in interal
switching activity.
In a second experiment, we simulated three benchmarks
from the SPEC95 test suite. The three benchmarks are
compress, perl and ijpeg. Benchmarks compress and ijpeg
are representative of data intensive applications whereas
perl is representative of control intensive applications. We
simulated these benchmarks using SimpleScalar 2.0 [21]
and modified the sim-fast memory module to filter out
instruction addresses. All virtual addresses were used as
physical addresses. A total of 1,000,000 addresses were
collected for each benchmark. 32-bits addresses were
multiplexed over a 16-bit DRAM bus. We tried four
different encoding functions: Binary, Bus-Invert, Pyramid,

Binary vs. Pyramid

0

500

1000

1500

2000

2500

1024 512 256 128 64 32 16 8 4

Se gment S ize

Binary

Pyramid

Table 1

Sampling results for synthetically generated
address streams

Table 2

Total bit-level transition counts for three SPEC95
benchmarks: compress, perl and ijpeg tabulated from
left to right

SPEC95:
compress, perl, and ijpeg

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

B
in

ar
y

B
us

In
ve

rt

P
yr

am
id

P
yr

am
id

-B
I

B
in

ar
y

B
us

In
ve

rt

P
yr

am
id

P
yr

am
id

-B
I

B
in

ar
y

B
us

In
ve

rt

P
yr

am
id

P
yr

am
id

-B
I

B
it

T
ra

n
si

ti
o

n
s

Invert
External
Internal

7

and Pyramid-BI (Pyramid code plus Bus-Invert signal).1

Simulation results are presented in Table 2. Results show
that for compress and ijpeg test benches, Pyramid code has
the same internal switching activity as Binary and Bus-
Invert codes. However, Pyramid code reduces the external
switching activity on the multiplexed bus by 90%. In the
case of perl test bench, the combination of Pyramid and
Bus-Invert coding styles results in a significant
improvement over Pyramid code itself. The reason is that,
in this case, adding a Bus-Invert signal to the Pyramid code
causes a reduction in the internal switching activity.
We assume that the virtual and physical addresses are the
same. According to the random sampling experimental
results, as long as the sequentiality within a page is
preserved, Pyramid code can effectively reduce switching
activities.

III. REDUCING THE ENCODING FUNCTION COMPLEXITY

Pyramid code provides an asymptotic reduction in bus
switching activity by a factor of 2 compared to Binary code.
However, the Pyramid encoding function as proposed
above is quite complex. In this section, we present a new
encoding function, called Pyramid II, which has a
significantly more efficient logic realization.

A. Pyramid Series

Assume that a 2N-bit address space is multiplexed on an N-
bit bus. We use the row and column address tuple <r,c> to
represent the value r2N+c. Recall that Pyramid code
traverses a Eulerian cycle, and that listing the nodes can
represent the cycle. So we define Pyramid Series in order to
describe the code. First, we define the following series:

∏
=

⋅⋅=
i

j
i jiE

1

)(0 ∏
=

⋅⋅=
1

')(0
ij

i ijE

Symbol “!” is simply used as a delimiter between two
numbers. For example:

3132330

21220

110

0

3323130

22120

110

0

'
3

'
2

'
1

'
0

3

2

1

0

⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅=

⋅⋅=

=

⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅=

⋅⋅=

=

E

E

E

E

E

E

E

E

Clearly, Ei and E’i describe the same cycle of length 2i+1,
but in opposite directions. We will call them forward and
backward traversals, respectively. The total length of

1 Pyramid-BI code uses the Pyramid encoding function, but exploits a
redundant Bus-Invert signal to reduce the intra-address switching activity.
The manner in which the Bus-Invert signal is used is exactly the same as
the way it is used in a non-multiplexed bus.

∑
=

k

i
iE

0

is (k+1)2. Now, the original Pyramid I series (P) and

Pyramid II series (M) for 22N can be written as:

∏
−

=

=
12

0
22

N

N

i
iEP

∏
−

=
−−

−

⋅=
12

0

'

122

1

2)(
N

NN

i
ii EEM

For example,

3323130221201100

3210

12

0
216

2

22

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅=== ∏
−

=

EEEEEPP
i

ix

2122011031323300

)('
21

'
30

12

0

'

12216

1

222

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅=⋅== ∏
−

=
−−

EEEEEEMM
i

iix

Let p(i) be the i-th number in the Pyramid series (either P or
M). The encoding f of x is:

)1(2)()1(),()(++×=+= xpxpxpxpxf N

For example, binary number 6 is encoded by M as

7321)7(2)6()7(),6()6(2 =+×=+×== ppppf N

P16 and M16 are listed in the last two columns of Table 3.

B. Pyramid II Encoding Function

We next explain how the Pyramid II encoding function can
be efficiently implemented. First, the input number x is
divided into three fields: p, q, and s as in Figure 4. The most
significant N-1 bits are in field p. The least significant bit is
s. The remaining bits are in field q. Although p has only N-
1 bits, we consider p and q as N-bit unsigned integers, while
s is a 1-bit number. An example is given in columns 2, 3,
and 4 of Table 3.

We define a special operator s on a tuple or a scalar value:





=
=

=
1,

0,

sx

sx
x s





=
=

=
1,,

0,,
,

sxy

syx
yx

s

The operation is performed only when s=1. For a tuple <x,
y>, operator s swaps the two numbers and returns <y,x>.
For a scalar x, operator s complements x. More precisely, if
x is s itself, operator s returns (1-s). If x is p or q, the
operator returns xN −2 . Thereby, the Pyramid II encoding
function can be written as:

8










<+

>+

=

=Μ

qppsq

qppsq

qpp

sqp
s

s

ss

,,

,,

,0,

),,(

In Table 3, the fourth column shows the result of comparing
the p and q values. The other columns illustrate the
computation steps. We next provide an intuitive explanation
of why and how the M function generates the Pyramid II
encoding function.

Theorem 3: The Pyramid II encoding function generates a
power-optimal multiplexed code for a conventional mode
DRAM address bus.

Proof. The Pyramid II encoding function traces a Eulerian
cycle of the corresponding merged RC-graph.

C. Intuitive Explanation

To find the translation function from binary number x to
Pyramid code <r,c>, we can consider it in this way: in the
Pyramid series, find the x-th (r) and (x+1)-th (c) numbers.
Assume r is the j-th (from 0) number in Ei. We know that
either r or c must be i. If r=i, then c is either 0 or j/2. For

Pyramid I, we need to calculate the square root of x to
obtain i, which is a complex operation. Pyramid II solves
this problem by pairing Ei and E2

N
-i-1. The total length of

every pair is thus 2N+1, and there are 2N+1 pairs in total. Let
q.s denote the concatenation of the q and s fields. The p
field indicates the pair consisting of Ep and E’p’. The q.s
field indicates the position of this pair. To decide on Ep or
E’p’, (recall that the length of Ep is 2p+1), we compare q.s
with 2p+1, which is equivalent to comparing q with p. If
q<p (Case B), we should return the q.s–th number in

pE counting from the beginning of Ep; this number is

obviously q+s. If q>p (Case C), we should return the q.s–th
number in E’p’ counting from the end of E’p’; this number is
q’+s’. q=p (Case A) is the special case where x is next to
the boundary, and we should return p, p’, or 0.

D. Experimental Results

Comparing the two Pyramid encoding functions P and M,

the improvements include: (1) to calculate iE , P uses the

squared root function while M uses the N-1 most significant
bits; (2) to decide the different cases, M compares only the
p and q fields, but P needs to compare the results from a
subtraction operation; (3) M needs the complement
operation, which can be implemented efficiently; (4)
because s is either one or zero, an incrementer (instead of
an adder) can be used to perform the required addition
operation. Although M is much simpler to implement than
P in any aspect, P is independent of N. More precisely, pi is
a prefix of pj if i<j whereas Mi is completely different from
Mj if i≠j. This cannot be considered as a weakness of M
because in practice the bit width of the memory address bus
is known and fixed.
We used the ESPRESSO two-level logic minimization tool
to generate a near-optimal realization of Pyramid I and II
codes. The results are shown in Table 4. The savings
increase with the number of bits. For a 7-bit multiplexed
bus, the product term and literal count savings can be as
much as 81% and 84%, respectively. Note that the logic

x p q s ? q+s,p psq ,+ r,c M P

0 0 00 0 A _,0 0,0 0 0

1 0 00 1 A _,3 0,3 3 1

2 0 01 0 C 3,3 3,3 15 5

3 0 01 1 C 2,3 3,2 14 4

4 0 10 0 C 2,3 2,3 11 2

5 0 10 1 C 1,3 3,1 13 9

6 0 11 0 C 1,3 1,3 7 6

7 0 11 1 C 0,3 3,0 12 10

8 1 00 0 B 0,1 0,1 1 8

9 1 00 1 B 1,1 1,1 5 3

10 1 01 0 A _,1 1,0 4 13

11 1 01 1 A _,2 0,2 2 7

12 1 10 0 C 2,2 2,2 10 14

13 1 10 1 C 1,2 2,1 9 11

14 1 11 0 C 1,2 1,2 6 15

15 1 11 1 C 0,2 2,0 8 12

Table 3

M and P series for Pyramid I and II codes

Table 4

Espresso Synthesis results for Pyramid I and II
encoders

Number of Product Terms Number of LiteralsN

P M P/M

(%)

P M P/M

(%)

2 13 13 100 32 35 109

3 40 35 87 158 129 82

4 131 81 61 716 385 54

5 428 178 41 3003 1033 34

6 1319 377 28 11316 2587 22

7 3977 784 19 39106 6212 16

q s

N-1 N 1

p

Figure 4 The p, q, and s fields for a 2N-bit number

9

complexity of the Pyramid encoder increases rapidly with
the number of bits. In practice, we only need to generate
Pyramid code for the, say 8, least significant bits of the
address bus.

A reasonable question at this time is what the power
dissipation overhead of the Pyramid II encoder and decoder
functions are. We synthesized the Pyramid-II encoder
function for 8-bit and 12-bit multiplexed address busses
using a 0.5-micron ASIC library from HP. We then
simulated each circuit using 210 and 216 vectors,
respectively and calculated the internal power dissipation of
the encoder at a clock frequency of 100 MHz. We found
this power dissipation to be less than 5% of the power
dissipation on the bus (each bus bit line driver sees a 2 pF
capacitive load). So, in fact, the power dissipation of the
Pyramid encoder and decoder circuitry, although not
negligible, is rather small. Furthermore, the
encoder/decoder latency is quite small compared to the
latency for bus transactions and hence the performance
effect of Pyramid code is negligible.

IV. EXTENSION TO BURST MODE DRAM

A. Single-bank Burst Mode DRAM

Pyramid code can be extended to the burst mode DRAM.
We assume that all the read/write accesses are of fixed
length L, i.e., the addresses must be aligned at L-byte

boundaries. Assuming L=2, the column set C is reduced to
C’’ as shown in the redrawn RC graph G3 in Figure 5(a).
The forward-edges that represent the internal switching
activities are shown while the back-edges that represent the
external switching activities are not shown. Our goal is to
construct a cycle that visits all of the forward edges exactly
once while minimizing the sum of the weights of the back-
edges. We build the merged RC graph G4 in Figure 5(b),
where we have merged nodes of C” with the corresponding
nodes of R. If a Eulerian cycle of G4 is found, we have
optimally solved the problem on G3. However, no Eulerian
cycle of G4 exists.

To construct such a cycle, we must insert some back-edges
into G4. In the merged RC graph G4, there is a complete
graph embedded on the set of nodes in C’. Consider G5 in
Figure 6 as a bipartite graph – with disjoint sets C’ and R’
and the cut edge set E’. E’ contains all of the forward edges
from R’ to C’. To construct a Eulerian cycle, according to
the sufficient and necessary conditions for the existence of
a Eulerian cycle, we need  R’× C’ back-edges, or for
each node v in C’, we need  R’ back-edges. To minimize
the weighted sum of the back-edges, we choose the
minimum-weight edge (v,u*) and duplicate it  R’ times.
Finally, the multigraph G5 is created as depicted in Figure
6.

Theorem 3: A Eulerian cycle of graph G5 yields a power-
optimal multiplexed code for sequential burst-mode
addressing of the corresponding address space.

Proof. The proof is similar to that of Theorem 1 and
follows from the construction of G5 for the burst mode
DRAM, where we add the minimum number of back-edges
that are required to complete the Eulerian cycle, and
furthermore, the additional back-edges have the minimum
possible weight.

It is then easy to construct the Burst Pyramid code. For the
example in Figure 6, we get the following code:

{0000, 0100, 0110, 1100, 0010, 1010, 1110, 1000}

The four underlined numbers are added to the original
Pyramid code for C’ and cause external switching activity

(a) G3

R

00 01

10 11

00

10

C”

(b) G4

C’

00 01

10 11

0010

0100

1110

1100

1010

0000

1000

R’

0110

Figure 5 (a) The RC graph and (b) The merged RC
graph for an aligned access with L=2

00 01

10

C’ R’

11

G5

Figure 6 The merged RC graph G5 for burst mode
DRAM

10

represented by the back-edges (00,01), (00,01), (10,11), and
(10,11). The encoding function can be synthesized as:

00 ba =

12231 bbbba +=

12232 bbbba +=

1223133 bbbbbba ++=

B. Multi-bank Burst Mode DRAM

The memory controllers often support several memory
banks. We take the non-multiplexed bank-select signals into
account and thereby develop an Interleaved Pyramid
encoder to solve the optimal encoding problem on a
partially multiplexed address bus for the burst mode
DRAM.
In a real micro-controller or memory controller, there are
usually a set of Bank-Select signals to enable different
memory chips. These signals are not multiplexed but are
considered part of the address. There are two basic reasons
for using multiple banks: (1) capacity - to provide the
required memory size; in this case, the most significant bits
are used to select banks. (2) interleaving - to reduce access
time; in this case, the least significant bits are used to
select banks. We treat this kind of memory organization as
a partially multiplexed address bus. We use the notation m-
m-b bus to describe a partially multiplexed bus where 2m
bits are multiplexed and b bits are non-multiplexed.
By using the RC-graph, the optimal encoding for multi-
bank conventional DRAM can be easily found – apply
Pyramid code to the m-bit multiplexed sub-bus and Gray
code to b-bit non-multiplexed sub-bus. However, we are
interested in the burst mode DRAM. Because of the caches
(for instruction and data), memory transactions are usually
initiated in burst mode by the cache-line fill or write back
events. Therefore, the burst length 2k is programmed as the
same as the cache-line size, and the starting address needs
to be aligned with the cache-line size 2k. Since only the first
row and column addresses of the block are required to be
sent in burst mode, we can assume that the least significant
k address bits are always zero. Although Extended Pyramid
code as described above provides the optimal encoding for
a single burst mode DRAM bank, we can and should
attempt to further reduce the switching activity by using
multiple banks.

Figure 7 shows the organization of a 4-way Interleaved
Pyramid encoder. A and D denote the high capacitance
address and data busses between the encoder and the
decoder, respectively. The Pyramid II encoder and decoder
are employed to reduce the switching activity on this bus.
For a fixed burst length of 2B, 2B banks are used. Instead of
using the most significant bits (MSB) or the least
significant bits (LSB) to select the banks, we use the
encoded least significant B bits for the Chip-Enable inputs
E. In this way, the banks are interleaved (although not in a

regular pattern). Because the least significant B bits are
supposed to be zero, these bits need to be converted to zero
on the decoder side.
The above organization assumes that the bus width is one
byte. If the bus width is 2w, only 2k-w banks are needed.

Theorem 4: The Interleaved Pyramid encoding function
generates the minimum switching activity for sequential
access for a k-way interleaved burst mode DRAM with
fixed burst length of k.

Proof. Assume an N-N-B partially multiplexed bus and
k=2B fixed burst length. Because the 2B memory banks
share the N-bit multiplexed bus, the encoder must generate
all of the 22N different numbers. We create the complete
RC-graph),(

2
EVK N

to represent the 22N numbers. There

are 2B banks, so the 22N edges have to be evenly partitioned
into 2B subsets. However, the partitioning is not arbitrary.
Since in the burst mode, the least significant B bits are fixed
(in fact, they should be zero to be correctly aligned and can
be so by adding inverters on the decoder side), the
partitioning should depend on the column addresses. The
Interleaved Pyramid encoder divides the vertices into k
subsets 110 ..., −kVVV , and iVv ∈ if f(v)=(v mod k)=i. An

edge (u,v) is assigned to bank i if iVv ∈ . We define the

bank switching activity
BSA on the non-multiplexed sub-

bus as))(),((),(vfufdvuSAB = , where the distance

function),(yxd is the Hamming distance between x and

y. For any encoding function on),(
2

EVK N
, the total

internal and bank switching activities are fixed. However,
the external switching activity can change. The Interleaved
Pyramid encoder generates a Eulerian cycle on),(

2
EVK N

and has zero external switching activity. So it is an optimal
encoding function.

CPU

D A

P-Encoder

cache

D A

E

D A

E

D A

E

D A

E

P-Decoder

B0 B1 B2 B3

N

2N+2

Figure 7 A 4-way Interleaved Pyramid Encoder

11

C. Experimental Results

The purpose of our experiments is to quantitatively assess
the performance of the Interleaved Pyramid encoder
compared to a conventional k-bank memory organization
with binary encoder. We assume that the total memory
space is 64K bytes (16-bit address space). There are 4
interleaved banks. The address bus is 8-8-2 partially
multiplexed. Since the code address bus and data address
bus are different, the data addresses do not disturb the
sequential access pattern of the code addresses. We assume
that the total size of the code block is 1024 bytes. To
quantitatively evaluate the effectiveness of the different
degrees of address sequentiality, we divide this code block
into segments of 4, 8, ..., and 1024 bytes. For example, if
the segment size is 8, it means that we have 128 segments
with random starting addresses and within each segment we
have 8 sequential addresses.
We apply statistical sampling techniques to report the
results. More precisely, we define a unit of sampling to be
the total number of bit transitions in a code block of 1024
instructions. We then form a sample by taking the mean of
the transition count values for 30 randomly generated
sampling units. We report the expected value of the total
number of bit transitions per code block by analyzing 3
sample results. In our experience, the sample size and
number of samples are sufficient to provide high confidence
(90% or higher) and low error (5% or lower) for the
reported results.
Table 5 shows the switching activity savings for different
burst lengths. The horizontal axis depicts the segment size
whereas the vertical axis shows the ratio of the bus
activities for the Interleaved Pyramid encoder vs. the
Binary encoder. Interleaved Pyramid code always
outperforms Binary code for every burst length and
segment size. The switching activity saving increases (i.e.,
the activity ratio decreases) as the segment size increases.
This is because of the increased sequentiality of the code
addresses. On each curve in this figure, there is a knee at

the burst length. When the segment size becomes larger
than the burst length, the activity saving rate increases
significantly from about 20% to 60%.

V. CONCLUSIONS

In this paper, we presented Pyramid code, which is an
irredundant power-optimal code for a level-signaling
multiplexed memory bus. We formulated the problem as
that of finding a Eulerian cycle on a complete or partial RC
graph. We described two variants of the Pyramid encoder
and showed that the Pyramid II encoder is superior to the
Pyramid I encoder due to the simplicity of its function
realization, which in turn minimizes the area and
performance overhead of the address encoder on the
memory bus. Using ESPRESSO to generate a near-optimal
logic realization of the Pyramid I and II encoders, we
showed a product term savings of 81% for the Pyramid II
encoder compared to the Pyramid I encoder. Next, we
considered single-bank and multi-bank burst mode DRAM
organizations, and proposed Burst and Interleaved Pyramid
code to solve the optimal encoding problem on the memory
address bus. Burst and Interleaved Pyramid codes are
compatible with both the Pyramid I and II encoding
functions, although results were presented for the Pyramid
II encoder only. Experimental results showed that
Interleaved Pyramid code reduces switching activity on the
bus by an average of 40% compared to the binary code.
If redundancy is allowed for encoding, we can employ the
Bus-Invert signal to further reduce the memory bus
switching activity. The combination of the Bus-Invert
signal and Pyramid code is particularly promising as was
demonstrated in the simulation results obtained for the perl
benchmark.

REFERENCES

[1] E. Macii, M. Pedram, and F. Somenzi, “High level power
modeling, estimation and optimization,” IEEE Trans. on
Computer Aided Design, Vol. 17. No. 11, pp. 1061-1079,
Nov. 1998.

[2] M. Pedram, “Power minimization in IC design: principles
and applications,” ACM Trans. on Design Automation of
Electronic Systems, Vol. 1, No. 1, pp. 3-56, Jan. 1996.

[3] C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in
the control path of embedded processors,” IEEE Design and
Test of Computers, Vol. 11, No. 4, pp. 24-30, 1994.

[4] W. C. Cheng and M. Pedram, “Power-optimal encoding for
DRAM address bus,” Proc. of Int’l Symp. on Low Power
Electronics and Design, pp. 250-252, July 2000.

[5] W. C. Cheng and M. Pedram, “Low power techniques for
address encoding and memory allocation,” To appear in
Proc. of Asia and South Pacific Design Automation
Conference, Jan. 2001.

[6] R. Murgai, M. Fujita, and A. Oliveria, “Using
complementation and resequencing to minimize transitions,”
Proc. of Design Automation Conf., pp. 694-697, June 1998.

[7] R. Murgai and M. Fujita, “On reducing transition through
data modifications,” Proc. of Design, Automation and Test in
Europe, pp. 82-88, 1999.

[8] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-
power I/O,” IEEE Transactions on VLSI Systems, Vol. 3, No.
1, pp. 49-58, 1995.

Table 5

Switching activity ratio of Interleaved Pyramid vs.
Binary codes for different burst lengths: 4, 8, 16 and 32

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10
24 51

2

25
6

12
8 64 32 16 8 4 2 1

Segment Size

A
ct

iv
it

y
R

at
io

4
8
16
32

12

[9] Y. Shin, S. Chae, and K. Choi, “Partial bus-invert coding for
power optimization of system level bus,” Proc. of Int’l Symp.
on Low Power Electronics and Design, pp. 127–129, Aug.
1998.

[10] S. Yoo and K. Choi, “Interleaving partial bus-invert coding
for low power reconfiguration of FPGAs,” Proc. of the Sixth
Int’l Conf. on VLSI and CAD, pp. 549-552, 1999.

[11] M. R. Stan and W. P. Burleson, “Two-dimensional codes for
low power,” Proc. of Int’l Symp. on Low Power Electronics
and Design, pp. 335-340, 1996.

[12] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano,
“Address bus encoding techniques for system-level power
optimization,” Proc. of Design Automation and Test in
Europe, pp. 861-866, Feb. 1998.

[13] W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano,
“Power optimization of system-level address buses based on
software profiling,” Proc. of the Eighth Int’l Workshop on
Hardware/Software Codesign, pp. 29-33, 2000.

[14] M. R. Stan and W. P. Burleson, “Coding a terminated bus for
low power,” Proc. of Fifth Great Lakes Symp. on VLSI, pp.
70–73, 1995.

[15] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the locality
of memory references to reduce the address bus energy,”
Proc. of Int’l Symp. on Low Power Electronics and Design,
pp. 202-207, Aug. 1997.

[16] S. Komatsu, M. Ikeda, and K. Asada, “Low power chip
interface based on bus data encoding with adaptive code-
book method,” Proc. of the Ninth Great Lakes Symp. on
VLSI, pp. 368-371, 1999.

[17] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “A coding
framework for low-power address and data busses,” IEEE
Trans. on VLSI, Vol. 7, No. 2, pp. 212-221, June 1999.

[18] L. Benini, G. DeMicheli, E. Macii, M. Poncino, and S. Quer,
“System-level power optimization of special purpose
applications: the beach solution,” Proc. of Int’l Symp. on Low
Power Electronics and Design, pp. 24-29, Aug. 1997.

[19] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Synthesis of low-overhead interface for power-efficient
communication over wide busses,” Proc. of Design
Automation Conf., pp. 128-133, June 1999.

[20] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A
performance comparison of contemporary DRAM
architectures,” Proc. of the 26th Int’l Symp. on Computer
Architecture, pp. 222-233, May 1999.

[21] D. Burger and T. M. Austin. The SimpleScalar Tool Set.
Version 2.0, Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

