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Abstract

Switching activity estimation in combinational circuits is addressed from a probabilistic point of view. The

zero-delay model is used and under correlated input sequences, activities at the circuit outputs and internal

circuit nodes are estimated using lag-one Markov Chains and conditional probabilities to manage complex

spatiotemporal correlations. Two new concepts - conditional independence and isotropy of signals - are

brought into attention and based on them, sufficient conditions for exact analysis of complex dependencies

are given. Based on these notions, it is shown that the relative error in calculating the switching activity of

a logic gate using only pairwise probabilities can be upper-bounded. In the most general case, the

conditional independence problem has been shown to be NP-complete and thus appropriate approximation

techniques (with bounded error) are presented to estimate switching activity. Evaluations of the model and

a comparative analysis of benchmark circuits demonstrates the accuracy and the practicality of the method.

1. Introduction

With the growing need for low-power electronic circuits and systems, power analysis and low-power

synthesis have become primary concerns for the CAD community. To calculate average power

consumption of a gate in a synchronous CMOS circuit, one can use the well-known formula Pavg(x) = 0.5

(Vdd
2 / Tcycle) Cload sw(x) where Vdd is the supply voltage, Tcycle is the clock cycle period, Cload is the load

capacitance and sw(x) is the switching activity of the output x of any gate in the circuit [1].

Power estimation techniques must be fast and accurate in order to be applicable in practice. Not

surprisingly, these two requirements interact and at some point they become contradictory. Simulation-

based techniques can provide high level of accuracy, but the run time is very high; one can extract

switching activity information by exhaustive simulation on small circuits, but it is unrealistic to rely on

simulation results for larger circuits. Few years ago, probabilistic techniques came into the picture and

demonstrated their usefulness at least for limited purposes. The key issue was from the very beginning

switching activity estimation because charging and discharging different load capacitances is by far the

most important source of energy dissipation in digital CMOS circuits [2].

Common digital circuits exhibit many dependencies; the most known one is the dependency due to

reconvergent fan-out among different signal lines, but even structurally independent lines may have
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dependencies (induced by the sequence of inputs applied to the circuit) which cannot be neglected.

Accounting for all kinds of dependencies is impossible even for small circuits; consequently, for real-size

circuits, only some of the dependencies have been considered and even then, only heuristics have been

proposed. This is because of the difficulty in managing complex data dependencies with acceptable levels

of computational work.

Besides dependencies described above (called also spatial dependencies), another type of

correlations, namely temporal may appear in digital circuits. Let us consider a simple case to illustrate

these issues. The circuit in Fig.1 is fed successively by three input sequences, S1, S2 and S3; S1 is an

exhaustive pseudorandom sequence, S2 is also an exhaustive sequence but generated by a 3-bit counter

and S3 is obtained by a ’faulty’ 3-bit counter.

Fig.1: An illustration of spatiotemporal correlations

All three sequences have the same signal probability on lines x, y and c (p = 0.5), but even intuitively

they are completely different. There are two other measures which differentiate these sequences, namely

transition and conditional probabilities, and switching activity calculations should rely on them. In fact,

these sequences exercise the circuit such that the number of transitions N1, N2, N3 on each signal line a,

b, z (and hence the total number of transitions) becomes quite different once we feed S1, S2, or S3

respectively. In order to accurately compute the number of transitions, calculations based on signal

probabilities should undoubtedly account for the influence of reconvergent fan-out, specifically in the

previous figure, a and b cannot be considered independent signal lines. This problem could be solved

(but only for small circuits) by building global OBDD’s in terms of primary inputs, but even so,

neglecting the correlations among primary inputs can lead to incorrect results. As we see in this example,

assuming input independence for sequences S2 and S3, is an unrealistic hypothesis because the patterns in

each of them are temporally correlated (for example, each pattern in sequence S2 is obtained from the

previous one by adding a binary 1). Even more than that, transitions as 0 → 1 or 1 → 0 on apparently
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independent signal lines (like x and c in Fig. 1) are correlated and a detailed analysis on these input

streams reveals strong spatial relationship. Consequently, to compute accurately the switching activity on

a node-by-node basis, one has to account for both spatial and temporal dependencies starting from the

primary inputs and continuing throughout the circuit.

This paper proposes a new analytical model which accounts for spatiotemporal correlations under a

zero-delay model. Its mathematical foundation is probabilistic in nature, and consists of using lag-one

Markov Chains to capture different kinds of dependencies in combinational circuits [3]. Temporal

correlations for the values of some signal x in two successive clock cycles are considered through a

Markov Chain with only two states; spatial correlations for pairs of signals (x,y) are modeled by a four-

state Markov Chain. For the first time to our knowledge, we have considered in a systematic way

different kinds of dependencies in large combinational modules for both pseudorandom and highly

correlated input streams. To summarize, the basic assumptions we use throughout the paper are:

• the target circuit is combinational and the logic value of any signal line x can only be 0 or 1;

• under a zero-delay model, any signal line x can switch at most once within each time step.

Under these hypotheses, this paper presents theoretical and practical evidences that conditional

independence is a concept powerful enough to overcome difficulties arising from structural dependencies

as well as highly correlated input streams [4]; more precisely, based on conditional independence and

signal isotropy concepts, we give a formal proof showing that the statistics taken for pairwise correlated

signals are sufficient enough to characterize larger sets of dependent signals.

The practical value of these results becomes particularly evident during optimization and synthesis

for low-power; a detailed analysis presented here illustrates the importance of being accurate node-by-

node (not only for the total power consumption) and identifies potential drawbacks in previous

approaches when patterns feeding the inputs become highly correlated. To support the potential impact

of this research, experimental results are presented for benchmark circuits.

The paper is organized as follows. First, we review the prior work relevant to our research. In Section

3 we present in detail an analytic model for switching activity estimation which accounts for

spatiotemporal correlations. In Section 4 we present global and incremental propagation mechanisms for

transition probabilities and transition coefficients calculation. We also provide a measure of the

algorithmic complexity for the proposed propagation mechanisms. In Section 5 we improve the results

given in Section 4 in the sense that we provide an enhanced incremental propagation mechanism using

the concepts of conditional independence and signal isotropy. In Section 6 we give some practical

considerations and report our results on common benchmark circuits. Finally, we summarize our main

contribution and we indicate possible extensions of the present work.
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2. Prior Work

Most of the existing work in pseudorandom testing and power estimation relies on probabilistic methods

and signal probability calculations. One of the earliest works in computing the signal probabilities in

combinational circuits is presented in [5]. While the algorithm is simple and general, its worse case time

complexity is exponential. For tree circuits which consist of simple gates, the exact signal probabilities can

be computed during a single post-order traversal of the network [6]. An algorithm, known as the cutting

algorithm, which computes lower and upper bounds on the signal probability of reconvergent nodes is

presented in [7]. The bounds are obtained by cutting the multiple-fanout reconvergent input lines and

assigning an appropriate probability range to the cut lines and then propagating the bounds to all the other

lines of the circuits by using propagation formulas for trees. The algorithm runs in polynomial time in the

size of the circuits. Ercolani et al. present in [8] a procedure for propagating the signal probabilities from

the circuit inputs toward the circuit outputs using only pairwise correlations between circuit lines and

ignoring higher order correlations. The signal probability of a product term is estimated by breaking down

the implicant into a tree of 2-input AND gates, computing the correlation coefficients of the internal nodes

and hence the signal probability at the output. Similarly, the signal probability of a sum term is estimated

by breaking down the implicate into a tree of 2-input OR gates.

People working in power estimation have also considered the issue of signal probability estimation. An

exact procedure based on Ordered Binary-Decision Diagrams (OBDDs) [9] which is linear in the size of the

corresponding function graph (the size of the graph, of course, may be exponential in the number of circuit

inputs) can be found in [10]. Using an event-driven simulation-like technique, the authors describe in [10]

a mechanism for propagating a set of probability waveforms throughout the circuit. Unfortunately, this

approach doesn't take into account the correlations that might appear due to reconvergent fan-out among the

internal nodes of the circuit. The authors in [11] use symbolic simulation to produce exact boolean

conditions for switching at a particular node of the circuit. However, this approach is expensive in terms of

computational cost (time and space requirements).

Recently, a few approaches which account for correlations have been proposed. Using an event-

driven probabilistic simulation technique, Tsui et al. account in [12] only for first-order spatial

correlations among probabilistic waveforms. Kapoor in [13] suggests an approximate technique to deal

with structural dependencies, but on average the accuracy of the approach is modest. In [14] the authors

rely on lag-one Markov Chains and account for temporal correlations; unfortunately, they assume

independent transition probabilities among the primary inputs and use global OBDDs to evaluate

switching activity (severely limiting the size of the circuits they can process).

In what follows, we introduce a new model which extends over the previous work by taking into account
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spatiotemporal correlations at the primary inputs of the target circuit.

3. An analytical model for dependencies

We adopt the conventional probability model which consists of the triplet (Ω, Σ, p), where Ω represents the

sample space, Σ denotes the class of events of interest and p is the probability measure associated to Σ.

3.1. Temporal correlations

Let us consider first a combinational logic module fed in turn by the input vectors V1,V2,...,Vn.

Fig.2: Temporal effects on any signal line x

While the input vectors V1,V2,...,Vn are applied at the primary inputs of the circuit at time steps 1, 2,...,

n, the logic value of any line x may be 0 or 1. Hence, under a zero-delay model, x may switch at most once

during each clock cycle.

Definition 1: If xn is a random variable which describes the state of line x at any time n, then its behavior

can be described by a lag-one Markov Chain {xn}n≥1 (Fig.3), over the state set Ω = {0,1}, through the

transition matrix Q [15]:

                                                                                                                                         (1)

Fig.3: A lag-one Markov Chain describing temporal effects on line x

Every entry  in the Q matrix represents the conditional probability of signal line x and may be viewed

as the one-step transition probability to state j at step n from state i at step n-1. The expressions for these

conditional probabilities are:
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                                           (2)

We note that Q is a stochastic matrix that is, every column adds to unity:

                                                                                                                                  (3)

A lag-one Markov Chain has the property that one-step transition probabilities do not depend on the

‘history’, i.e they are the same irrespective of the number of previous steps. The process {xn}n≥1 is

homogeneous and stationary: indeed, because any combinational circuit is a memoryless device, having a

homogeneous and stationary distribution at the primary inputs is a sufficient condition for homogeneity and

stationarity to hold throughout the circuit [15]. Because the process {xn}n≥1 is homogeneous, then the

probability distribution of the chain P may be expressed as:

                                                                                                                                                                                           (4)

where P0 is the initial distribution vector. Because the process {xn}n≥1 is also stationary, then relation (4)

becomes:

                                                                                                                                                                                                      (5)

Proposition 1: The signal probabilities may be expressed in terms of conditional probabilities as follows:

                                                                         (6)

Proof: Relation (5) may be written explicitly as:

or  and ,

where p(x =1) represents the signal probability of line x. On the other hand we have that p(x = 0) = 1 - p(x

= 1), respectively   p(x = 1) = 1 - p(x = 0) and then relations (6) follow immediately. ■

Definition 2: We define the transition probabilities of any signal line x as follows:

                                                                                               (7)

Signal, conditional and transition probabilities associated to any signal line x are not independent measures.

The following two propositions describe quantitatively the relationship between them.
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Proposition 2: Transition probabilities may be expressed in terms of conditional probabilities as:

                                                           (8)

Proof: Using relation (2) and stationarity of the process, we have:  for any

values i, j = 0,1. From relation (6), the above formulas are straightforward. ■

Proposition 3: Conditional probabilities may be expressed in terms of transition probabilities as:

                                            (9)

Proof: It suffices to use the following two identities obtained from relations (8):

. ■

Example: Suppose that the signal line x takes a set of binary values described by the following string
“aababaaabb”, where a, b ∈{0, 1}. To compute the signal, conditional and transition probabilities, we
have to do the following calculations:
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occurring 4 times).
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a).
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Based on these probabilities we can define the stochastic matrix Q as: .

• Transition probability calculations

 (follows immediately from equations (8) and (6))

.

Relying on Propositions 1, 2, and 3, the relationship between signal, conditional and transition

probabilities can be illustrated as in Fig.4.

Fig.4: The paradigm of signal, conditional and transition probabilities

As we can see, to compute the signal probabilities we need less information, but the ability to derive

anything else is severely limited; on the other hand, once we get either conditional or transition probabilities

we have all we need for that particular signal.

Definition 3: For any signal line x, the switching activity is:

                                                                                                    (10)

Note: we should point out that (10) reduces to the well-known formula

only if the events are temporally uncorrelated. As long as we

deal with temporally correlated signals, the exact relationship (10) should be used.

3.2. Spatial correlations

This type of correlations has two important sources:

• Structural dependencies due to reconvergent fanout in the circuit;

• Input dependencies that is, spatial and/or temporal correlations among the input signals which are the

result of the actual input sequence applied to the target circuit.

Referring to the combinational module in Fig.5, lines x and y are obviously correlated due to the
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reconvergent fanout; on the other hand, even independent signal lines like the primary inputs of this module

may also become correlated due to a particular input sequence (as is the case with sequences S2 and S3 in

Fig.1when structurally independent lines x and c become correlated).

Fig.5: Two spatially correlated signal lines x and y

To take into account the exact correlations is practically impossible even for small circuits. To make

this problem more tractable, we allowed only pairwise correlated signals, which is undoubtedly an

approximation, but provides good results in practice. Consequently, we considered the correlations for all

16 possible transitions of a pair of signals (x,y) and modeled it as a lag-one Markov Chain with 4 states

(denoted by 0, 1, 2, 3 which stand for encoding 00, 01, 10, 11 of (x,y)).

Fig.6: A lag-one Markov Chain describing spatial correlations between lines x and y

Definition 4: We define the conditional probability which corresponds to the pair of signals (x,y) (denoted

by ) as:

                                                                                                (11)

where a, b = 0, 1, 2, 3, a being encoded as ij and b as kl. It basically describes the probability that the pair

of signals (x, y) goes from state ij at time n-1 to state kl at time step n.

Ercolani et al. consider in [8] structural dependencies between any two signals in a circuit, through the

signal correlation coefficients (SCs); these coefficients can be expressed as:

                                                                                                                                                           (12)
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use the following approximation:
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Differently stated, the correlation coefficient among three signals was defined as:

                                                                                                                                      (13)

which is then equal to:

                                                                                                                                                            (14)

Our approach is more general; in order to capture the spatial correlations between signals, for each pair of

signals (x,y) and for all possible transitions, we consider the transition correlation coefficients (TCs).

Definition 5: We define the TC for two signals x, y as:

                                                                                          (15)

where i, j, k, l = 0, 1.

Note: considering two spatially correlated signals a and b, based on TCs defined above we have for instance

 instead of

 as it would be the case if a and b were uncorrelated.

Proposition 4: For every pair of signals (x,y) and all possible values i, j = 0, 1, the following holds:
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Hence, from the above relation, applying (12) and (13) we get

and hence the required relation is satisfied.■

Proposition 5: For every pair of signals (x,y) the following equations hold:

∀ i = 0, 1                                                                                                             (17)

∀ j = 0, 1.

The set of 4 equations and 4 unknowns i, j = 0, 1 is indeterminate. Moreover, the matrix of the system

has the rank ≤ 3 in non-trivial cases (i.e. when none of the signal probabilities is 1).

Proof: From the definition of SC, we get:

.

The second equation follows in a similar manner.■

Proposition 6: For every pair of signals (x,y) the following equations hold:

∀ i, k = 0, 1;                                                                                                (18)

∀ j, l = 0, 1.

The above set of 8 equations and 16 unknowns i, j, k, l = 0, 1 is indeterminate; the matrix of the

system has the rank ≤ 7 in non-trivial cases (i.e. none of the transition probabilities is 1).

Proof: Similar to the proof for Proposition 5, but using the definition of TC.■

The last two propositions are very important from a practical point of view. The set of equations

involving SCs may be solved knowing only  for example, and that was the approach taken by Ercolani

et al. in [8] (although, no similar analysis appeared in their original paper). In the more complex case

involving TCs, we need to know at least 9 out of 16 coefficients in order to deduce all other values.

4. Propagation Mechanisms

In what follows we ignore higher order correlations that is, correlations between any number of signals are

expressed only in terms of pairwise correlation coefficients; the same assumption was used in [8], but only
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for signal correlation coefficients.

Definition 6: We define the TC among three signals as:

                                                                                                                          (19)

Neglecting higher order correlations, we therefore assume that the following holds for any signals x, y, z and

any values i, j, k, l, m, n = 0, 1:

                                                                                                                                  (20)

Definition 6 and relation (20) may be easily extended to any number of signals. Based on the above

assumption, we use an OBDD-based procedure for computing the transition probabilities and for

propagating the TCs through the network. The main reason for using the OBDD representation for a signal

is that it is a canonical representation of a Boolean function and that it offers a disjoint cover which is

essential for our purposes. Depending on the set of signals with respect to which we represent a node of the

boolean network, two approaches may be used:

• The global approach: for each node, we build the OBDD in terms of the primary inputs of the circuit;

• The incremental approach: for each node, we build the OBDD in terms of its immediate fanin and

propagate the transition probabilities and the TCs through the boolean network.

The first approach is more accurate, but requires much more memory and run time; indeed, for many

large circuits, it is nearly impractical. The second one offers accurate enough results whilst being more

efficient as far as memory requirements and run time are concerned.

4.1. Computation of transition probabilities

Let f be a node in the boolean network represented in terms of n (immediate fanin or primary input) variables

x1, x2,..., xn; f may be defined through the following two sets of OBDD paths:

 - ∏1 - the set of all OBDD paths in the ON-set of f;

 - ∏0 - the set of all OBDD paths in the OFF-set of f;

Some of the approaches reported in the literature (e.g. [11]), use the XOR-OBDD of f at two consecutive

time steps to compute the transition probabilities. We consider instead only the OBDD of f and through a

dynamic programming approach, we compute the transition probabilities more efficiently.

Based on the above representation, the event ‘f switching from value i to value j’ (i, j = 0, 1), may be written

as:

                                                                                                                                               (21)

TCijk lmn,
xyz p xi l→ y j m→ zk n→( )

p xi l→( ) p y j m→( ) p zk n→( )
---------------------------------------------------------------=

TCijk lmn,
xyz

TCij lm,
xy

TC jk mn,
yz

TCik ln,
xz

=

f i j→ xkik jk→
k 1=

n

∩
π' Π j∈
∪

π Πi∈
∪=
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where ik, jk are the values of variable xk on the paths π and π’ respectively (that is xk = ik for path π, xk = jk

for path π’, where ik, jk = 0, 1, 2, where 2 stands for don’t care values) for each k = 1, 2,..., n. In other words,

this event basically represents the union over all possible switchings from a path (i1, i2,..., in) to a path (j1,

j2,..., jn). Thus, the probability that f switches from i to j may be expressed as:

                                                                                                                               (22)

Applying the property of disjoint events (which is satisfied by the collection of paths in the OBDD), the

above formula becomes:

                                                                                                                                (23)

However, since the variables xk may not be spatially independent of one another, the probability of a path

to ‘switch’ from (i1, i2,..., in) to (j1, j2,..., jn) cannot be expressed as the product of transition probabilities

for individual variables. Instead, we will use the following result which holds if we neglect higher order

correlations.

Proposition 7: If relation (20) is true for any three signals in the set {x1, x2,..., xn}, then:

                                                                                               (24)

Proof: Follows directly from relation (20) by induction on the number of variables.■

According to this result, the transition probability of the signal f for any values i, j = 0, 1 satisfies the

following:

Proposition 8: The transition probability of a signal f from state i to state j (i, j = 0, 1) is:

                                                                               (25)

Proof: Follows immediately by applying Proposition 7 to formula (23).■

Though this expression seems to be very complicated, its complexity is within reasonable bounds. We

will show that it is not necessary to enumerate all pairs of paths in the OBDD (which would provide a

quadratic complexity in the number of paths in the OBDD), but for a fixed path in Πi the computation may

be done in linear time in terms of the OBDD-nodes.

For the incremental approach, we need a mechanism not only for computing the transition probabilities

(that is probabilities  in (25)), but also for propagating the TCs (coefficients  in (25))

p f i j→( ) p xkik jk→
k 1=

n

∩
π' Π j∈
∪

π Πi∈
∪⎝ ⎠

⎛ ⎞=

p f i j→( ) p xkik jk→
k 1=

n

∩( )
π' Π j∈
∑

π Πi∈
∑=

p xkik jk→
k 1=

n

∩( ) p xkik jk→
( ) TCikil jk jl,

xkxl

1 k l n≤<≤
∏⎝ ⎠

⎛ ⎞

k 1=

n

∏=

p f i j→( ) p xkik jk→
( ) TCikil jk jl,

xkxl

1 k l n≤<≤
∏⎝ ⎠

⎛ ⎞

k 1=

n

∏
π' Π j∈
∑

π Πi∈
∑=

p xkik jk→
( ) TCikil jk jl,

xkxl
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through the boolean network. For a given node in the circuit, it is only necessary to propagate the TCs of

the output with respect to the signals on which the inputs depend. The dependency between an input and

another signal may have as a cause either a reconvergent fanout or a propagated primary input dependency.

4.2. Propagation of transition correlation coefficients

Let f be a node with immediate inputs x1, x2,..., xn and x a signal on which at least one of the inputs x1, x2,...,

xn depends. According to the definition of the TCs, for every i, j, p, q = 0, 1 possible values of f and x

respectively, we have:

                                                                                                                                                   (26)

Since the transition probabilities for f and x are already computed at this point, the only problem is to

compute the probability of both f and x switching from i to j and from p to q respectively. We get the

following important result:

Proposition 9: The TC between signals f and x, for any values i, j, p, q = 0, 1 may be expressed as:

                                                 (27)

Proof: Using the representation of the event ‘f switches from i to j’ given in (21), we obtain the following

for the event ’f switches from i to j and x switches from p to q simultaneously’:

and:

Applying the disjointness property of the paths, we get:

Since the variables xi may not be independent and, furthermore, some of them may depend on x, we need

to apply the result provided by Proposition 7 for the set of n+1 variables {x1, x2,..., xn, x}:

TCip jq,
fx p f i j→ xp q→( )

p f i j→( ) p xp q→( )
-------------------------------------------=

TCip jq,
fx

TCik p jkq,
xkx p xkik jk→

( ) TCikil jk jl,
xkxl

1 k≤ l n≤<
∏⎝ ⎠

⎛ ⎞

k 1=

n

∏
π' Π j∈
∑

π' Π j∈
∑

p f i j→( )
--------------------------------------------------------------------------------------------------------------------------------------=

f i j→ xp q→ xkik jk→
k 1=

n

∩
π' Π j∈
∪

π Πi∈
∪⎝ ⎠

⎛ ⎞ xp q→=

p f i j→ xp q→( ) p xp q→ xkik jk→
k 1=

n

∩
⎩ ⎭
⎨ ⎬
⎧ ⎫

π' Π j∈
∪

π' Π j∈
∪( )=

p f i j→ xp q→( ) p xp q→ xkik jk→
k 1=

n

∩( )
π' Π j∈
∑

π Πi∈
∑=
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Thus, the TC between f and x in (27) follows immediately.■

4.3. Complexity issues

In order to assess the complexity claimed in Section 4.1, let us define the following notation:

                                                                                                                                                          (28)

such that  (i, j = 0, 1 and ik, jk are the values of variable xk on paths π, π’

respectively). Using the disjointness property of the paths in the OBDD, the corresponding probability is:

Since the path π is fixed, the above probability may be computed using the OBDD in the same way as a

signal probability. The idea is that, using Shannon decomposition, the signal probability (and hence the

above probability) may be computed in linear time in the number of the OBDD nodes. Thus,  may

be decomposed as follows:

                                                                                                                                   (29)

where  are the cofactors with respect to xk and xk, respectively. Based on this recursive

decomposition, we may also write a similar relation for the corresponding probabilities, taking also into

account the possible existing correlations:

         (30)

Having computed this probability for each path π, we get immediately the corresponding transition

probabilities and hence the switching activity. Thus, for a fixed path π, the complexity is O(n2N) where n

is the number of variables and N is the number of nodes in the OBDD. The n2 factor comes from the

necessity of taking into account the correlations: besides the transition probabilities, we also have to keep

track of the TCs involved on each path. There is a number of  factors in the product, thus the complexity

is quadratic in the number of variables.

p f i j→ xp q→( ) p xp q→( ) TCik p jkq,
xkx p xkik jk→

( ) TCikil jk jl,
xkxl

1 k l n≤<≤
∏⎝ ⎠

⎛ ⎞

k 1=

n

∏
π' Π j∈
∑

π Πi∈
∑=

f π j→ xkik jk→
k 1=

n

∩
π' Π j∈
∪=

f i j→ f π j→
π Πi∈
∪=

p f π j→( ) p xkik jk→
k 1=

n

∩( )
π' Π j∈
∑=

f π j→

f π j→ xkik 0→
f π j→

xk xkik 1→
f π j→

xk+=

f π j→
xk f π j→

xk,

p f π j→( ) p xkik 0→
( ) p f π j→

xk( ) TCikil 0 jl,
xkxl

k l n≤<
∏ p xkik 1→

( ) p f π j→
xk( ) TCikil 1 jl,

xkxl

k l n≤<
∏+=

n
2⎝ ⎠

⎛ ⎞
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Hence, overall, for all the paths in Πi, the time complexity is O(n2NP) where P is the number of paths

in the OBDD. In the incremental approach, this is within reasonable limits since usually n does not exceed

3 or 4 variables in the immediate fanin of the node.

Example: Let’s consider the following function:  and its OBDD representation from

Fig.7. Suppose i = 0, j = 1 and π = (0 1 1) is a fixed path in the OFF-set Π0 of f. We can compute the

probability given in (30) (that is, the probability of the event ‘f = x1 ⊕ x2 ⊕ x3 switches to value 1 from the

path π = (0 1 1) in the OFF-set Π0’) by using a bottom-up parsing of the OBDD from the leaf labelled 1 to

the root. We adopt a dynamic programming approach in which at each level we use the results computed at

lower levels. For each node, the partial results are shown in Fig.7. For instance, in the case of node A (which

corresponds to cofactoring f with respect to x1x2 or x1x2) variable x3 must change from 1 to 0, and therefore

node A is labeled with . At node B (corresponding to cofactoring f with respect to x1), we have

two alternatives: either x2 switches from 1 to 1 and x3 from 1 to 0, or x2 switches from 1 to 0 and x3 from 1

to 1. Because these transitions are not independent, for each alternative we have to use the corresponding

TCs as shown in Fig.7. The same operations are performed for any other path in Π0, thus allowing us to

compute in the same manner all the transition probabilities and hence the switching activity (with relation

(10)). A similar approach can be further used to propagate the TCs between f and any other signal x.

Fig.7: Probability calculations for f = x1 ⊕ x2 ⊕ x3

f x1 x2 x3⊕ ⊕=

p x31 0→
( )

0 1

x3 x3

x2 x2

x1

1

1

1

1

0

0 0

0

f

p f π j→
x1x2( ) p f π j→

x1x2( ) p x31 1→
( )= =p f π j→

x1x2( ) p f π j→
x1x2( ) p x31 0→

( )==

p f π j→
x1( ) p x21 1→

( ) p x31 0→
( )TC11 10,

x2x3 +=

p x21 0→
( ) p x31 1→

( )TC11 01,
x2x3

p f π j→
x1( ) p x21 0→

( ) p x31 0→
( )TC11 00,

x2x3 +=

p x21 1→
( ) p x31 1→

( )TC11 11,
x2x3

p f π j→( ) p x10 0→
( ) p x21 1→

( ) p x31 0→
( )TC11 10,

x2x3 TC01 00,
x1x3 TC01 01,

x1x2 +=

p x10 0→
( ) p x21 0→

( ) p x31 1→
( )TC11 01,

x2x3 TC01 01,
x1x3 TC01 00,

x1x2 +

p x10 1→
( ) p x21 0→

( ) p x31 0→
( )TC11 00,

x2x3 TC01 10,
x1x3 TC01 10,

x1x2 +

p x10 1→
( ) p x21 1→

( ) p x31 1→
( )TC11 11,

x2x3 TC01 11,
x1x3 TC01 11,

x1x2 +

10
B

A
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5. An Axiomatic Approach to Conditional Probability

In this section we discuss some practical limitations regarding the mechanism described in Section 4. In

particular, we introduce two new concepts, that is conditional independence and signal isotropy, which

allow us to overcome these practical limitations.

5.1. Issues in Performance Management

In real examples, we may have to estimate power consumption in large circuits like ISCAS benchmarks

C6288, C7552, 32-bit multipliers, etc. where global approaches are totally impractical; in such cases,

incremental approaches based on correlation coefficients are still applicable, despite the significant

amount of CPU time they need for switching activity analysis [3]. Surprisingly enough, there are other

circuits, much simpler as gate count and internal structure, which raise a lot of problems in terms of run

time. In these cases, the incremental approaches need a large number of backtracks in order to compute

the correlations among different signals and in some sense they “degenerate” to global approaches, that

is, they tend to behave almost alike at least as far as the run time is concerned.

To begin with, let us consider ordinary tree circuits with k primary inputs consisting of common type

gates (two inputs ANDs, ORs, XORs, etc.). At each level j (1 < j ≤ log2(k)) we need to compute for each

gate (4j - 1) / 3 correlation coefficients, which adds up to a total of θ(k2) calculations for the entire

circuit. The running time for tree circuits is thus about 4-5 times that of non-tree circuits with the same

number of gates and circuit inputs. This worst-case computation requirement is not present in non-tree

circuits.

The degree in which the signals are correlated is reflected in the actual values of correlation

coefficients; for instance, given ,  and , then we may say that

the pairs (x, y), (z, t) and (u, v) are uncorrelated, slightly correlated and highly correlated, respectively. In

general, large values for the coefficients cause a lot of problems in the propagation mechanisms of the

coefficients, the main rationale behind this being the approximation formulae used throughout the

calculations. Accurate estimation of the switching activity is particularly important in low-power design

scenarios when we are interested mostly in node-by-node comparisons among different nodes in the

boolean network rather than the total power consumption in the circuit; this need precludes the classical

approaches (which do not account for correlations) to have any success in real applications and made us

aware of the importance of high signal correlations.

Highly correlated signals may arise everywhere in the circuits, even starting at the primary inputs; for

example, suppose we want to compute the dot-product between two vectors x and y using the following

TCi j kl,
xy

1= TCi j kl,
zt

4= TCi j kl,
uv

256=
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piece of code (x and y are assumed to contain 10 random components between 0 and 1000):

for(i=0; i<10; i++) z=z+x[i]*y[i];

This instruction has been translated into assembly code as follows:

We went deeper into details and we monitored the actual values at the primary inputs of a virtual 16-bit

adder (Fig.8(a)) which would perform the add operation (e.g. instructions at addresses 006C, 0071 and

so on). We give in Fig.8(b) the values at the primary inputs of this adder only for the first iteration in this

loop:

Fig.8: An example involving highly correlated signals

Analyzing the whole sequence coming from all 10 iterations we found that it is a highly correlated one.

Assuming input independence is therefore incorrect and we give in Fig.9 the overestimation of switching

activity per node one would make by ignoring the actual input statistics.

Fig.9: Switching activity overestimation by ignoring input statistics

As we can see, more than 70% of the nodes are significantly overestimated. This is a typical case

CPU Pentium
#TEST1#24: z=z+x[i]*y[i];
cs: 006A 8BDE   mov bx, si
cs: 006C 03DB add bx, bx
cs: 006E 8D46EA lea ax, [bp-16]
cs: 0071 03D8 add bx, ax
:
:
cs: 0086 46     inc si
cs: 0087 83FE0A comp si, 000A
cs: 008A 7CDE   jl #TEST1#24 (006A)

0000000000000000 0000000000000000
0000000000000000 0010000010110000
0000000000000000 0000000000000000
0000000000000000 0010000010011100
0000000101010000 0000000000000000
:
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which may arise in practice; therefore, in order to “make the common case accurate,” we need a really

good mechanism to control the error level throughout the circuit. Unfortunately, the spatiotemporal

hypothesis alone does not provide a bounding value for the error.

These two limitations, namely accuracy degradation for highly correlated signals and excessive

running time for tree circuits, stimulated us to further investigate stronger concepts able to overcome

these drawbacks.

5.2. Conditional Independence and Signal Isotropy

Definition 7: (Conditional Independence)

Let (Ω, Σ, p) be a discrete probability space and let A, B and C be three events; the events A and B are

conditionally independent with respect to C iff

                                                                                                     (31)

The above definition may be extended to any number of digital signals as follows:

Definition 8: Given the set of n signals {x1, x2,..., xn} and an index i (1 ≤ i ≤ n), we say that the subset

{x1, x2,..., xi-1, xi+1,..., xn} is conditionally independent with respect to xi if the following holds:

                                                   (32)

Note: It should be pointed out that if the set {x1, x2,..., xi-1, xi+1,..., xn}is conditionally independent with

respect to xi, it might not be conditionally independent with respect to xi. However, the corresponding set

in which any variable (or subset of variables) is complemented, is still conditionally independent with

respect to xi if the conditions from Definition 8 are met.

Using the notion of support of a boolean function (i.e. the set of variables on which the function

depends), we give the following definition:

Definition 9: (Logic Independence)

Two boolean functions f and g are said to be logically independent (notation f ⊥ g) iff Sup(f) ∩ Sup(g) =

∅; if they are not logically independent then f and g must share at least one common input variable.

Note: It can be seen from the above definition of f and g that logic independence is a functional notion

and does not use any information about the statistics of the inputs.

For boolean functions, we give the following property:

Proposition 10: Let f and g be two boolean functions and f c, gc the cofactors of f and g with respect to a

common variable c; if f c ⊥ gc and the variables in their support sets are independent, then f and g are

conditionally independent with respect to c that is,

p A B∩ C( ) p A C( ) p B C( )⋅=

p x1 x2∩ … xi 1– xi 1+∩ ∩ … xn∩ xi( ) p x j xi( )
1 j n≤ ≤ j i≠,

∏=
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                                                                                                             (33)

Proof: Shannon’s decomposition for f and g gives f = c f c + c f c, g = c gc + c gc   respectively;

consequently, f g = c f c gc + c f c gc. One can calculate p (f g | c) as:

p (f g | c) = p (f g c) / p (c) = p (c f c gc) / p (c) = p (f c gc) = p (f c)p (gc)

because Sup (f c) ∩ Sup (gc) = ∅. We have also:

p (f | c) = p (f c) / p (c) = p (c f c) / p (c) = p (f c)

p (g | c) = p (g c) / p (c) = p (c gc) / p (c) = p (gc)

therefore p (f | c) p (g | c) = p (f c)p (gc) and this concludes our demonstration. ■

Example: In Fig.10, signals a, b are conditionally independent with respect to c; indeed, we have:

p (a b | c) = p (a b c) / p (c) = p (x c y c c) / p (c) = p (x y c) / p (c) = p (x) p (y)

p (a | c) p (b | c) = p (a c) p (b c) / p2(c) = p (x c) p (y c) / p2(c) = p (x) p (y)

Fig.10: An example to illustrate conditional independence

It’s worthwhile to note that, in order to compute p (a b c), if a and b are conditionally independent with

respect to c, we may use only pairwise signal probabilities; as we may deduce by simple manipulations:

p (a b c) = p (a b | c) p (c) = p (a | c) p (b | c) p (c) = p (a c) p (b c) / p (c)

which reduces the problem of evaluating the probability of three correlated signals to the one of

considering only pairwise correlated signals (if the hypothesis of conditional independence is satisfied).

Consequently, the conditional independence concept can lead to efficient computations even in very

complex situations. In fact, Proposition 10 gives us a sufficient condition for conditional independence

and this is very useful from a practical point of view, because all events appearing in digital logic are

somehow logically correlated. However, the general problem, to determine a variable xi from a set of n

signals {x1, x2,..., xn} such that the remaining set of (n - 1) signals is conditionally independent with

respect to xi is a complex problem; we will prove in the following that it is actually an NP-complete

problem.

Proposition 11: (Conditional Independence Problem - CIP)

Given a set of n boolean functions {x1,x2,...,xn}, an index i and k ≤ n - 1, deciding whether there are at

least k signals from the remaining subset conditionally independent with respect to xi, is an NP-complete

problem.

p f g⋅ c( ) p f c( ) p g c( )⋅=

c

x

y

a

b
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Proof: First, we have to prove that CIP is in NP. Indeed, given a particular instance of the problem, it

may be verified in polynomial time whether the requirements are met.

We will prove that CIP is NP-complete using a reduction from the Set Packing Problem [16]:

Given a collection C of finite sets {S1, S2,..., Sn}, a positive integer k ≤ |C|, deciding whether C contains

at least k mutually disjoint sets is NP-complete.

Let C and k be as above, n = |C| + 1 and x be a boolean function such that Sup(x) ∩ Sj = ∅ for every j = 1,

2,..., n - 1 where Sj ∈C. We build the following boolean functions xj, j = 1, 2,..., n - 1:

where fj and gj are boolean functions such that Sup (fj) = Sj and gj is an arbitrary boolean function. We

can see that there is a subset of at least k signals from x1, x2,..., xn-1 which are conditionally independent

with respect to x iff there exists a permutation i1, i2,..., in-1 of 1, 2,..., n - 1 such that the following is true:

where K ≥ k.

Using the definition of conditional probability and the expression of xj, we

get .

The construction of xj’s was done such that x and fj’s have disjoint supports so, according to Definition

10, they are logically independent, and thus equivalently we get  which is true

iff are logically independent i.e. their supports are mutually disjoint:  or

 for any j, l ≤ K

Thus, the set of signals built above has at least k signals conditionally independent with respect to x iff C

has at least k mutually disjoint sets. To conclude, CIP is NP-complete.■

One may extend the notion of conditional independence with respect to a single signal to that with

respect to a subset of signals. The disadvantage is that, even if we find such a set, we may not express the

probability of complex events in terms of probabilities of pairs of events as it is the case with conditional

independence with respect to a single signal. Thus, from a computational point of view, this does not

seem to be useful. In the following, we will use instead an approximation of conditional independence

which holds for correlated inputs.

x j x f j xg j+=

p xi j
j 1=

K

∩ x( ) p xi j
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( )
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K
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Definition 10: (Signal Isotropy)

Given the set of n signals {x1, x2,..., xn}, we say that the conditional independence relation is isotropic, if

it is true for all signals x1, x2,..., xn; more precisely, taking out all xi’s one at a time, the subset of the

remaining (n - 1) signals is conditionally independent with respect to the taken xi.

Returning to our example in Fig.10, given the set of signals {a, b, c} we have that {a, b} is

conditionally independent with respect to c, but the sets {a, c} or {b, c} are not conditionally

independent with respect to b, or a, respectively; it follows that conditional independence is not isotropic

in this particular case. Intuitively, the concept of isotropy as defined above, is restrictive by its very

nature and it is hardly conceivable that a set of signals taken randomly from a target circuit will satisfy

Definition 10. Our goal, however, is not to use this concept as it is, but to make it more practical for our

purposes. As we shall see later, the main advantage of isotropy is that it offers a canonical approach to

the estimation of different kinds of probabilities in digital circuits.

Definition 11: (Almost Isotropy)

The property of conditional independence for a set of n signals  is called almost isotropic if

there exists some ε (ε ≥ 0) so that it is satisfied within ε relative error for any possible permutation of

signals xi:

for any i = 1, 2,..., n                         (34)

Differently stated, almost isotropy is an approximation of isotropy within given bounds of relative

error. A natural question may arise now: how often it is appropriate to consider almost isotropy as an

approximation of pure isotropy? To answer this question, we consider in Fig.11 several common

situations involving the set of signals {u, v, w} and the relative position of their logic cones (each cone

illustrates the dependence of signals u, v, w on the primary inputs). Whilst the isotropy is completely

satisfied only in (b), the almost isotropy concept is applicable in all other cases; more precisely, the

conditional independence relation is partially satisfied in (a) with respect to w, in (c) with respect to u

and v and in (d) with respect to u and v.

x j{ }1 j n≤ ≤

p x j xi( )
1 j n≤ ≤ j i≠,

∏
p x j

1 j n≤ ≤ j i≠,
∩ xi( )

--------------------------------------------- 1– ε≤
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Fig.11: An example to illustrate pure and almost isotropy

Based on the previous definition, we get the following:

Proposition 12: Given an almost isotropic set of signals  for some ε, the probability of the

composed signal  may be estimated within ε relative error as:

                                                                                                        (35)

Proof: From the definition of almost isotropy, we get the following: for every i = 1, 2,..., n:

 which may be re-written using the definition of conditional probability as:

for each i = 1, 2,..., n

Multiplying all inequalities we get exactly the above claim. ■

This proposition provides us a very strong result: given that n signals are almost isotropic for some ε,

the probability of their conjunction may be estimated within ε relative error using only the probabilities

of pairs of signals, thus reducing the problem complexity from exponential to quadratic. This is similar to

the concept of pairwise correlation coefficient introduced in [8] and generalized in [3]. However, the

approach in [3] does not provide sufficient accuracy for highly correlated signals as we shall see later.
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5.3. An Incremental Propagation Mechanism Using Almost Isotropy

If the almost isotropy property is satisfied, Proposition 12 may be easily extended to boolean functions

represented by OBDDs. Let f be a boolean function of n variables x1, x2,..., xn which may be defined through

the ON- and OFF-sets as in Section 4. Based on this representation, we give the following result:

Proposition 13: Given f a boolean function of variables x1, x2,..., xn, the following hold:

a) If the set  in which each variable is either direct or complemented is almost isotropic for

some ε (ε ≥ 0), then the signal probability p (f = i) with i = 0, 1 may be expressed within ε relative error

as:

                                                                           (36)

where ik is the value taken by variable xk in the cube π ∈Πi.

b) If the set  is almost isotropic for some ε (ε ≥ 0),    then the transition

probability p (fi→j) with i, j = 0, 1 may be expressed within ε relative error as:

                                                                   (37)

where ik, jk are the values taken by the variable xk in the cubes π ∈Πi. and π’ ∈Πj.

Proof: a) We may define the event ’f takes the value i’ as:

In the probabilistic domain, this becomes:

because the paths π ∈Πi are disjoint. Since the input variables are almost isotropic for some ε (0 ≤ ε < 1),

we may use Proposition 12 to express the probability of each cube, getting exactly (36).
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b) Proof similar to case a) but considering instead the event ’f switches from i to j’ expressed as:

. ■

The above result may be reformulated using signal and transition correlation coefficients; it may be used

in signal probability and switching activity estimation, given that the almost isotropy conditions are met.

Corollary 1: Given a set of signals  as in Proposition 13 and a boolean function f of

variables , the following hold within ε relative error:

a)                                                                       (38)

b)                                                       (39)

Proof: a) and b) Using the definition of transition probability and Proposition 13, we easily get the above

inequalities.■

This result can also be extended to the calculation of correlation coefficients (SCs or TCs) between two

signals in the circuit. From a practical point of view, this becomes an important piece in the propagation

mechanism of probabilities and coefficients through the boolean network. We get the following:

Proposition 14: Given a set of signals , a boolean function f of variables , and

x a signal from the circuit, if {x1, x2,..., xn, x} is a set as in Proposition 13, then the correlation

coefficients (SCs and TCs) can be expressed within ε relative error1 as:

a)                                             (40)

b)

where i, j, p, q = 0, 1.

Proof: a) and b) follow directly from the definition of SCs and TCs and using the events ’f = i and x = j

simultaneous’ and ’f switches from i to j and x from p to q simultaneously’, respectively.■

1. This ε is the maximum over all values that occur during the incremental propagation process.
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These results lead to a new heuristic algorithm for signal and transition probability estimation under

input streams which exhibit spatiotemporal correlations. We may thus see equation (39) as the

improvement of (25) by using the notions of conditional independence and signal isotropy. Compared to

the heuristic proposed in Section 4, this new approach based on conditional independence has also the

advantage that it supplies bounds for error estimation provided the input signals are almost isotropic.

This bounding value could not be provided using the spatiotemporal hypothesis alone. Finally, the model

introduced above provides a way to improve the run time requirement as shown below.

Proposition 15: If Cj is a correlation coefficient (SC or TC) at level j (given by a topological order from

inputs to outputs of the circuit), then it is related to Cj - l (0 < l < j) by a proportionality relationship

expressible as  where n represents the average fan-in value in the circuit.

Proof: Follows from Proposition 14 and Corollary 1 if the conditions required in Proposition 13 are

satisfied.■

Corollary 2: If  then the signals behave as uncorrelated.

Proof: Follows immediately from Proposition 15; more precisely, → 1 when  and

that represents the condition of noncorrelation in our approach.■

In other words, we do not need to compute the coefficients which are beyond some level l in the

circuit; instead, we may assume them equal to 1 without decreasing the level of accuracy. Also, the

larger the average fanin n of the circuit, the smaller value for l may be used. It is worthwhile to note that

the conditional independence relationship, more specifically the almost isotropy, is essential for this

conclusion. The approach based on spatiotemporal correlations only, does not provide a sufficient

rationale for such a limitation. This is actually a very important heuristic to use in practice and its impact

on run time is huge; limiting the number of calculations for each node in the boolean network to a fixed

amount (which depends on the value set as threshold for l) reduces the problem of coefficients estimation

from quadratic to linear complexity.
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6. Practical considerations and experimental results

All experiments were performed using SIS environment on an Ultra SPARC 2 workstation with 64Mbytes

of memory; the working procedure is shown below:

Fig.12: The experimental setup

To generate pseudorandom inputs we have used as input generator a maximal-length linear feed-back shift

register modified to include the all-zero pattern [17]; these registers are based on primitive polynomials that

is, they randomly generate all distinct patterns that correspond to a given polynomial before repeating the

sequence. Purely random generators do not exist, therefore the primitive polynomials used, give us multiple

correlations among primary inputs. The length of the input register was set equal to the number of inputs of

the circuit under analysis, thereby creating a pseudorandom source; when the length of this register became

huge, we tried to keep the time/space requirements at a reasonable level and hence, for these cases we

generated only a significant part of the exhaustive sequence (up to 220 input patterns).

 As the standard measure for power estimation, we have used the average switching activity at each

node of the circuit calculated as in equation (10). In our experiments, we were mainly interested in

measuring the accuracy of the model in estimating the switching activity locally (at each internal node of

interest) and globally (for the entire circuit), given a set of inputs with spatiotemporal correlations. The

analysis part of the experiment may be skipped if the user specifies directly the characteristics of the input

stream (transition probabilities and correlation coefficients).

To illustrate the main features of our approach, we consider in Fig.13 the ISCAS circuit C17, fed by the

sequence generated with the primitive polynomial p(x) = 1 ⊕ x ⊕ x3. Due to the deterministic way in which

we generate the input sequence, independent lines become correlated as is the case with inputs 1 & 2, 2 &

3, 3 & 6, 6 & 7; in turn, the fan-out points on the input lines add additional correlations. For an accurate

analysis of the switching activity, we have to account for all these dependencies. In Table 1 (a) we list the

transition probability coefficients for this particular input sequence; we mention that in this case, all signal

correlation coefficients are equal to 1, therefore they cannot make a difference alone. In Table 1 (b) we

Input sequence

  (input correlations extraction)

Switching activity
estimation

Response analysis

Comparison

     Input sequence analysis

     generation

   Zero-delay gate-level
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present the estimated and exact values of the switching activity per clock cycle. In Fig.13, the color code is

used to reflect the switching activity at the output of the gates, i.e. darker gates are more active (in particular,

gate 23 is the most active one).

Fig.13: Switching activities distribution in C17 (pseudorandom inputs)

It should be pointed out that the actual values for all coefficients in Table 1 (a) represent the

characteristics of the input stream; if we select another primitive polynomial to generate the inputs, we may

obtain a completely different set of transition correlation coefficients. This dependency is even more salient

if we consider ‘biased inputs’ (i.e. the switching activity is not 0.5). To generate such sequences, we used a

simple functional generator based on the random function in C language. For each bit, we set up a specific

threshold t ∈ [0,1] and generated a set of random numbers in [0,1]. If these numbers exceeded the threshold

t, then the output of the generator is set to 1; otherwise the output is 0. We give in Tables 2(a) (t = 0.25 for

all bits) and 2(b) (t ∈ [0.1, 0.5]), the values obtained for two such sequences, and in Fig.14 the new

distribution of switching activity among the internal nodes of the circuit. As we can see, gates 22 and 19
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Table 1: (a) C17: TCs for pseudorandom inputs

ij,kl 1&2 2&3 3&6 6&7

00,00 2.0000 2.0000 2.0000  1.7143

00,01 0.0000 0.0000 0.0000 0.4444

00,10 2.0000 2.0000 2.0000  1.7778

00,11 0.0000 0.0000 0.0000 0.0000

01,00 2.0000 2.0000 2.0000 2.2857

01,01 0.0000 0.0000 0.0000 0.0000

01,10 2.0000 2.0000 2.0000 1.7778

01,11 0.0000 0.0000 0.0000 0.0000

10,00 0.0000 0.0000 0.0000 0.0000

10,01 2.0000 2.0000 2.0000 1.7778

10,10 0.0000 0.0000 0.0000 0.4444

10,11 2.0000 2.0000 2.0000 1.7143

11,00 0.0000 0.0000 0.0000 0.0000

11,01 2.0000 2.0000 2.0000 1.7778

11,10 0.0000 0.0000 0.0000 0.0000

11,11 2.0000 2.0000 2.0000 2.2857

Table 1: (b) C17: sw_act for pseudorandom inputs

Node Estimated sw_act Exact sw_act

1 0.5000 0.5000

2 0.5000 0.5000

3 0.5000 0.5000

6 0.5000 0.5000

7 0.5625 0.5625

10 0.3750 0.3907

11 0.2500 0.2649

16 0.5000 0.5236

19 0.5687 0.5236

22 0.2978 0.3125

23 0.6006 0.5625
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become in turn the most active gates in these two experiments. We note that in these cases we have spatial

dependencies among all primary inputs.

Fig.14: Switching activities distribution in C17 for two biased input sequences

To further assess the impact of correlations, we considered the benchmark f51m and the following two

scenarios:

a) Low Correlations: the input patterns are generated by a linear feedback shift register which

implements the primitive polynomial: p (x) = 1 ⊕ x ⊕ x2 ⊕ x7 ⊕ x8;

b) High Correlations: the input patterns are generated using the state lines of an 8-bit counter.

In order to do a fair comparison between the existing estimation techniques (including the ones which

use global OBDDs) and our technique, we had to choose a small sized circuit.

The estimated values in both cases were compared against the exact values of switching activity

obtained by exhaustive simulation; all internal nodes and primary outputs have been taken into

consideration (see Fig. 15)1.

1. In Fig.15, on the x axis, we report the absolute error of switching activity that is, .
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Table 2: (a) C17: sw_act for biased inputs
Node Estimated sw_act Exact sw_act

1 0.5625 0.5625

2 0.3750 0.3750

3 0.3125 0.3125

6 0.5625 0.5625

7 0.5000 0.5000

10 0.3125 0.3125

11 0.3125 0.3125

16 0.4569 0.5000

19 0.3367 0.3125

22 0.4960 0.5000

23 0.4527 0.4375

Table 2: (b) C17: sw_act for biased inputs
Node Estimated sw_act Exact sw_act

1 0.0625 0.0625

2  0.1250 0.1250

3 0.2500 0.2500

6 0.5000 0.5000

7 1.0000 1.0000

10 0.1250 0.1250

11 0.2500 0.2500

16 0.1295 0.1250

19 0.7262 0.7500

22 0.2040 0.1250

23 0.4597 0.5000

swexact swestimated–
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Fig.15: The impact of the level of correlation on switching activity estimation in f51m
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In Scenario (a), all approaches are quite accurate. However, we point that only considering

spatiotemporal correlations and signal isotropy ensures the highest accuracy (100% of the nodes

estimated with error less than 0.1). As the results of Scenario (b) show, the level of correlation on the

primary inputs strongly impacts the quality of estimation. Specifically, it makes completely inaccurate

the global approach based on input independence (despite the fact that internal dependencies due to

reconvergent fan-out are accounted by building the global OBDD). As expected, this is visible mostly in

Scenario (b), where less than 20% of the nodes are estimated with precision higher than 0.1. On the other

hand, even if temporal correlations are taken into account, but the inputs are assumed to be spatially

uncorrelated, only 80% of the nodes are estimated with error less than 0.1. Accounting for spatiotemporal

correlations provides excellent results for highly correlated inputs (100% nodes estimated with precision

0.1), but the mean error in the hypothesis of conditional independence is anyway smaller (90% of the

nodes are estimated with error less than 0.05). This results clearly demonstrate that power estimation is a

strongly pattern dependent problem, therefore accounting for dependencies (at the primary inputs and

internally, among the different signal lines) is mandatory if accuracy is important. From this perspective,

accounting for spatiotemporal correlations and using the conditional independence and signal isotropy

concepts seems to be the best candidate to date.

Using some ISCAS’85 benchmarks, we further performed the following types of experiments:

a) one set of experiments to validate the model based only on spatiotemporal correlations without

conditional independence;

b) another one to assess the impact of the limiting technique from Proposition 15;

c) the last one to validate the model based on spatiotemporal correlations with conditional independence

and signal isotropy.

Once again, the switching activity values and power consumption were estimated at each internal

node and primary output and compared with the ones obtained from logic simulation. We found that

power estimation for the entire circuit is not a real measure to use in low-power design and power

optimization where the switching activity at each node has to be accurately estimated.

a) Experiments to validate the model based only on spatiotemporal correlations

In the following, we give the error values for pseudorandom inputs, using the incremental approach without

conditional independence. In reporting the error, we compared our switching activity estimates with the

results of logic simulation at every internal node and primary output. All benchmarks were mapped with

lib2genlib.
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b) Experiments concerning run time improvement

Heuristic proposed in Section 5.3 is important in practice not only for substantially reducing the run

time but also for keeping the same level of accuracy as the case when the threshold limit is set to infinity

(that is we didn’t use any limitation in TCs calculation). In the following, we present a detailed analysis

for the benchmark duke2 which exhibits a typical behavior; in the first case the limit was set to infinity,

in the second one the limit was 4. To report error, we used standard measures for accuracy: maximum

error (MAX), mean error (MEAN), root-mean square (RMS) and standard deviation (STD); we excluded

deliberately the relative error from this picture, due to its misleading prognostic for small values.

As we can see, the quality of estimation is practically the same in both cases whilst the run time is

significantly reduced in the second approach. It should be pointed out, that this limiting technique works

fine also for partitioned circuits which is an essential feature in hierarchical analysis for power

estimation. Running extensively our estimation tool on circuits of various sizes and types (ISCAS’85

benchmarks, adders, multipliers), we observed the following general tendency for speed-up:

a.   l is the limit used in Proposition 15 and Corollary 2.

Table 3: Pseudorandom inputs with no limita (l → ∞) in TCs calculation
Circuit MAX MEAN RMS STD TIME (sec.)

C17 0.0565 0.0119 0.0238 0.0226 0.04

C432 0.0716 0.0133 0.0222 0.0179 30.17

C499 0.0334 0.0047 0.0072 0.0055 88.17

C880 0.1131 0.0158 0.0306 0.0264 45.38

C1355 0.0393 0.0027 0.0051 0.0044 61.76

C1908 0.0353 0.0044 0.0082 0.0069 67.15

C3540 0.1765 0.0276 0.0429 0.0318 491.19

C6288 0.2046 0.0204 0.0443 0.0396 616.22

Table 4: duke2 - Speed-up vs. accuracy

LOW CORRELATIONS HIGH CORRELATIONS

Error NO LIMIT (l → ∞) LIMIT l = 4 NO LIMIT (l → ∞) LIMIT l = 4

MAX 0.0744 0.0710 0.0299 0.0299

MEAN 0.0133 0.0161 0.0056 0.0055

RMS 0.0223 0.0269 0.0085 0.0083

STD 0.0182 0.0219 0.0065 0.0063

TIME 131.08 s 40.83 s 130.55 s 42.14 s
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Fig. 16: Speed-up factor vs. circuit complexity

We can see that the speed-up is about 3 ÷ 5 times for less complex circuits, but it may become 20 ÷ 30

times for large examples; we estimated the power consumption for multipliers on 16 bits (2048 gates)

and 32 bits (9124 gates) and the run times were 43.90 and 195.13 sec.

We present in Table 5 the results obtained for the set of ISCAS’85 benchmarks using the limit l = 4

in TCs calculation. By comparing these results with those given in Table 3, we can see that the quality of

the estimates remained basically the same while the run time was significantly improved.

c) Experiments to validate the conditional independence and signal isotropy

The experiments were performed on large ISCAS’85 examples using pseudorandom and highly correlated

inputs (obtained from counted sequences of length 220); all results reported here, have been derived using

the value l = 4 as the limit for coefficients calculations. To report error, all estimations were verified

against exhaustive simulation performed with SIS logic simulator. To show the impact of using signal

isotropy concept, for high-correlation scenario, we also present in Table 6 the results obtained if signal

isotropy is not used.

Table 5: Pseudorandom inputs with limit l = 4 in TCs calculation
Circuit MAX MEAN RMS STD Total Power TIME (sec.)

C432 0.1916 0.0281 0.0465 0.0374 3372.57 11.82

C499 0.0624 0.0134 0.0184 0.0126 7645.56 10.57

C880 0.0691 0.0135 0.0211 0.0164 6391.83 18.35

C1355 0.0225 0.0041 0.0051 0.0030 6797.92 4.24

C1908 0.1315 0.0091 0.0206 0.0185 7435.34 12.69

C3540 0.2010 0.0307 0.0509 0.0407 16356.82 60.86

C6288 0.0890 0.0142 0.0241 0.0196 46846.48 29.10
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As we can see, by using conditional independence and signal isotropy, the accuracy for a node-by-

node analysis improves on average by an order of magnitude; on the other hand, by not using conditional

independence at all, the total power consumption is overestimated by 100% on average.

To further asses the impact of the correlation level, we considered the following experiment. We

estimated the total power consumption for a set of ISCAS circuits using random inputs (the low

correlation scenario in Table 7). After that, we sorted the input vectors (therefore we kept the same signal

probability on the inputs) and we applied the resulting file to the same set of circuits (the medium

correlation scenario). Finally, we considered as input a counted sequence with the same average number

of transitions (but different signal probability) and we estimated once again the total power consumption

(the high correlation scenario in Table 7). All the values of power consumption are reported in μW at 20

MHz.

As we can see, there is a significant difference in all cases: not only the switching activities at each

internal node were completely different as the level of inputs correlation changes, but also the values of

total power consumption. For example, for C432, the total power estimated under low correlated inputs

was 3372.57 μW, while this value for strongly correlated inputs was 306.88 μW (there is a factor of 11

between the two). The same behavior has been observed for other circuits. To give a more meaningful

measure to this experiment, we give in Fig.17 the error made in medium and high correlation scenarios

Table 6: High-correlations on primary inputs
WITH conditional independence (ε-isotropy) WITHOUT conditional independence

Circuit MAX MEAN RMS STD Total power MAX MEAN RMS STD Total power

C432 0.2538 0.0225 0.0585 0.0545 306.88 0.8499 0.1058 0.2274 0.2032 1390.07

C499 0.1566 0.0421 0.0760 0.0634 2283.03 0.4254 0.0387 0.0933 0.0851 2543.99

C880 0.0175 0.0013 0.0040 0.0038 263.13 0.7853 0.0471 0.1630 0.1571 482.60

C1355 0.1930 0.0227 0.0520 0.0469 1865.81 0.4722 0.0516 0.1252 0.1144 1961.76

C1908 0.3907 0.0294 0.0868 0.0820 3156.83 0.4903 0.0459 0.1000 0.0892 3201.10

C3540 0.0279 0.0279 0.0030 0.0030 166.25 0.5463 0.0280 0.0365 0.0365 207.38

C6288 0.1773 0.0231 0.0521 0.0471 8843.72 0.5639 0.1092 0.1995 0.1685 19428.91

Table 7: Total Power Consumption (μW @ 20Mhz)

Circuit
Low

Correlations
Medium

Correlations
High

Correlations

Circuit  1:       C432 3372.57 2046.93 306.88

Circuit  2:       C499 7645.56 5068.32 2283.03

Circuit  3:       C880 6391.83 4781.47 263.13

Circuit  4:      C1355 6797.92 4272.74 1865.81

Circuit  5:      C1908 7435.34 4307.76 3156.83

Circuit  6:      C3540 16356.82 8464.05 166.25

Circuit  7:      C6288 46846.48 40748.45 8843.72
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by ignoring the correlations on the circuit inputs (o-medium correlations and *-high correlations).

Fig.17: Overestimation factor by ignoring input correlations

As we can see, once again the level of correlations has a significant impact on our predictions; whilst for

medium correlations one may overestimate in general about twice, for high correlations the overestimate

is about 10 (e.g. Circuit 6: C3540, Circuit3: C880).

To conclude, input pattern dependencies (in particular highly correlated inputs) is an extremely

important issue in power estimation. From this perspective, power analysis needs analytical models to

overcome this difficulty.

7. Conclusion

In this paper, we have proposed an original approach for switching activity estimation in combinational

logic modules under pseudorandom or highly biased input streams. Using the zero-delay hypothesis, we

have derived a probabilistic model based on lag-one Markov Chains which supports spatiotemporal

correlations among the primary inputs and internal lines of the circuit under consideration. The main

feature of our approach is the systematic way in which we can deal with complex dependencies that may

appear in practice. From this perspective, the new concepts of conditional independence and signal

isotropy are used in a uniform manner to fulfill practical requirements for fast and accurate estimation.

Under general assumptions, the conditional independence problem has been shown to be NP-complete;

consequently, efficient heuristics have been provided for probabilities and coefficients calculation. As a

distinctive feature, this approach improves the state-of-the-art in two ways: theoretically by providing a

deep insight about the relationship between the logical and probabilistic domains, and practically by

offering a sound mathematical framework and an efficient technique for power analysis.
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