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Abstract 
We present methods for operating system directed dynamic 
power management. We model a power-managed system 
using a continuous-time Markov decision process and 
solve for the optimal power management policy using a 
mathematical programming technique. Next we extend the 
model by using the controllable Generalized Stochastic 
Petri Nets with cost to handle systems with complex 
behavioral characteristics such as concurrency, 
synchronization, mutual exclusion and conflict. 
Experimental results demonstrate the effectiveness of the 
proposed modeling framework and solution techniques. 
 

Introduction 
Military systems have to be low power yet high 
performance. This is because they are battery-operated 
portable (wearable) systems that require significant 
computation and communication capabilities. 
Sophisticated dynamic power management policies, 
power-aware operating systems and C compilers, and 
hardware/software co-synthesis tools are required to 
satisfy these often conflicting design requirements. We 
propose to investigate a number of problems at the system, 
software, operating system, and behavioral levels, which 
are critical to effective power-performance tradeoff and 
optimization in complex embedded systems.  
Dynamic power management (DPM) [2]– which refers to 
selective shut-off or slow-down of system components that 
are idle or underutilized – has proven to be a particularly 
effective technique for power saving. The goal of a 
dynamic power management policy is to reduce the power 
consumption of an electronic system by putting system 
components into different states, each representing certain 
performance and power consumption level. The policy 
determines the type and timing of these transitions based 
on the system history, workload and performance 
constraints.  
We present a simple example to illustrate the basic idea 
behind dynamic power management and the resulting 
trade-off space. Consider an I/O device (service provider) 
that is controlled by the OS-directed power management 
software and that can be put into one of two modes: “ON” 
and “OFF”. The device consumes 10 Watts of power when 
it is in the “ON” state and 0 Watt when it is “OFF”. It 
takes 2 seconds and 40 Joules of energy to turn this device 

from “OFF” to “ON” whereas it takes 1 second and 10 
Joules of energy to turn it from “ON” to “OFF”. The 
service request pattern in a time period of 25 seconds is 
shown in Figure 1(a). 
Without a power management policy, this device is always 
“ON” as depicted in Figure 1(b). The shaded areas in the 
figure identify the time periods when the device is 
processing the requests. Under a “greedy power 
management policy”, the OS turns on the device whenever 
there is a service request for it and turns off the device 
whenever it has nothing to do. The working pattern of the 
device under this policy is shown in Figure 1(c). If, 
however, the average delay for processing a request can be 
increased, then the power management policy shown in 
Figure 1(d) will result in minimum power dissipation (total 
energy in 25 seconds) for the device under the specified 
delay constraint. The comparison between the three 
policies in terms of total energy consumption and average 
delay is presented in Table 1. 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 An example of the effect of power 
management. 

Table 1 Comparison of total energy consumption and 
average delay. 

 Total energy 
consumption 

in 25 sec 

Average 
latency per 

request 
“Always on” policy 250 J 1 sec 

“Greedy” policy 240 J 3 sec 

“Optimal” policy 140 J 2.5 sec 

 

t (sec) 

t (sec) 

t (sec) 

t (sec) 

1 3 5 7 9 11 13 15 17 19 

Request pattern 

“Always on” 

“Greedy” 

“Optimal” 

ON 

ON 

ON 

21 23 25 

OFF 

OFF 

OFF 

1 3 5 7 9 11 13 15 17 19 21 23 25 

(a) 

(b) 

(c) 

(d) 



 

This simple example illustrates the fact that there is a 
fundamental tradeoff between power dissipation and 
latency per request (while maintaining the same 
throughput) and that a “good” power management policy 
is one that can exploit this trade-off dynamically. 
 

DPM Background 
Portable electronic devices tend to be much more complex 
than a single VLSI chip; they contain many components, 
ranging from digital and analog to electro-mechanical and 
opto-electronics. Digital components often consume 20-
50% of the total power. Hence, reducing power 
consumption in the non-digital electronic parts of the 
system is as important. System designers have started to 
respond to the requirement of power-constrained system 
designs by a combination of technological advances and 
architectural improvements.  
The problem of finding a power management scheme (or 
policy) that minimizes the system power dissipation under 
performance constraints is of great interest to system 
designers. Aside from finding an effective policy for a 
given electronic system, the design and implementation of 
such a policy in the context of the system itself is a 
complicated and error-prone process. Realizing this 
difficulty, a number of standardization efforts have started, 
chief among them is the Advanced Configuration and 
Power Interface (ACPI) [1].  
Under OS-directed power management (OSPM), the 
operating system directs all system and device power state 
transitions. Employing user preferences and knowledge of 
how devices are being used by applications, the OS puts 
devices in and out of low-power states. Devices that are 
not being used can be turned off.  Similarly, the OS uses 
information from applications and user settings to put the 
system as a whole into a low-power state.  The OS uses 
ACPI to control power state transitions in hardware. The 
functional areas covered by the ACPI specification are: 
1. System power management – ACPI defines 

mechanisms for putting the computer as a whole in 
and out of system sleeping states. It also provides a 
general mechanism for any device to wake the 
computer up. 

2. Device power management – ACPI tables describe 
motherboard devices, their power states, the power 
planes that the devices are connected to, and controls 
for putting devices into different power states. This 
enables the OS to put devices into low-power states 
based on application usage. 

3. Processor power management – While the OS is idle 
but not sleeping, it will use commands described by 
ACPI to put processors in low-power states. 

ACPI does not, however, specify the power management 
policy. It is the objective of the proposed research to 
provide a framework and supporting tools for constructing 
optimal power management policies based on modeling 
the power-managed system as a continuous-time Markov 
decision process.  The OS must be modified to provide the 

stochastic parameters of this stochastic model by profiling 
the activities of the system components when an 
application program is run on the system. 
 
 
 
 

 
Figure 2 An abstract model of a power-managed 

system. 
The choice of the policy that minimizes power dissipation 
under a performance constraint (or maximizes 
performance under a power constraint) is a new kind of 
constrained optimization problem that is of great relevance 
for low-power electronic systems. This problem is often 
referred to as the policy optimization (PO) problem. A 
number of heuristic policies have been proposed and 
adopted in some practical systems [3][4].  In [5], Benini et 
al. proposed a stochastic model for a rigorous 
mathematical formulation of the problem and presented a 
procedure for its exact solution. The solution is computed 
in polynomial time by solving a linear optimization 
problem. Their approach is based on a stochastic model of 
power-managed devices and workloads and leverages 
well-known stochastic optimization techniques based on 
the theory of discrete-time Markov decision chains. In the 
model of [5], time is divided into small intervals of length 
L. It is assumed that the system can only change its state at 
the beginning of a time interval. During interval (jL, 
(j+1)L), the transition probability of the system depends 
only on the state of the system at time jL (hence, the 
Markovian property) and the command issued by the 
power manager. The system model consists of four 
components: a power manager (PM), a service provider 
(SP), a service requestor (SR) and a service request queue 
(SQ). (See Figure 2.) The objective function is the 
expected performance (which is related to the expected 
waiting time and the number of jobs in the queue) and the 
constraint is the maximum expected power consumption 
(which is related to the power cost of staying in some 
server state and the energy consumption required for the 
transfer from one server state to the next).  
 

Modeling Framework 
In our stochastic model [6][7], instead of dividing the time 
into discrete intervals, we treat time as a continuous 
variable.  
In the discrete-time model, the stochastic character of the 
system is represented by the probability that a certain event 
will occur in a given time interval, e.g., the probability that 
a service request comes during some interval, the 
probability that the server finishes serving a given task, 
and so on. In the continuous-time model, the stochastic 
character of the system is represented by 1) the probability 
distribution function for the time that the system requires 
to perform a certain task such as the time it needs to 
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provide service for a given request, the time it needs to 
change a server state, etc., and 2) the probability 
distribution function for the inter-arrival time of the task 
requests. We have shown that a continuous-time system 
model is more efficient for doing transient analysis of the 
system and is more accurate compared to the discrete-time 
model. Furthermore, in the continuous-time model, the 
behavior of the system does not need to be synchronized to 
each time interval; therefore, the resulting power 
management can be asynchronous (or event-driven). This 
means that the power manager issues a command only 
when the state of the system changes. Consequently, in a 
system with a low incoming request rate, an asynchronous 
power manager will consume much less power than a 
synchronous power manager.  
Further more, our model explicitly distinguishes the busy 
state and the idle state of the SP so that the system 
characterization becomes accurate. The model considers 
the correlation between the state transition of the SQ and 
that of the SP. The service queue model consists of a 
normal queue and a high priority queue. This is important 
since some service requests are "urgent" and need 
immediate response from the server.  
Further more, for example, if we want to model a power-
managed system as shown in Figure 3. The example 
system is from a typical multi-server (distributed 
computing) system. Note that we are only interested in the 
system behavior that is related to the power management. 
The system contains two SPs and their own Local SQs 
(LSQ). There is a SR that independently generates the 
tasks (requests) that need to be serviced. The Request 
Dispatcher (RD) makes decisions about which SP should 
service which request. We assume that different SPs may 
have different power/performance parameters. In real 
applications, the RD and LSQs can be part of the operating 
system, while SPs can be multiple devices or sub-systems 
in our target system or the number of networked computers 
of a distributed computing system. 
 
 
 
 
Figure 3 A multi-server/distributed-computing system. 

The complexity of the modeling problem for the above 
system is high not only because of the increased number of 
components, but also because of the complex system 
behaviors that are present. As examples of these complex 
behaviors, we need to consider the synchronization of 
LSQs and SPs, the synchronization of the SR and LSQs, 
the concurrent working behavior of SPs, the dispatch 
behavior of the RD, and so on. In this situation when 
complex system behaviors is a major part of the system 
model, the modeling techniques mentioned earlier 
[5][6][7] become powerless because they only offer 
stochastic models for individual components and dictate 
that system behaviors be captured manually. Obviously, 

we need new dynamic power management modeling 
techniques for large systems with complex behaviors. 
We propose a methodology [11] based on Generalized 
Stochastic Petri Nets (GSPN) to model systems with 
complex behaviors and calculate the optimal power 
management policy under given performance constraints. 
By using GSPN, we can easily and accurately model the 
system behaviors as well as model the individual 
components.  
Industrial systems consist of multiple requesters and 
multiple servers; they may use a centralized or a 
distributed power management scheme; System 
components may interact in complicated manner; the 
requests may have different service priorities and/or be 
non-stationary; and so on. These features increase the 
complexity of the PO problem. To manage this 
complexity, we develop a hierarchical power management 
scheme where we merge states with similar characteristics 
into “macro-states” and then find an optimal power 
management policy for the coarse-grain stochastic model 
of the power-managed system. We also study techniques 
based on dropping redundant states or lumping similar 
states to achieve efficiency when dealing with systems 
with a very large number of states. In addition, we allow 
multiple requesters with different service request priorities 
and non-stationary service requests. Finally, constrained 
by the coarse-grain power management policy, we can 
search for a refined policy for the states inside each macro-
state.  
 

Solution Technique 
We developed four formal optimization techniques to find 
the optimal DPM policy based on the above mentioned 
system model, which consumes minimum power while 
satisfies the given delay constraint.  
The most widely used constraint optimization technique is 
linear programming based approach. In our work, we 
formulate the policy optimization problem as a linear 
programming problem. The resulting policy consumes 
minimum power while exactly satisfies the given 
performance constraint.  However, the output policies are 
randomized policy. It means that each time, the action is 
taken with certain probability. Such a policy may has some 
difficulty in real implementation if the power manager is 
implemented using hardware. 
On the other hand, a deterministic policy takes a 
deterministic policy at each time. To calculate the 
deterministic policy, we use a non-linear programming 
based approach. In addition to the constraints in the linear 
program formulation, the requirement of deterministic 
policy is formulated as a non-linear constraint. 
A branch bound based algorithm is also proposed to solve 
the deterministic policy. In this algorithm, we search for 
the optimal deterministic decision using a decision tree. 
Associated with each leaf of the decision tree, there is a 
deterministic policy; associate with each branch of this 
tree, there is a partial decision problem and a predictor. 
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The predictor gives the lower bound of the power 
consumption of the policies in this branch. If this power 
consumption is higher than the best solution obtained, the 
branch is pruned; otherwise, we search for the optimal 
policy in this branch. 
The policy iteration based approach is a heuristic 
approach, which finds optimal deterministic policy that 
satisfied certain conditions. The kernel of this approach is 
a conventional policy optimization algorithm, which finds 
the unconstraint optimal deterministic policy. We modified 
the algorithm so that it can be applied in our constraint 
optimization problem.  
 

Experimental results 
Experiments have been designed to examine the 
performance of our system model and optimization 
method. We present the comparison of our DPM policy 
and the heuristic policies including greedy policy, time-out 
policy and show that our policy consumes less power than 
the heuristic policies. 
The system model used in this part includes: 
A SP model that has three different power modes: active, 
waiting and sleeping.  
A SR model based on real applications. 
A SQ model based on real implementation in the OS. 
We compare the new DPM policy with two heuristic 
power management methods: 
1. Greedy policy: turn on the SP whenever a request comes 
and turn off the SP whenever the SP is idle and there is no 
request in the queue. 
2. Timeout policy: turn on the SP whenever a request 
comes and turn off the SP whenever the SP has been idle 
for tout and there is no request in the queue. 
 
 
 
 
 
 
 
 
 
 

Figure 4 Experimental results. 
 
We simulated the heuristic policies to get the average 
delay of the low priority and high priority requests. We 
then use these delay values as the delay constraint and 
searched for a randomized DPM policy using linear 
programming. Finally, We simulated the DPM policies and 
compare the power and delay value with that of heuristic 
policies. From Figure 4 we can see that the DPM policy 
saves more than 15% power than the heuristic policy while 
having the same performance level. 

Conclusions 
We presented methods for operating system directed 
dynamic power management. We model a power-managed 
system using a continuous-time Markov decision process 
and solve for the optimal power management policy using 
a mathematical programming technique. We also extended 
the model by using the controllable Generalized Stochastic 
Petri Nets with cost to handle systems with complex 
behavioral characteristics such as many realistic mobile 
systems. Experimental results demonstrated the 
effectiveness of the proposed modeling framework and 
solution techniques. 
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