

OS-Directed Power Management for Mobile Electronic Systems

Qinru Qiu, Qing Wu and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

{qinru, qwu, pedram}@usc.edu

Abstract
We present methods for operating system directed dynamic
power management. We model a power-managed system
using a continuous-time Markov decision process and
solve for the optimal power management policy using a
mathematical programming technique. Next we extend the
model by using the controllable Generalized Stochastic
Petri Nets with cost to handle systems with complex
behavioral characteristics such as concurrency,
synchronization, mutual exclusion and conflict.
Experimental results demonstrate the effectiveness of the
proposed modeling framework and solution techniques.

Introduction
Military systems have to be low power yet high
performance. This is because they are battery-operated
portable (wearable) systems that require significant
computation and communication capabilities.
Sophisticated dynamic power management policies,
power-aware operating systems and C compilers, and
hardware/software co-synthesis tools are required to
satisfy these often conflicting design requirements. We
propose to investigate a number of problems at the system,
software, operating system, and behavioral levels, which
are critical to effective power-performance tradeoff and
optimization in complex embedded systems.
Dynamic power management (DPM) [2]– which refers to
selective shut-off or slow-down of system components that
are idle or underutilized – has proven to be a particularly
effective technique for power saving. The goal of a
dynamic power management policy is to reduce the power
consumption of an electronic system by putting system
components into different states, each representing certain
performance and power consumption level. The policy
determines the type and timing of these transitions based
on the system history, workload and performance
constraints.
We present a simple example to illustrate the basic idea
behind dynamic power management and the resulting
trade-off space. Consider an I/O device (service provider)
that is controlled by the OS-directed power management
software and that can be put into one of two modes: “ON”
and “OFF”. The device consumes 10 Watts of power when
it is in the “ON” state and 0 Watt when it is “OFF”. It
takes 2 seconds and 40 Joules of energy to turn this device

from “OFF” to “ON” whereas it takes 1 second and 10
Joules of energy to turn it from “ON” to “OFF”. The
service request pattern in a time period of 25 seconds is
shown in Figure 1(a).
Without a power management policy, this device is always
“ON” as depicted in Figure 1(b). The shaded areas in the
figure identify the time periods when the device is
processing the requests. Under a “greedy power
management policy”, the OS turns on the device whenever
there is a service request for it and turns off the device
whenever it has nothing to do. The working pattern of the
device under this policy is shown in Figure 1(c). If,
however, the average delay for processing a request can be
increased, then the power management policy shown in
Figure 1(d) will result in minimum power dissipation (total
energy in 25 seconds) for the device under the specified
delay constraint. The comparison between the three
policies in terms of total energy consumption and average
delay is presented in Table 1.

Figure 1 An example of the effect of power
management.

Table 1 Comparison of total energy consumption and
average delay.

 Total energy
consumption

in 25 sec

Average
latency per

request
“Always on” policy 250 J 1 sec

“Greedy” policy 240 J 3 sec

“Optimal” policy 140 J 2.5 sec

t (sec)

t (sec)

t (sec)

t (sec)

1 3 5 7 9 11 13 15 17 19

Request pattern

“Always on”

“Greedy”

“Optimal”

ON

ON

ON

21 23 25

OFF

OFF

OFF

1 3 5 7 9 11 13 15 17 19 21 23 25

(a)

(b)

(c)

(d)

This simple example illustrates the fact that there is a
fundamental tradeoff between power dissipation and
latency per request (while maintaining the same
throughput) and that a “good” power management policy
is one that can exploit this trade-off dynamically.

DPM Background
Portable electronic devices tend to be much more complex
than a single VLSI chip; they contain many components,
ranging from digital and analog to electro-mechanical and
opto-electronics. Digital components often consume 20-
50% of the total power. Hence, reducing power
consumption in the non-digital electronic parts of the
system is as important. System designers have started to
respond to the requirement of power-constrained system
designs by a combination of technological advances and
architectural improvements.
The problem of finding a power management scheme (or
policy) that minimizes the system power dissipation under
performance constraints is of great interest to system
designers. Aside from finding an effective policy for a
given electronic system, the design and implementation of
such a policy in the context of the system itself is a
complicated and error-prone process. Realizing this
difficulty, a number of standardization efforts have started,
chief among them is the Advanced Configuration and
Power Interface (ACPI) [1].
Under OS-directed power management (OSPM), the
operating system directs all system and device power state
transitions. Employing user preferences and knowledge of
how devices are being used by applications, the OS puts
devices in and out of low-power states. Devices that are
not being used can be turned off. Similarly, the OS uses
information from applications and user settings to put the
system as a whole into a low-power state. The OS uses
ACPI to control power state transitions in hardware. The
functional areas covered by the ACPI specification are:
1. System power management – ACPI defines

mechanisms for putting the computer as a whole in
and out of system sleeping states. It also provides a
general mechanism for any device to wake the
computer up.

2. Device power management – ACPI tables describe
motherboard devices, their power states, the power
planes that the devices are connected to, and controls
for putting devices into different power states. This
enables the OS to put devices into low-power states
based on application usage.

3. Processor power management – While the OS is idle
but not sleeping, it will use commands described by
ACPI to put processors in low-power states.

ACPI does not, however, specify the power management
policy. It is the objective of the proposed research to
provide a framework and supporting tools for constructing
optimal power management policies based on modeling
the power-managed system as a continuous-time Markov
decision process. The OS must be modified to provide the

stochastic parameters of this stochastic model by profiling
the activities of the system components when an
application program is run on the system.

Figure 2 An abstract model of a power-managed

system.
The choice of the policy that minimizes power dissipation
under a performance constraint (or maximizes
performance under a power constraint) is a new kind of
constrained optimization problem that is of great relevance
for low-power electronic systems. This problem is often
referred to as the policy optimization (PO) problem. A
number of heuristic policies have been proposed and
adopted in some practical systems [3][4]. In [5], Benini et
al. proposed a stochastic model for a rigorous
mathematical formulation of the problem and presented a
procedure for its exact solution. The solution is computed
in polynomial time by solving a linear optimization
problem. Their approach is based on a stochastic model of
power-managed devices and workloads and leverages
well-known stochastic optimization techniques based on
the theory of discrete-time Markov decision chains. In the
model of [5], time is divided into small intervals of length
L. It is assumed that the system can only change its state at
the beginning of a time interval. During interval (jL,
(j+1)L), the transition probability of the system depends
only on the state of the system at time jL (hence, the
Markovian property) and the command issued by the
power manager. The system model consists of four
components: a power manager (PM), a service provider
(SP), a service requestor (SR) and a service request queue
(SQ). (See Figure 2.) The objective function is the
expected performance (which is related to the expected
waiting time and the number of jobs in the queue) and the
constraint is the maximum expected power consumption
(which is related to the power cost of staying in some
server state and the energy consumption required for the
transfer from one server state to the next).

Modeling Framework
In our stochastic model [6][7], instead of dividing the time
into discrete intervals, we treat time as a continuous
variable.
In the discrete-time model, the stochastic character of the
system is represented by the probability that a certain event
will occur in a given time interval, e.g., the probability that
a service request comes during some interval, the
probability that the server finishes serving a given task,
and so on. In the continuous-time model, the stochastic
character of the system is represented by 1) the probability
distribution function for the time that the system requires
to perform a certain task such as the time it needs to

w���� t ������ Owt P

z������ w������� OzwP z������ y�������� Ozy Py ������ x���� Oyx P

j������z���� p���������� z���� p����������

z���� p����������

provide service for a given request, the time it needs to
change a server state, etc., and 2) the probability
distribution function for the inter-arrival time of the task
requests. We have shown that a continuous-time system
model is more efficient for doing transient analysis of the
system and is more accurate compared to the discrete-time
model. Furthermore, in the continuous-time model, the
behavior of the system does not need to be synchronized to
each time interval; therefore, the resulting power
management can be asynchronous (or event-driven). This
means that the power manager issues a command only
when the state of the system changes. Consequently, in a
system with a low incoming request rate, an asynchronous
power manager will consume much less power than a
synchronous power manager.
Further more, our model explicitly distinguishes the busy
state and the idle state of the SP so that the system
characterization becomes accurate. The model considers
the correlation between the state transition of the SQ and
that of the SP. The service queue model consists of a
normal queue and a high priority queue. This is important
since some service requests are "urgent" and need
immediate response from the server.
Further more, for example, if we want to model a power-
managed system as shown in Figure 3. The example
system is from a typical multi-server (distributed
computing) system. Note that we are only interested in the
system behavior that is related to the power management.
The system contains two SPs and their own Local SQs
(LSQ). There is a SR that independently generates the
tasks (requests) that need to be serviced. The Request
Dispatcher (RD) makes decisions about which SP should
service which request. We assume that different SPs may
have different power/performance parameters. In real
applications, the RD and LSQs can be part of the operating
system, while SPs can be multiple devices or sub-systems
in our target system or the number of networked computers
of a distributed computing system.

Figure 3 A multi-server/distributed-computing system.

The complexity of the modeling problem for the above
system is high not only because of the increased number of
components, but also because of the complex system
behaviors that are present. As examples of these complex
behaviors, we need to consider the synchronization of
LSQs and SPs, the synchronization of the SR and LSQs,
the concurrent working behavior of SPs, the dispatch
behavior of the RD, and so on. In this situation when
complex system behaviors is a major part of the system
model, the modeling techniques mentioned earlier
[5][6][7] become powerless because they only offer
stochastic models for individual components and dictate
that system behaviors be captured manually. Obviously,

we need new dynamic power management modeling
techniques for large systems with complex behaviors.
We propose a methodology [11] based on Generalized
Stochastic Petri Nets (GSPN) to model systems with
complex behaviors and calculate the optimal power
management policy under given performance constraints.
By using GSPN, we can easily and accurately model the
system behaviors as well as model the individual
components.
Industrial systems consist of multiple requesters and
multiple servers; they may use a centralized or a
distributed power management scheme; System
components may interact in complicated manner; the
requests may have different service priorities and/or be
non-stationary; and so on. These features increase the
complexity of the PO problem. To manage this
complexity, we develop a hierarchical power management
scheme where we merge states with similar characteristics
into “macro-states” and then find an optimal power
management policy for the coarse-grain stochastic model
of the power-managed system. We also study techniques
based on dropping redundant states or lumping similar
states to achieve efficiency when dealing with systems
with a very large number of states. In addition, we allow
multiple requesters with different service request priorities
and non-stationary service requests. Finally, constrained
by the coarse-grain power management policy, we can
search for a refined policy for the states inside each macro-
state.

Solution Technique
We developed four formal optimization techniques to find
the optimal DPM policy based on the above mentioned
system model, which consumes minimum power while
satisfies the given delay constraint.
The most widely used constraint optimization technique is
linear programming based approach. In our work, we
formulate the policy optimization problem as a linear
programming problem. The resulting policy consumes
minimum power while exactly satisfies the given
performance constraint. However, the output policies are
randomized policy. It means that each time, the action is
taken with certain probability. Such a policy may has some
difficulty in real implementation if the power manager is
implemented using hardware.
On the other hand, a deterministic policy takes a
deterministic policy at each time. To calculate the
deterministic policy, we use a non-linear programming
based approach. In addition to the constraints in the linear
program formulation, the requirement of deterministic
policy is formulated as a non-linear constraint.
A branch bound based algorithm is also proposed to solve
the deterministic policy. In this algorithm, we search for
the optimal deterministic decision using a decision tree.
Associated with each leaf of the decision tree, there is a
deterministic policy; associate with each branch of this
tree, there is a partial decision problem and a predictor.

SR
RD

LSQ1

LSQ2

SP1

SP2

The predictor gives the lower bound of the power
consumption of the policies in this branch. If this power
consumption is higher than the best solution obtained, the
branch is pruned; otherwise, we search for the optimal
policy in this branch.
The policy iteration based approach is a heuristic
approach, which finds optimal deterministic policy that
satisfied certain conditions. The kernel of this approach is
a conventional policy optimization algorithm, which finds
the unconstraint optimal deterministic policy. We modified
the algorithm so that it can be applied in our constraint
optimization problem.

Experimental results
Experiments have been designed to examine the
performance of our system model and optimization
method. We present the comparison of our DPM policy
and the heuristic policies including greedy policy, time-out
policy and show that our policy consumes less power than
the heuristic policies.
The system model used in this part includes:
A SP model that has three different power modes: active,
waiting and sleeping.
A SR model based on real applications.
A SQ model based on real implementation in the OS.
We compare the new DPM policy with two heuristic
power management methods:
1. Greedy policy: turn on the SP whenever a request comes
and turn off the SP whenever the SP is idle and there is no
request in the queue.
2. Timeout policy: turn on the SP whenever a request
comes and turn off the SP whenever the SP has been idle
for tout and there is no request in the queue.

Figure 4 Experimental results.

We simulated the heuristic policies to get the average
delay of the low priority and high priority requests. We
then use these delay values as the delay constraint and
searched for a randomized DPM policy using linear
programming. Finally, We simulated the DPM policies and
compare the power and delay value with that of heuristic
policies. From Figure 4 we can see that the DPM policy
saves more than 15% power than the heuristic policy while
having the same performance level.

Conclusions
We presented methods for operating system directed
dynamic power management. We model a power-managed
system using a continuous-time Markov decision process
and solve for the optimal power management policy using
a mathematical programming technique. We also extended
the model by using the controllable Generalized Stochastic
Petri Nets with cost to handle systems with complex
behavioral characteristics such as many realistic mobile
systems. Experimental results demonstrated the
effectiveness of the proposed modeling framework and
solution techniques.

Reference
[1] Intel, Microsoft and Toshiba, “Advanced Configuration and

Power Interface specification”, URL:
http://www.intel.com/ial/powermgm/specs.html, 1996

[2] L. Benini and G. De Micheli, Dynamic Power Management:
Design Techniques and CAD Tools, Kluwer Academic
Publishers, 1997.

[3] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive
system shutdown and other architectural techniques for
energy efficient programmable computation," IEEE
Transactions on VLSI Systems, Vol. 4, No. 1 (1996), pages
42-55.

[4] C.-H. Hwang and A. Wu, “A Predictive System Shutdown
Method for Energy Saving of Event-Driven Computation,”
Proc. of the Intl. Conference on Computer Aided Design,
pages 28-32, November 1997.

[5] G. A. Paleologo, L. Benini, et.al, “Policy Optimization for
Dynamic Power Management”, Proceedings of Design
Automation Conference, pp.182-187, Jun. 1998.

[6] Q. Qiu, M. Pedram, “Dynamic Power Management Based
on Continuous-Time Markov Decision Processes”,
Proceedings of the Design Automation Conference, pp. 555-
561, Jun. 1999.

[7] Q. Qiu, Q. Wu, M. Pedram, “Stochastic Modeling of a
Power-Managed System: Construction and Optimization”,
Proceedings of the International Symposium on Low Power
Electronics and Design, 1999.

[8] L. Benini, A. Bogliolo, S. Cavallucci, B. Ricco, “Monitoring
System Activity For OS-Directed Dynamic Power
Management”, Proceedings of International Symposium of
Low Power Electronics and Design Conference, pp. 185-
190, Aug. 1998.

[9] E. Chung, L. Benini and G. De Micheli, “Dynamic Power
Management for Non-Stationary Service Requests”,
Proceedings of DATE, pp. 77-81, 1999.

[10] L. Benini, R. Hodgson, P. Siegel, “System-level Estimation
And Optimization”, Proceedings of International
Symposium of Low Power Electronics and Design
Conference, pp. 173-178, Aug. 1998.

[11] Q. Qiu, Q. Wu, M. Pedram, “Dynamic Power Management
of Complex Systems Using Generalized Stochastic Petri
Nets”, to appear, Proceedings of the Design Automation
Conference, Jun. 2000

����������

����������

������������

������������

������������

������������

������������

������������

������������

������������

Power Improvement of Our approach vs. Heuristics

77LLPHPHRRXXWW
7R7RXXW W ����

77LLPHPHRRXXWW
7R7RXXW W ����

77LLPHPHRRXXWW
7R7RXXW W ����

**UUHHHHGG\\

����������

����������

������������

������������

������������

������������

������������

������������

������������

������������

Power Improvement of Our approach vs. Heuristics

77LLPHPHRRXXWW
7R7RXXW W ����

77LLPHPHRRXXWW
7R7RXXW W ����

77LLPHPHRRXXWW
7R7RXXW W ����

**UUHHHHGG\\

