
 1

A New Canonical Form for Fast Boolean Matching in Logic
Synthesis and Verification

Afshin Abdollahi
University of Southern California

afshin@usc.edu

Massoud Pedram
University of Southern California

pedram@ceng.usc.edu

Abstract – An efficient and compact canonical form is proposed for
the Boolean matching problem under permutation and
complementation of variables. In addition an efficient algorithm for
computing the proposed canonical form is provided. The efficiency
of the algorithm allows it to be applicable to large complex
Boolean functions with no limitation on the number of input
variables as apposed to previous approaches, which are not
capable of handling functions with more than seven inputs.
Generalized signatures are used to define and compute the
canonical form while symmetry of variables is used to minimize the
computational complexity of the algorithm. Experimental results
demonstrate the efficiency and applicability of the proposed
canonical form.

I. Introduction
In this paper Boolean matching is defined as the problem of
determining whether a Boolean function can be functionally
equivalent to another one under a permutation of its inputs and
complementation of some of its inputs. Boolean matching
algorithms have many applications in logic synthesis including
cell-library binding where it is necessary to repeatedly determine
whether some part (cluster) of a Boolean network can be realized
by any of the cells in a library [1]. Boolean matching is a critical
and CPU-intensive task and therefore, there have been many efforts
to effectively solve the problem [2]. Boolean functions that are
equivalent under negation of inputs are N-equivalent, under
permutation of inputs are P-equivalent, and under both stated
conditions, are NP-equivalent [3]. An exhaustive method for
Boolean matching is computationally expensive since the
complexity of such an algorithm for n-variable functions is O(n!2n).

Boolean matching algorithms can be classified into two categories:
pair-wise matching algorithms and algorithms based on canonical
forms of functions. Pair-wise Boolean matching algorithms are
based on a semi-exhaustive search where the search space is pruned
by the use of some signatures which are computed from some
properties of Boolean functions [2]. A signature in general is a
description of (one or more) input variables of a Boolean function
that is independent of the permutation or complementation of the
variables of the function. To match a function against a cell library,
pair-wise matching algorithms often need to perform pair-wise
matching of the function with all the library cells. Therefore, these
algorithms can only handle libraries with a modest size.

Boolean matching algorithms that belong to the second category
compute some canonical form for Boolean functions [5] - [10].
These algorithms are based on the fact that two functions match if
and only if their canonical forms are the same. Burch and Long
introduced a canonical form for matching under complementation
and a semi-canonical form for matching under permutation of the
variables [5]. Thus, in order to handle complementation and
permutation of inputs simultaneously, a large number of forms for
each cell are required. Other researchers, including Wu et al. [6],
Debnath and Sasao [8], and Ciric and Sechen [9] also proposed
canonical forms that are applicable for Boolean matching under
permutation of the variables only and do not handle
complementation of inputs. Hinsberger and Kolla [7] and Debnath
and Sasao [10], introduced a canonical form for solving the general

Boolean matching problem. However their approach is mainly
based on manipulating the truth table of the function and using a
table look-up which introduces an enormous space complexity, thus
limiting the algorithm to library cells with seven and fewer input
variables, which is a major limitation.

In this paper a new canonical form for representing Boolean
functions is introduced. The proposed canonical form for an
arbitrary Boolean function is the unique Boolean function that is
obtained after applying some CP transformation on the input
variables. The canonical forms of NP-equivalent Boolean functions
are identical. Next, an effective technique is presented for
generating this canonical form. The proposed method is based on
using generalized signatures (signatures of one or more variables)
to find a canonicity-producing (CP) phase assignment and ordering
for variables. From here on, phase assignment and ordering for
variables is referred to as a transformation on variables. For most
Boolean functions, single-variable and two-variable signatures are
enough to recognize all variables (i.e., to obtain a CP
transformation.) However, use of single-variable and two-variable
signatures alone may not result on a canonical input transformation.
In this paper it is shown that, by using generalized signatures of one
or more variables, it is always possible to create a CP
transformation on variables of the function.

Experimental results provided in this paper demonstrate that the
proposed approach for computing the canonical form does not have
the limitations of previous works; i.e. it computes the canonical
form under both permutation and complementation of variables and
there is no limit on number of variables. An important advantage of
the proposed technique is the way it handles and uses the symmetry
of variables to minimize the complexity of the algorithm compared
to some of the previous approaches which are not able to consider
symmetries [7] [10]. Hence, the proposed technique is applicable to
large libraries with cells of any number of inputs. Also it can be
used for logic verification of large circuits since there is no limit on
the number of input variables.

The reminder of this paper is organized as follows: In section II,
definitions and terminology are introduced. In section III, CP
transformations and canonical forms are defined. Section IV
describes how symmetries of variables are handled and section V
provides the details of computing the canonical form followed by
experimental results and conclusions in sections VI and VII.

II. Preliminaries
Let X denote a vector (x1, x2,…, xn) of Boolean variables and f(X) a
single-output completely-specified Boolean function of X. A literal

is a variable, xi, or its complement ix . In general a literal can be
denoted as xi

p, where p denotes the phase assignment to variable xi

i.e., xi
1=xi and xi

0= ix . A minterm is a vertex in the n-dimensional
Boolean space, {0, 1}n and a cube is the conjunction of some
literals. An NP transformation, Γ, is an onto mapping which
assigns a unique phase and variable ordering to each variable in X
i.e., Γ(X)=T where T=(t1,t2,…, tn) and ti=)(

)(
ip
ixπ . Here, π(i) denotes

the position of xi under permutation π. Similarly, p(i) denotes the
phase of xπ(i) under phase assignment p. The inverse NP

 2

transformation 1−Γ applied to vector T produces vector X. For
example, assume that a transformation Γ on (x1,x2,x3) produces

(x2, 3x ,x1). The inverse transformation 1−Γ on (x2, 3x ,x1) produces

(x1,x2,x3). Notice also that 1−Γ (x1,x2,x3)=(x3,x1, 2x).

Fact. Boolean functions f1(X) and f2(X) are NP-equivalent exactly if
there exists a transformation Γ(X)=T such that f1(X)= f2(T). Notice
that if f1(X)= f2(T) then f1(

1−T)= f2(X) where 1−T =)(1 X−Γ .

Note that NP-equivalence is an equivalence relation, partitioning
the space of n-input Boolean functions to equivalence classes.

Example 1. Let f1(x1,x2,x3)=x1x2+ 1x x3 and f2(x1,x2,x3)=x1x3+ 2x 3x .

Then f1(X)= f2(T) where X=(x1,x2,x3) and T=(x2, 3x ,x1). Thus, f1(X)

and f2(X) are NP-equivalent. Also f1(
1−T)=f1(x3,x1, 2x)=f2(X).

In the remainder of this paper, for a given X, when there is no
confusion, we will use T to denote the transformation, Γ, or its
result, Γ(X). A similar overloading will be used for 1−T .

For any function f(X), let | f(X)| denote the number of minterms
covered by f(X). The cofactor of f with respect to a literal xi (ix) is

the Boolean function obtained by setting xi (ix) to 1 in f and is
denoted by)(

ii xx ff , which is considered as a function with the

same number of input variables as f. The cofactor of f with respect
to a cube, b, is the Boolean function obtained by setting all literals
of b to 1 in f and is denoted by

bf , which is also considered as a

function with the same number of input variables as f.

Definition: For any cube b, generalized signature, |fb|, of function f
with respect to cube b is equal to the number of minterms in the
onset of function fb. If b consists of exactly k literals, then the
corresponding signature will be referred to as a kth order signature.

III. Canonical Form
There are 2nn! NP transformations on n variables X =(x1, x2,…, xn)
of function f(X). Some of these transformations result in identical
Boolean functions. Therefore, the set of Boolean functions of
exactly n variables can be partitioned into a set of NP-equivalent
functions. Each equivalence class is uniquely represented by a
single NP-representative function. It is important to be able to
determine the equivalence class of a given Boolean function, f(X).
This is in turn achieved by applying a transformation to X such that
f(T) is the NP-representative function of that class.

Definition: The canonical form of function f(X) is a function, Cf ,

such that)()(C
C TfXf = , where

CT denotes a canonicity-

producing (or CP) transformation. Notice that)()(1 XfTf C
C =− .

There may be more than one such CP transformation due to
variable symmetries as described in the next section. For example,
for function f(X),

1CT and
2CT may be two different CP

transformations, which result in the same canonical form)(Xf C ,

i.e.,)()()(
21

XfTfTf C
CC == . To guarantee that the canonical

forms of f(X) and its negation-equivalent functions are the same,
constraint

ii tt
ff ≤ is imposed on the inverse of CP

transformation, T. In addition, for computational efficiency reasons,
“NE-symmetric” variables (cf. section IV) must be placed next to
one another. Therefore, an order relation, ‘p ’, is defined among
the transformations that satisfy these constraints.

Definition: For a transformation T=(t1, t2,…, tn), the signature
vector ST is defined as:

)||,|||,...,|,...,|||,...,||,|,|||,...,|(

signaturen

...

signatures)1(

......

signatures2signatures1 th

1

th

211

nd

13121

st

1

876444 8444 76444 8444 7648476 −−−−−

−−
=

nnnnnn tt

n

tttttttttttt
T ffffffffS

Signature vector ST includes the 1st-signatures followed by the 2nd-
and higher order signatures up to the nth-signatures. Signatures of
ST correspond to cofactors of f with respect to cubes consisting of
non-empty subsets of vector T. (Only positive phases of ti are
considered; hence ST includes 2n-1 signatures.)

Definition: The relation ’p ’ between T1 and T2 is defined based on
the lexicographic comparison of their corresponding signature
vectors, 1TS and 2TS , i.e., T1p T2⇔ 1TS p 2TS .

Recall that in lexicographic comparison of two vectors, the
corresponding entries are compared until an inequality is
encountered. For example (2,1,3,4)p (2,3,0,1). Notice that because
|f| is invariant under a CP transformation on its variables, it is not
included in the signature vector.

Definition: The maximal transformation is a transformation which
is maximal with respect to the order relation,’p ’ in the set of all
transformations that satisfy the aforesaid constraints.

A necessary condition for this method to be valid is that when two
signature vectors 1TS and 2TS are identical, the corresponding
Boolean functions f(1

1
−T) and f(1

2
−T) will also be identical, i.e.,

1TS = 2TS ⇔f(1
1
−T)=f(1

2
−T) as stated equivalently in theorem 1.

Theorem 1. For a transformation 1−T on variables X of a function
f, values of |f| and signature vector TS uniquely and completely
specify function f.

Proof: Let vector F represent the values of function f in all 2n
minterms (the last column of the truth table of f.) Then the vector
S=[|f|, TS] can be obtained using the matrix relation S=A×F where
A is a reversible matrix of 0 and 1 entries and values and operations
in this matrix relation are regarded as integers (rather than
Boolean.) The proof follows from the reversibility of matrix A.
Details are however omitted because of space limitation.

When comparing two different transformations T1 and T2, it is often
unnecessary to completely compute all the signature vectors. More
precisely, if f(1

1
−T)≠ f(1

2
−T), then most of the time the 1st-signatures

alone will determine the order between T1 and T2. However, if all
of the 1st signatures are equal, then the 2nd-signatures should be
compared. Subsequently, if the 2nd-signatures are also equal, then
the 3rd-signatures must be compared, and so on until an inequality
is encountered. Based on theorem 1 it is guaranteed that if
f(1

1
−T)≠f(1

2
−T), then 1TS ≠ 2TS i.e., an inequality in some of

signatures will always occur. Experimental evidence shows that in
the great majority of cases, a signature inequality occurs for the low
order signatures (1st and 2nd signatures.) Intuitively, the reason is
that the lower order signatures depend on more minterms of the
function and thus contain more information about the function. For
example a 1st-signatre depends on 2n-1 minterms which is a half of
the whole Boolean space (2n minterms) whereas a 2nd-signatre
depends on one-forth of all minterms (2n-2 minterms.) Hence, the
1st-signatures are the most powerful and effective signatures. The
2nd-signatures are the next most effective signatures and so on. The
reader will observe that this arrangement of the proposed signature
vector minimizes the computational complexity.

In this paper a number of techniques are presented to minimize the
computational complexity of identifying the CP transformation.
One of these techniques is to analyze and use the variable
symmetries to significantly prune the search space, and thereby,
avoid unnecessary computations. Another technique is to use the 1st
and 2nd signatures to order (sort) the literals (variables after phase
assignment) of the function. Subsequently, if the resultant ordering
does not conclude a CP transformation, then the 3rd and possibly
higher order signatures are used to identify a CP transformation.

 3

IV. Symmetry Classes
Accounting for symmetry relations between variables is critical in
minimizing the complexity of any Boolean matching algorithm.
Hence, this paper focuses on efficient handling and utilization of
symmetry relations and symmetry classes.

Definition: Given function f(X), variables xi and xj are said to be
non-equivalent-symmetric (NE-symmetric), denoted as xiNExj, if f
is invariant under swapping xi and xj [11] i.e., f (x1,…,xi,…,xj,…,xn)
= f (x1,…,xj,…,xi,…,xn). Notice that xiNExj if and only if

jiji xxxx
ff = . Two variables xi and xj of f(X) are said to be

equivalent-symmetric (E-symmetric), denoted as xiExj, if xiNE jx .

Notice that xiExj if and only if
jiji xxxx

ff = . Two variables xi and

xj of f(X) are called symmetric, denoted as xiSxj, if xiNExj or xiExj.

Fact: Transitive property of the symmetric relation (S). If xiSxj and
xjSxk, then xiSxk.

Since symmetric relation, S, is an equivalence relation, the set of
variables, x1,x2,…,xn can be divided into equivalent classes
C1,C2,…,Cm, that are referred to as symmetry classes. Similarly it is
possible to define NE-symmetry relation and NE-symmetry classes
(NE-classes) with respect to non-equivalent symmetries only.

Definition: A symmetry (or NE-symmetry) class is maximal if no
other variable is symmetric (or NE-symmetric) to the variables of
the class.

Example 2. Consider the Boolean function:
f (x1, x2, x3, x4, x5) = (x1+ 3x + x4)(2x + x5).

Variables x1, x2, x3, x4, x5 can be divided into two symmetry classes:
C1 ={x1, x3, x4} and C2 ={x2, x5}. Note that a symmetry class (C1)
may include both NE and E symmetries (i.e., x1Ex3 and x1NEx4.)

Lemma 1. Given a symmetry class C={x1,x2,…,xi} of function f(X),
there always exists a phase assignment P=(p1,p2,…,pi) to variables
(x1,x2,…,xi) such that CP={ 1

1
px , 2

2
px ,…, ip

ix } is an NE-class.

Proof: The proof is by construction. The construction algorithm
(which we refer to as the Generate-NE-symmetry) starts by
setting CP={x1}, i.e., p1=1. In the next step, if x1NEx2, then x2 is
added to CP, resulting in CP={x1, x2}, i.e., p2=1. However, if x1Ex2,

then CP={x1, 2x }, i.e., p2=0. At each step of the algorithm, CP
remains NE-symmetric by assigning appropriate phases to variables
being added to CP. Consider step j where j-1 literals have been
included in the NE-class i.e., CP={ 1

1
px , 2

2
px ,…, 1

1
−

−
jp

jx }. Now xj is

either NE-symmetric with all members of CP = { 1

1
px , 2

2
px , …,

1

1
−

−
jp

jx } or E-symmetric with all of them. In the first case xj is

added to CP (pj=1) while in the second case jx is added to CP

(pj=0) resulting in CP={ 1

1
px ,…, 1

1
−

−
jp

jx , jp
jx }, which is an NE-

class. The algorithm continues until all variables of C are added to
CP with appropriate phases.

The cofactor of function f with respect to any literal in an NE-class
of f, C={x1,x2,…,xi}, is a unique function i.e.,

ixxx fff === ...
21

.

Therefore, the cofactor of f with respect to the NE-class C can be
defined as the cofactor of f with respect to any literal from C, e.g.,

1xC ff = . The second order cofactor of f with respect to NE-classes

C1 and C2 (i.e.,
21CCf) is defined similarly.

Definition: The first-order signature (1st-signature) of f with
respect to an NE-class C is defined as |fC| whereas the second order
signature (2nd-signature) of f with respect to NE-classes C1 and C2
is defined as

21CCf . Higher order signatures are similarly defined.

V. Computing the Canonical Form
In this section, an algorithm, called compute-CF, for computing
the canonical form of function f(X) is described. The algorithm
consists of several steps including classifying variables to
symmetry classes, phase assignment, using 1st and 2nd signatures
(and if necessary higher order signatures) to order classes.

As stated previously, compute-CF finds a CP transformation
which is the inverse of the maximal transformation among the 2nn!
possible transformations. Note that there may exist more than one
maximal transformation for any function f; however, all such
maximal transformations result in the same unique canonical form.
Recall that function f will remain invariant under permutations
inside an NE-symmetry class. Therefore, instead of finding a
transformation on the variables, variables are first partitioned into
maximal symmetry classes, next maximal NE-classes C1,C2,…,Cm
are generated by appropriate phase assignment to members of each
class using the Generate-NE-symmetry provided in the proof of
lemma 1. Next the 1st-signatures are used to construct a maximal
transformation on NE-classes if possible. If the 1st-signatures do
not contain enough information to generate a maximal
transformation, then the 2nd-sinatures (and possibly higher order
signatures) will be used to find a maximal transformation.

Example 3. Consider function f in example 2. After applying the

Generate-NE-symmetry, the NE-classes are: C1 ={x1, 3x , x4} and

C2 ={x2, 5x }. Because f is a function of five variables, there exists
255!=3840 transformations on variables. However, since f is
invariant with respect to permutations inside C1 or C2, there are
only 222!=8 distinct transformations, which result from

transformations on NE-classes C1 and C2 i.e., (C1,C2), (C1, 2C),

(1C ,C2), (1C , 2C), (C2, C1), (C2, 1C), (2C ,C1), and (2C , 1C).

To be concise, from this point on, we will use the term “class” to
refer to “NE-class” unless stated otherwise. Each transformation on
classes determines a transformation on variables (among which the

maximal transformation must be identified.) For example (C2, 1C)

corresponds to the transformation (x2, 5x , 1x , x3, 4x).

By classifying variables to classes and only considering
transformations on the resulting classes, variable transformations
(and thus, the maximal transformation) are restricted to
transformations in which members of a class are NE-symmetric and
are placed next to each other.

The next step of compute-CF is to assign a phase to each class Ci
by using the 1st-signatures of f with respect to Ci and the
complement of Ci as follows. (The complement of a class Ci, as the

defined before, is a class iC consisting of complements of literals

from Ci.) If
ii CC

ff < , then the positive phase (Ci) is assigned to

Ci; otherwise if
ii CC

ff > , then the negative phase is assigned

i.e., literals of Ci will be negated. In case of equality, the phase of
the class is marked undecided. The phase of undecided classes must
be determined in subsequent steps of the algorithm.

Example 4. Continuing with examples 2 and 3, the 1st-signatures of
f with respect to the classes and their complements are as follows:

12=
iCf , 9=

iC
f , 7

2
=Cf , 14

2
=

C
f . Since

11 CC
ff < , positive

phase is assigned for C1 (i.e., C1={x1, 3x ,x4}.) Since
22 CC

ff > ,

negative phase is assigned to C2 (i.e., new C2={ 2x ,x5}.)

Let C1, C2,…,Cm represent the resulting classes after proper phase

assignment. (In case of example 4, C1={x1, 3x ,x4} and

C2={ 2x ,x5}.)

 4

After phases are assigned, new classes are ordered based on their
1st-signatures. (The 1st- signatures used for ordering are values after
phase assignment.) Without loss of generality, let’s assume that

mCCC fff ≤≤≤ ...
21

. Thus classes are ordered as (C1,C2,…,Cm). If

the phase of a class (Ci) is undecided, since
ii CC

ff = , the phase

of Ci (positive or negative) will not affect the outcome of ordering
(i.e.,

iCf or
iC

f could be used for ordering). If the 1st-signatures

are distinct values for C1,C2,…,Cm, then a unique ordering can be
achieved since

mCCC fff <<< ...
21

.

Example 5. Continuing with example 4, f(x1,x2,x3,x4,x5) =

(x1+ 3x +x4)(2x +x5); the classes after phase assignment will be

C1={x1, 3x ,x4} and C2={ 2x ,x5}. Furthermore,
1Cf =12 <

2Cf =14.

Thus, (C1,C2) ≡(x1, 3x ,x4, 2x ,x5) will be a maximal transformation.
The inverse of this maximal transformation is a CP transformation

TC=(x1, 4x , 2x ,x3,x5) and the canonical form (cf. section III) is:

fC(X)=f(TC)=f(x1, 4x , 2x ,x3,x5)=(x1+x2+x3).(x4+x5).

It is important to notice that the application of the steps of the
compute-CF algorithm described so far and also the next steps will
produce the same canonical form for NE-equivalent functions.

Example 6. Consider two Boolean functions: f1 (x1, x2, x3, x4, x5)
=(x1+ 3x +x4).(2x +x5) and f2(x1, x2, x3, x4, x5) = (x1+x2).(x3+x4 +x5).

For function f1 a CP transformation,
1CT =(x1, 4x , 2x ,x3,x5), and the

canonical form, Cf1
(X)=(x1+x2+x3).(x4+x5), were given in example

5. For function f2, the classes (after phase assignment) and the
corresponding 1st-signatiures are: C1={x1,x2} with

1Cf =14 and

C2={x3,x4,x5} with
2Cf =12. Since

12 CC ff < , the maximal

transformation is (C2,C1) ≡(x3,x4,x5,x1,x2)= 1

2

−
CT and the canonical

form of f2(X) is:)).(()()(5432122 2
xxxxxTfXf C

C +++== which

is equal to the canonical form of f1:)()(21 XfXf CC = . Therefore,
functions f1 and f2 are NP-equivalent.

In this part we consider the case where not all of the 1st-signatures
are distinct, i.e., there exist two or more classes with the same 1st-
signature. In this case the classes are placed in k groups such that
all classes inside a group have the same 1st-signature:

448447644844764484476 k

k

G

k
m

kk

G

m

G

m CCCCCCCCC ,...,,,...,,...,,,,...,, 21
22

2
2

1
11

2
1
1

2

2

1

1
.

The superscript j of a class j
iC indicates that it belongs to the group

Gj. Note that
j

jm
jj CCC

fff === ...
21

 and groups are ordered based

on the 1st-signatures, i.e.,
k
iii CCC

fff <<< ...21
. This ordering of

groups imposes a restriction on the CP transformation whereby all
classes inside a group Gi should precede classes of Gi+1. More
precisely, candidates for maximal transformation are
transformations that respect the ordering of the groups.
Example 7. Consider the Boolean function of a six-input
multiplexer:

465365265165 xxxxxxxxxxxxf +++= . In this function

there is no symmetry between variables i.e., each symmetry class
contains only one variable. After doing phase assignment, ordering
and grouping classes (in this case, variables), two groups G1 and G2

are created:
48476876

20|| :

4321

16|| :

65

21

,,,,,

==
ixix fGfG

xxxxxx where for members in G1 the

phase is undecided since 16||||||||
6655

====
xxxx ffff while for G2

the phase is decided and the 1st-signatures are 20|| =
ixf .

In the next step of the compute-CF algorithm, the 2nd-signatures
are used to order classes inside individual groups and then split the
groups into smaller ones based on the outcome of ordering until
each group contains only one class at which point a total ordering
on classes has been obtained.

We refer to a group as unresolved if it contains more than one class
or the phases of classes in that group are undecided. (Because all
classes in the group have the same 1st-signature, the phase of all
classes in that group is decided or none of the phases is decided.)
More precisely, if jC1

 and jC2
 belong to the same group and

jj
CC

ff
11

= , then =−= jj CC
fff

22

||
jjjj CCCC

fffff
2111

|| ===− .)

Let Gu={ u
m

uu

u
CCC ,...,, 21

} be the first unresolved group. Since all

groups G1, G2,…, Gu-1 are resolved, (i.e., they contain a single class
with decided phase,) the ordering of classes up to Gu is identified.
(The case that G1 is unresolved is discussed later.) Now the 2nd-
signatures are used to specify the ordering inside the unresolved
groups starting with Gu. Since G1 is resolved, G1={ 1

1C }, 2nd-

signatures with respect to 1
1C and u

iC (i.e., | u
iCC

f 1
1

|) can be used for

phase assignment (if needed) and ordering classes u
m

uu

u
CCC ,...,, 21

(later on this step will be referred to as iteration 1.) If phase of a

class u
iC is undecided, the 2nd-signatures | u

iCC
f 1

1
| and | u

iCC
f 1

1

| are

compared and if | u
iCC

f 1
1

|<| u
iCC

f 1
1

|, then a positive phase is assigned to

u
iC ; otherwise if | u

iCC
f 1

1
|<| u

iCC
f 1

1

|, then a negative phase is assigned

to u
iC . In case of equality of the 2nd-signatures, the phase of u

iC

remains undecided. Next, new values of 2nd-signatures | u
iCC

f 1
1

| after

phase assignment are used to order classes u
m

uu

u
CCC ,...,, 21

 and

subsequently regroup these classes. Moore concretely, Gu is split
into smaller groups such that inside each group the 2nd-signatures,

| u
iCC

f 1
1

|, are equal. The same procedure (phase assignment, ordering

and regrouping based on | v
iCC

f 1
1

|) is applied to all other unresolved

groups Gv. Finally, the indices of new groups and corresponding
classes are properly updated. If after these steps, there still exist
some unresolved groups Gw, a similar procedure (called iteration
2) is applied based on 2nd-signatures with respect to 2

1C and w
iC

(i.e., | w
iCC

f 2
1

|). If needed iterations 3,4,…,u-2 and u-1 are applied. If

at iteration u, there still exists some unresolved groups and Gu itself
is also unresolved, the procedure described below will be used.
(This case includes the case where G1 is unresolved.)

At this point, group Gu={ u
m

uu

u
CCC ,...,, 21

} has been split into two

groups such that one of them contains only one class and the other
group contains the rest of mu-1 classes:

} 444 8444 76 1

,...,,,...,, 111

+

+−→
u

u

u
G

u
m

u
i

u
i

u

G

u
iu CCCCCG . (The indices of all subsequent

groups are shifted by one.) As can be seen, there are mu ways to
split the group Gu (mu ways to specify new Gu corresponding to
i=1,2,…,mu in the above relation) and if the phase of u

iC is

undecided, then there will be two ways to resolve the group, new
Gu, (positive or negative phases.) Therefore there are mu (or 2mu)
ways to specify and resolve the new group, Gu. All these mu (or
2mu) cases need to be tracked, since it is unknown which one(s)
will result in a maximal transformation. For each case, the 2nd-
signatures are used to first order classes inside the unresolved
groups among Gu+1,…, Gk and then split them based on the
outcome of ordering as follows.

 5

Assume that Gu is split into two following groups:

} 444 8444 76 1

,...,,,...,, 111

+

+−→
u

u

u
G

u
m

u
i

u
i

u

G

u
iu CCCCCG , after shifting the indices of

subsequent groups and making corresponding changes to
superscripts of classes, new groups Gu,Gu+1,…,Gk (where k
represents the new number of groups) are represented as:

} 4484476444 8444 76 k

k

u

u

u
G

k
m

kk

G

u
m

uu

G

u CCCCCCC ,...,,,...,,...,,, 21
11

2
1

11

1

1

+

+

+++ . At this point (iteration

u) similar to the procedure explained before, for unresolved groups

Gv, the 2nd-signatures | v
iCC

f 1
1

| are used for phase assignment,

ordering and regrouping. This process will continue for all mu (or
2mu) cases, recursively (cf. the recursive-resolve algorithm), until
all groups are resolved.

All resulting transformations T1, T2,…,Tr corresponding to different
cases are stored. These transformations are superior with respect to
relation ’p ’, considering only the1st and 2nd signatures because of
the way they have been constructed. The maximal
transformation(s) is identified among these transformations. As a
result of the way in which these transformations are obtained, they
all have the same set of 1st and 2nd signatures. Some of these
transformations are equivalent to each other because of special
types of symmetry (excluding the type of symmetry discussed in
section IV.) Examples of such special symmetries include
hierarchical, group and rotational symmetries [4] i.e., for some Ti
and Tj , the equality f(1−

iT)=f(1−
jT) may hold, in which case only

one of Ti and Tj is kept and the other one is removed from the list
T1, T2,…,Tr. This process continues until there is no equivalency
among the remaining transformations.

Experimental results show that for nearly all Boolean functions
only one transformation will remain in the list; i.e., all
transformations T1, T2,…,Tr are equivalent:
f(1

1
−T)=f(1

2
−T)=…=f(1−

rT). In this case all transformations, T1,

T2,…,Tr are canonical and the canonical form is
fC(X)=f(1

1
−T)=…=f(1−

rT). In other words, in most cases, only the 1st

and 2nd signatures can identify the maximal transformation(s).
Example 8. Continuing with the multiplexer function of example 7,

465365265165654321),,,,,()(xxxxxxxxxxxxxxxxxxfXf +++==

and variables are grouped as
48476876

20|| :

4321

16|| :

65

21

,,,,,

==
ixix fGfG

xxxxxx . Both groups G1
and G2 are unresolved. Group G1 can be split into two groups in

two ways:
} }21

651 ,

GG

xxG → or
} }21

561 ,

GG

xxG → . For each of these cases
there are two ways to assign phase to G1. Therefore, there are four

ways to specify and resolve the new G1:
} }21

65,

GG

xx or
} }21

65,

GG

xx or
} }21

56,

GG

xx

or
} }21

56 ,

GG

xx . The algorithm keeps track of all these cases. Let’s zoom

in one of the cases, e.g.,
} }21

561 ,

GG

xxG → results in the following new

grouping:
} } 48476 321

432156 ,,,,,

GGG

xxxxxx . Now, G2 and G3 are unresolved. G2
is unresolved because the phase of x5 is undecided. First we try to
resolve G2 (decide a phase for x5) using 2nd-signatures |

56xx
f | and

|
56 xx

f |. Since |
56xx

f |=|
56 xx

f |=8 the phase of x5 can not be decided

and the group G2 remains unresolved. Next, we try to resolve G3
using 2nd-signatures |

16xx
f |=12, |

26 xx
f |=8, |

36 xx
f |=12 and |

46 xx
f |=8.

(Recall that the phase of literals in G3 is decided.) Since
|

26 xx
f |=|

46 xx
f |<|

16xx
f |=|

36 xx
f |, the group G3 is split into two groups:

}43

31423 ,,,,

GG

xxxxG
876

→ and the overall grouping will be

} } }4321

314256 ,,,,,

GGGG

xxxxxx
876

. At this point, G2, G3 and G4 are still

undecided. There are two ways to resolve G2:
}2

5

G

x or
}2

5

G

x . Following

one of these cases, for example
}2

5

G

x , the overall grouping will be

} } }4321

314256 ,,,,,

GGGG

xxxxxx
876

 where G1 and G2 are resolved and G3 and G4
are unresolved. Now we try to resolve G3 using 2nd-signatures
|

25 xxf |=8 and |
46 xxf |=12. Since |

25 xxf |<|
46 xxf |, the group G3 is split

to
} }

42 , xx and similarly for G4 since 8=|
15 xxf |<|

36 xxf |=12, the group

G4 is split to
} }

31, xx which result in the following ordering of

resolved groups:
} } } } } }654321

314256 ,,,,,

GGGGGG

xxxxxx which corresponds to the

transformation T1=(
314256 ,,,,, xxxxxx). We only followed one case

out of eight cases; (four ways to resolve G1 multiplied by two ways
to resolve G2.)
Following all cases will result in overall eight transformation
including T1. Among other seven cases, one for example is
T2=(x5, 6x ,x2,x1,x4,x3). However, it can be seen that:

412612312512124635
1

1),,,,,()(xxxxxxxxxxxxxxxxxxfTf +++==− ,

521621321421215634
1

2),,,,,()(xxxxxxxxxxxxxxxxxxfTf +++==− .

Since
621521421321

1
2

1
1)()(xxxxxxxxxxxxTfTf +++== −− ,

transformations T1 and T2 are equivalent. All eight transformations
will result in the same function, which implies that any one of
them, e.g., T1, is a maximal transformation and the canonical form
is

621521421321
1

1)()(xxxxxxxxxxxxTfXf C +++== − .

If at this point, more than one transformation is left in the list; the
1st and 2nd signatures can no longer be utilized. For the remaining
transformations T1, T2,…,Tl, the partial signature vectors 1TP , 2TP ,
…, lTP are generated where partial means the 1st and 2nd
signatures are excluded and only the 3rd and higher order signatures
are used. For example, if T=(t1,t2,…,tn), then

)||,|||,...,|,...,|||,...,||,|(

signaturen

...

signatures)1(

......

signatures3 th

1

th

211

rd

12421321

876444 8444 764444 84444 76 −−−−

−−−
=

nnnnnn tt

n

ttttttttttttt
T ffffffP .

Since for all pairs Ti and Tj among T1, T2,…,Tl,, we have
)()(11 −− ≠ ji TfTf , as a result of theorem 1, all respective partial

signature vectors 1TP , 2TP ,…, lTP are different. Hence, a unique
maximal transformation (with respect to partial signature vectors),
TC (which will be canonical) can be identified among T1, T2,…,Tl,.

In other words, the maximal transformation(s) has the maximal
partial signature vector with respect to the lexicographical ordering
‘p ’ discussed in section IV, among the transformations T1,T2,…,Tl.
For nearly all functions, there is no need to generate all signatures
for identifying the maximal transformation(s) with respect to‘p ’.
Instead, to compare two transformations Ti and Tj, at the first step,
only 3rd-signatures are generated and comparison is performed with
respect to 3rd-signatures only. If the corresponding 3rd-signatures
are equal, then 4th-signatures are generated and compared and this
procedure continues until an inequality is encountered. As a result
of theorem 1, it is guaranteed that at some point, an inequality will
occur, because)()(11 −− ≠ ji TfTf . Different steps of the proposed

techniques are summarized in the following pseudo-code
descriptions of compute-CF and recursive-resolve algorithms.

 6

VI. Experimental Results
The technique presented above has been implanted as part of the
SIS logic synthesis environment. To reveal the effectiveness of the
proposed technique, the proposed canonical form is computed for
all cells in a cell library, containing a large number of complex
cells with up to 20 inputs. To asses the efficiency of the method, a
large number of randomly generated logic cells with different input
counts were added to the library. Figure 1 shows the worst-case and
average run-times required for computing the canonical form in
terms of the number of inputs; i.e., the height of the nth bars are the
worst-case and average runtimes for all n-input cells.

The run-times in this Figure 1 (Y-axis) are in microseconds and
include data for cells with more than five inputs. This is because
run-times for cells with as few as five inputs are too small (less
than 1µ-sec) to be discernible. As an example the worst-case 20-
input cell was a multiplexer with four select inputs for which the
algorithm takes 240 microseconds to compute its canonical form.

0

50

100

150

200

250

300

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Inputs

R
un

-t
im

e
(m

ic
ro

-s
ec

on
ds

)

Figure 1. Worst-case and average run time to compute canonical forms

These results show a major improvement in run-time over previous
approaches [9] [10]. (Notice that reference [9] does not handle
complementation of inputs and reference [10] entails enormous
space complexity.) For nearly all of the cells in the library, the
canonical forms were computed using only the 1st and 2nd
signatures. Only one of the cells required the use of the 3rd
signatures and none of them required the use of higher order
signatures. However, the algorithm given above is complete and
able to handle functions that may require the use of higher order
signatures for computing the canonical form.

VII. Conclusions
A new efficient and compact canonical form was defined and an
effective algorithm for computing the proposed canonical form was
provided in this paper. The compactness and efficiency of the
presented methods enables the approach to be applicable to a wide
range of Boolean networks as apposed to previous approaches that
either do not solve the problem generally or only handle functions
with limited number of inputs. This paper addresses the general
Boolean matching problem in which both permutation and
complementation of inputs are considered. The proposed canonical
form was based on using generalized signatures to obtain a CP
transformation on inputs. Signatures were defined very effectively
and first, most powerful signatures (that include more information
about the function) are generated and used followed by less
significant signatures, only if necessary. Experimental results
demonstrate the efficiency of the proposed approach and it was
observed, in nearly all cases 1st and 2nd signatures are enough to
provide the canonical form and since handling 1st and 2nd signatures
is performed efficiently by ordering variables, the proposed
approach is associated with a very low computational complexity.

VIII. Acknowledgment
This work was sponsored in part by a grant from Magma Design
Automation Inc.

IX. References
[1] G. De Micheli, Synthesis and Optimization of Digital Circuits,

McGraw-Hill, 1994.

[2] L. Benini and G. De Micheli, “A survey of Boolean matching
techniques for library binding,” ACM Trans. Design Automation of
Electronic Systems, vol. 2, no. 3, pp. 193–226, July 1997.

[3] M. A. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill, 1965.

[4] J. Mohnke, P. Molitor, and S. Malik, "Limits of using signatures for
permutation independent Boolean comparison," Proc. of ASP Design
Automation Conf., pp. 459-464, 1995.

[5] J. R. Burch and D. E. Long, “Efficient Boolean function matching,” in
Proc. Int. Conf. on Computer-Aided Design, pp. 408–411, Nov. 1992.

[6] Q. Wu, C. Y. R. Chen, and J. M. Acken, “Efficient Boolean matching
algorithm for cell libraries,” Proc. IEEE Int. Conf. on Computer
Design, pp. 36–39, Oct. 1994.

[7] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,”
Proc. of Design Automation Conf., pp. 206–211, June 1998.

[8] D. Debnath and T. Sasao, “Fast Boolean matching under permutation
using representative,” Proc. ASP Design Automation Conf., pp. 359–
362, Jan. 1999.

[9] J. Ciric and C. Sechen, “Efficient canonical form for Boolean matching
of complex functions in large libraries,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 5, pp. 535–544,
May 2003.

[10] D. Debnath and T. Sasao, “Efficient computation of canonical form for
Boolean matching in large libraries,” Proc. ASP Design Automation
Conf., pp. 591–596, Jan. 2004.

[11] C. R. Edwards and S. L. Hurst, “A digital synthesis procedure under
function symmetries and mapping methods”, IEEE Trans. Comp., Vol.
C-27, No. 11, pp. 985-997, NOV. 1978.

Algorithm compute-CF (f)
Input: A Boolean function f(X)
Output: The canonical form fC(X)
Classify variables to NE-classes using generate-NE-symmetry;
Using the1st-signatures, assign phases, order and group classes to

groups G1,G2,…,GK
recursive-resolve(G1,G2,…,GK; T)
Set the canonical form: fC(X)=f(T-1)

Algorithm recursive-resolve (G1,G2,…,GK; T)
Input: Ordered groups (G1,G2,…,GK)
Output: A transformation, T
 T=none; i=1; // where “nonep Ti” is true for all transformations Ti
 while (i<m+1) { // m is the number of classes
 if (Gi is resolved) { // Gi=[Ci]

 for (all unresolved groups Gj=[Cj1, Cj2,…, Cjl,…]) {
 use signatures |

jliCCf | to assign phase, order and split Gi;

 update indices of groups and classes; }
 i = i + 1;

 } else { // Gi =[Ci1, Ci2,…, Cjj,…] is not resolved
 for (j=1; j<| Gi|; j++) {
 split Gi to groups [Cij] and [Ci1, Ci2,…, Cj(j-1), Cj(j+1),…];
 // for space limitation assume the phase of [Cij] is decided
 update indices of groups and classes: (G1,G2,… ,GK,GK+1);
 recursive-resolve (G1,G2,…,GK,GK+1; TTEMP) ;

 if (f(T-1)==f(1−
TEMPT))

 continue;
 if (Tp TTEMP) // Based on their partial signature vectors
 T= TTEMP;}
 return; }
 }
// At this point there are m groups and all of them are resolved
// T =(G1,G2,…,Gn); i.e., each group contains a single class

Average run-time
Worst-case run-time

