
Low-Power Clustering with Minimum Logic Replication
for Coarse-grained, Antifuse based FPGAs

Chang Woo Kang and Massoud Pedram
University of Southern California/EE-systems

3740 McClintock ave. EEB-314
Los Angeles, CA 90089, USA

{ckang, pedram}@usc.edu

Abstract
This paper presents a minimum area, low-power driven clustering
algorithm for coarse-grained, antifuse-based FPGAs under delay
constraints. The algorithm accurately predicts logic replication
caused by timing constraint during the low-power driven
clustering. This technique reduces size of duplicated logic
substantially, resulting in benefits in area, delay, and power
dissipation. First, we build power-delay curves at nodes with the
aid of the prediction algorithm. Next, we choose the best cluster
starting from primary outputs moving backward in the circuit
based on these curves. Experimental results show 16% and 20%
reduction in dynamic and leakage power dissipation with 18%
area reduction compared to the results of clustering without the
replication prediction.

Categories and Subject Descriptors
J.6 [Computer-aided engineering]: Computer-aided design (CAD)

General Terms
Algorithm

Keywords
FPGA, Antifuse, Clustering, Power

1 Introduction
FPGAs have become commonplace not only in low-volume
designs but also in portable, battery-powered devices craving for
power efficiency. These devices with smaller form factor and
increased performance continue to define the present and future
applications. Applications of this type are characterized as
performing faster, becoming smaller in size, having longer battery
life, and being marketable ahead of the competition. Previously,
programming logic devices were not an option for integration on
portable devices because they are bulky and consumed too much
power. In the past several years, architectures of FPGAs have
improved greatly and finally they play important roles in portable
devices.

Antifuse-based FPGAs are one time programmable logic
devices. The anti-fuse is initially in a high impedance state and is

transformed into a low impedance metal-to-metal link when
programmed. Figure 1(b) illustrates the cross-sectional view of the
antifuse programming technology. The antifuse element is formed
by depositing a high resistance layer (> 1GΩ) of amorphous
silicon above a tungsten via a plug that would otherwise bridge the
insulation between the two metal layers [1].

Figure 1 shows a coarse-grained, anti-fuse based FPGA from
QuickLogic, which is the target device in this paper. The FPGA
consists of pASIC3 logic cells, interconnects, and antifuse
switches. The logic cell has a large number of inputs and multiple
outputs in order to increase the logic utilization. This utilization is
however a strong function of the power and efficacy of the design
automation tools.

In a typical flow of FPGA CAD tools, clustering, which
follows the technology mapping step, is an important optimization
because it maps the target circuit net list into an FPGA array. The
clustering, therefore, refers to the task of grouping logic gates in
the circuit netlist and assigning each group to a configurable logic
block in the FPGA array (in the case of our target architecture, this
means packing gates into pASIC3 cells.) Logic replication, which
is often needed to meet the timing constraints, is an indispensable
part of the clustering step. Logic replication directly affects the
area and power dissipation of the FPGA synthesis solution. This
increase is especially true with respect to leakage power since this
leakage is a direct function of the size of the logic circuit
implementation. The authors in [8] report that 33% logic
replication is observed as a result of the performance-driven
clustering in SRAM-based FPGAs.

In this research, we present a low-power driven clustering
algorithm with minimal logic replication for coarse-grained, anti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI'06, April 30–May 2, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-347-6/06/0004...$5.00.

pASIC3
Logic
cell

Interconnect
switches Interconnect

Metal

SiO2

Metal

SiO2

Via

Antifuse

SiO2

(a)

(b) (c)

Figure 1: Example of coarse-grained, antifuse-based FPGA: (a)
architecture, (b) antifuse switch, and (c) pASIC3 cell.

79

fuse based FPGAs. As stated earlier, in the context of our
problem, a cluster refers to a group of circuit nodes that can fit in
a pASIC3 logic cell. We use a dynamic programming-based
clustering technique where starting from the circuit inputs moving
toward the circuit outputs, we incrementally generate a set of
power-delay curves for all nodes in the network [2][3]. Each such
curve, stored at some intermediate node, describes the set of non-
inferior clustering solutions for the subgraph rooted at that node.
A critical factor in determining the quality of the clustering
solution for a circuit is how accurate and complete the set of
power-delay curves are; this is strongly depends on the accuracy
of incremental cost (i.e., power dissipation) calculation at each
node in the network. We have seen that existing heuristics for this
cost calculation, which divide the cost of a multiple fanout node
equally among its fanout nodes [2][4], can result in significant
computational errors, thereby, degrading the quality of the overall
solution. In this paper, we present a new heuristic approach for the
cost propagation across multiple fanout nodes in a Boolean
network that allocates the cost of logic cone rooted at a multiple
fanout node to its fanout nodes in proportionately. More
precisely, we simply determine the cost allocation to each fanout
node it by traversing backward in the circuit, to compute the
amount of logic replication.

2 Background
Clustering techniques for SRAM-based FPGAs have been
presented in [5][6][7][8], and clustering problem for coarse-
grained, anti-fuse based FPGAs has been addressed by a number
of researchers [9][10]. In particular, the authors of [10] presented
an area-driven clustering algorithm. They set up a pair of linear
equations and calculated the minimum number of required
pASIC3 logic cells. Their algorithm, which produced 12% area
improvement compared to a commercial tool, did not consider the
routing cost. The same authors also presented a performance-
driven clustering based on a labeling procedure that generates the
minimum number of clusters on the timing critical paths. A slack-
time relaxation was used to avoid redundant logic replication
without violating the performance constraint. In addition, a
random merging was used to cluster closely-placed partially-filled
clusters. The algorithm gave about 45% delay improvement
compared to a commercial tool. The key limitation of their work is
that they used a unit delay model, which is not accurate enough to
estimate the delay of a logic design. A delay-optimal clustering for
low power was presented in [3]. For optimality, they enumerate all
feasible cluster patterns at each gate in the circuit and maintain
only the power-optimal solutions at each gate for each arrival time
value.

In this research, we follow the same flow as that in [10]. There
are four different programmable gate groups (cf. Figure 2) inside a
pASIC3 logic cell. We call each of these gate groups a base gate.
After deriving the base gates, cell generation is performed for each
base gate. Cell personalization is done either by assigning constant
1 or 0 to some of the inputs or by connecting (bridging) some of
the inputs together. By applying all possible combinations of these
two operations to a base gate, many different library cells can be
generated. We call the personalized cells “primitive cells”.

Figure 2: Base gates extracted from pASIC3 cell: (a) base-

gate A, (b) base-gate B, (c) base-gate C, and (d) base-gate D.

3 Design Flow and Problem Description
A cluster i, denoted by CLi, is defined as a group of circuit nodes
that can be realized in a single pASIC3 logic cell without any
resource conflicts. The set of nodes that drive nodes in cluster CLi
is referred to as its leaf set and denoted by Λi.

The clustering algorithm comprises of two steps: cluster
generation and cluster selection. During the cluster generation,
clusters rooted at nodes in network are generated and power-delay
curves are computed in a postorder traversal of the network
starting from primary inputs going toward the primary outputs.
For cluster selection, clusters are determined during a preorder
traversal from primary outputs back toward the primary inputs.
The design flow can be described as follows:

1. Select the logic cone rooted at a primary output, which
has the largest number of un-clustered nodes.

2. Traverse the cone in postorder to create power-delay
(PD) curves.

3. Select a power-delay point from the PD curve of a
primary output and form a cluster based on the point.

4. Select power-delay points from PD curves at leaf nodes
of the previous cluster and do this in preorder until all
nodes in the logic cone are clustered.

5. Go to step 1 if any logic cone is not clustered yet.

A clustering solution at a node u is characterized by a power-
delay point (PD-point) which is a pair {pu, du}, where du gives the
delay value (i.e., latest signal arrival time) associated with the PD-
point, and pu gives the corresponding power dissipation of the
clustering solution rooted at node u.

Consider intermediate nodes ni and nj in a Boolean network (a
circuit netlist with signal direction specified) where there exists a
common multiple fanout node, nk, in their transitive fanin cones.
In typical performance-driven clustering, to minimize the arrival
time to ni and/or nj, logic replication of logic under nk may become
necessary. An example of this scenario is shown in Figure 3(a)
where when finding clustering solutions at nodes n4 or n5, it may
become necessary to replicate n1, n2 and n3. Assume that there are
two possible clustering solutions, CL2 and CL3 (CL4 and CL5), at
n4 (n5). 1 There is also a single clustering solution CL1 at node n3.
The area of each cluster is 1 whereas the delay depends on the
topology of the logic mapped to the cluster. We calculate the AD
curve of n4 as follows. For the clustering solution CL3, the AD
value is (1,0.8) whereas for CL2, the area value is 1+1/2=1.5 and
the delay is 1. The area cost calculation is done in this way
because the cost of cluster CL1 is divided equally between its two

1 In this example, because the area cost is easier to depict

pictorially, the area cost is used in place of the power cost.

80

fanout nodes. This generates a new AD value of (1.5,1). Notice
however that (1.5,1) is inferior to (1,0.8), and therefore, it will be
dropped, resulting in the AD curve of {(1,0.8)} for n4. 2 Similarly,
the AD curve of n5 will be pruned to {(1,0.9)}. However, by
dropping the two inferior points from the AD curves of n4 and n5
we force a logic clustering solution whereby three nodes (n1, n2
and n3) must be replicated as shown in Figure 3(b) and (c). The
overall area cost of this clustering solution is 2 and the worst-case
delay is 0.9. Suppose that the required time at node n4 and n5 is 2.
Now, in fact, there is a better solution whereby CL2 is chosen at n4
and CL5 at n5 (cf. Figure 3(d).) The area cost of this solution is 2,
while its worst-case delay cost is 1.1. However, there is no logic
duplication, which means that the utilization of one of the pASIC3
logic cells in the latter solution is much lower, thereby, potentially
allowing a future packing of extra logic into that pASIC3 cell. The
reason that the area cost of the solution given in part (d) is 2 is that
CL5 can be treated as multiple-output Boolean functions providing
both the signal that goes out of n5 and the signal that goes out of
n3 and feeds into cluster CL2. Therefore, there is no need to
replicate n1, n2 and n3 to separately generate the signals from n3
into CL2, as would have been the case if the cluster was treated as
a single-output Boolean function.

We have identified the aforesaid problem as a key reason
behind a significant increase in the logic replication cost of a
mapping solution to pASIC3 arrays. Therefore, in the remainder of
this paper, we focus on developing a heuristic solution to calculate
the replication cost across multiple-fanout nodes of the circuit
during the post-order traversal.

4 Performance-driven Clustering
In this section, we present a clustering procedure with the accurate
calculation of logic replication cost during the forward traversal of
the Boolean netlist.

2 An inferior point (p’, d’) is inferior to (p, d) if (p’ ≥ p and d’ > d)

or (p’ >p and d’ ≥ d).

4.1 Cluster generation and power-delay
curves

A technology mapped network consists of primitive cells. In the
cluster generation phase, we postorder from the primary inputs to
the primary outputs. This ordering ensures that when a node is
processed, all of its fanin nodes have already been processed.
When constructing the PD curves for some node, n, we first
invoke a matching algorithm described in [12] to enumerate all
possible cluster matches at that node. For each cluster match, we
then calculate its PD value as follows. The (dynamic
programming) power value of the cluster is the summation of the
(dynamic programming) power values of all its inputs plus the
power cost of the cluster itself. Similarly, the (dynamic
programming) delay value of the cluster match is the maximum of
the (dynamic programming) delay values of its inputs plus the
delay thru the cluster itself.

Figure 4: PD curve generation for a node with a cluster.

Figure 4 illustrates the PD curve generation at node n5 with a
cluster CLn. PD curves of leaf set nodes n1, n2, and n4 have already
been computed. The PD curve for CLn matched at node n5 is
created by PD curves from the leaf nodes. In the conventional
calculation method of [2][4], the power dissipation at node n for
cluster match CLn is calculated as:

()

()
()()

21, ()
2

,
n

i

dyn n dd fo u
u nodes in CL

dyn i n

iin inputs n

P n CL V f C u sw

P n CL

fanout n

∈

∈

= × ×

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑

∑

(1)

where Cfo(u) is the capacitance driven by node u, swu is the
transition probability of node u, and fanout(ni) is the number of
fanouts that node ni drives. The arrival time at node n5 with CLn is
simply the maximum arrival time among arrival times from leaf
nodes plus the delay thru the cluster.3

4.2 Correct accounting of logic replication
Logic replication may be needed to meet a timing constraint at a
node. It occurs when a selected cluster rooted at the node covers
nodes that have already been covered by another cluster. Logic

3 For pASIC3 mapping problem, there is no “unknown load

problem” [4], which often complicates the calculation of the
dynamic programming power and delay values in ASIC design
flows. This is because the load ahead of a node during the post-
order traversal is always the load imposed by another pASIC3
logic cell. Notice that the input pin capacitances of all inputs to
a pASIC3 logic cell are the same.

Figure 3: An example of redundant logic replication in

clustering: (a) clusters and the corresponding area-
delay points, (b) non-inferior clusters, (c) circuit after

logic replication (i.e., n1, n2, and n3 are duplicated),
and (d) a desired clustering solution.

81

replication potentially occurs on the boundary of logic cones
associated with primary outputs.

We propose an algorithm, which estimates the cost of logic
duplication by simulating the clustering procedure for each PD
point during the postorder traversal. The algorithm assumes that
the delay of each PD point at a node is close enough to the
required time at the node. Notice that, given the required time at a
node, the best PD point has the largest delay, which is equal to or
less than to the required time, and the smallest cost. Therefore,
being selected as the best PD point means that the required time at
that node is very close to the delay in the PD point. Therefore, we
use the delay in the PD point as the required time at the node.
Under this assumption, being aware that the maximum path delay
from a fanin node in a cluster are the largest delay from the fanin
node to the root node of the cluster, we can calculate required
times of fanin nodes of a cluster by subtracting the maximum path
delays from the required time at the root node. If any required time
of fanin nodes, which has been covered by clusters, is equal to or
larger than the arrival time of the fanin, there is no logic
duplication on the logic cone boundary. This leads to zero cost
toward transitive fanin of the crossing boundary, whereas typical
approach divides the cost by the size of fanout of fanin nodes. If
logic duplication is mandatory to meet the timing constraint, we
only add the cost caused by the duplicated logic. Notice that
duplication operation can go toward primary inputs until no
timing violation occurs. Let’s assume that logic cone PO0 has
been covered by clusters, and node d has a PD point having a
node b and e as fanin nodes. Figure 5(a) depicts the case in which
no duplication is necessary. Since our approach does not account
for the cost of unduplicated nodes, the cost toward transitive fanin
of node b is zero. Therefore, we simply add the cost at node e and
the cost of node d to the total cost at node d. On the other hand, if
duplication is required as shown in Figure 5(b), the cost caused by
the duplicated nodes is added to the total cost.

Figure 5: Example of logic replication prediction.

An example in Figure 5(c) illustrates this notion in detail. An
un-clustered logic cone, Φ(POi), is defined as the set of un-
clustered nodes in the transitive fanin cone of primary output, POi.
For the moment, only focus on the solid closed curves and ignore
the dashed ones. In Figure 5(c), Φ(PO0) is clustered first. In our
proposed heuristic accounting of the logic replication cost during
the postorder traversal of the circuit graph, when calculating the
dynamic programming (DP) power cost of CL5 at n5, we divide the
DP cost of CL1 at n3 by its fanout count inside the logic cone
(which is two) and add to this quantity the power cost of CL5.
Note that when we calculate the DP cost of CL2 at n8, we would
account for the cost of CL1 exactly once (1/2 contribution coming
from the n3→n5 branch, the other coming from the n3→n4
branch.) 4 Suppose that after preorder traversal of logic cone
Φ(PO0), we select a clustering solution in which CL1 is matched at
n3 while CL2 is matched at n8. Next, we start clustering logic cone
Φ(PO1). Consider generating the PD curve at node n6 (having first
processed node n11, creating a cluster match of CL6 at that node.)
For cluster CL4 matched at node n6, we need to compute the DP
power cost of its fanin nodes n3 and n11. At n3 (n11), we have the
PD curve of all possible clustering solution rooted there.
However, we do not know what specific clustering solution for the
cone rooted at n3 will be used for each PD point at n6. This is the
key difficulty in the estimation of logic replication cost. Consider
two extreme cases where in one case, CL1 match at n3 is used as
the best solution for Φ(PO1) resulting in no logic duplication; in
the other case all of the cone under n3 is replicated since no
common signals exist between the best matching solution of this
sub cone under Φ(PO0) and Φ(PO1). The way we solve this
problem is to calculate the PD curve of CL4 matched at node n6,
by completely ignoring the fact that cone Φ(PO0) has already been
processed and a mapping solution has been obtained. Suppose a
PD curve of X={x1,x2,…,xm} at node n6 is generated in this
way, where xi=(pi,di). Take any point say xi corresponding to a
clustering solution with CL4 matching at n6. We assume that di is
the required time at n6. We go ahead and calculate the required
time at output of n3 as di-delay(CL3). If this required time is larger
than the arrival time at n3 coming from the synthesis solution for
Φ(PO0), then for the calculation of the DP power cost of cluster
CL4 at n6, the DP power cost of subcone rooted at n3 is set to zero.
Otherwise (i.e., a timing violation will occur if the solution
generated for Φ(PO0) is used), we find the optimum clustering
solution of logic subcone rooted at n3 and use the power cost of
this solution toward the calculation of the power cost of cluster
CL4 at n6. The dashed enclosed curves show a case in which the
subcone rooted at n3 must be resynthesized in order to meet a
timing requirement at PO1. Notice that in case of logic
duplication, the duplicated copy of n3 needs to drive only node n6;
therefore, the PD curve at node n3 must be updated to reflect this
change in load. The arrival time of CL4 becomes the maximum
value among arrival times of different input paths. Arrival times
through duplicated nodes can be calculated based on arrival times
of clustered nodes.

4 By reducing the power dissipation contribution of CL1, we tend

to favor an overall clustering solution in which multiple fanout
nodes are preserved after mapping, which reduces logic
replication and improves the final mapped power dissipation as
was done in [2].

82

Accounting for logic replication, the total power dissipation at
node n with cluster CLn can be extended from equation (1) and
can be given by:

() ()

()
()()

21, ,
2

, ,

,

n

i

i

dyn n n dd fo u
u nodes in CL

dyn i n n

n inputs n i n

P n CL V f C u sw

P n CL

fanout n

∈

∈

Φ = ×

⎛ ⎞Φ
⎜ ⎟+
⎜ ⎟Φ
⎝ ⎠

∑

∑

(2)

where Φn is a logic cone to which node n belongs, Cfo(u) is the
capacitance driven by node u, swu is the transition probability of
node u, and fanout(n, Φn) is the number of fanouts inside Φn from
node n.

Figure 6 gives the pseudo code to account for the effect of
logic replication. When a node has to select a cluster, the function
predict_logic_replication is executed. It first checks to see if the
replication is necessary by checking if any node in leaf set has
been clustered. In order to compute the required times for nodes in
the leaf set, the capacitance of a node is computed as if the node
has been clustered. The required times for nodes in leaf set are
computed and passed on to the next level logic replication
prediction in the recursive function predict_cluster_selection.

5 Cluster selection
After the PD curves for all nodes in the transitive fanin cone of a
primary output are computed during the postorder traversal of the
circuit, a suitable point on the PD curve of the root node is
chosen, given the required time at the root of the logic cone. The
cluster for the point at the root is identified and the required times
for its inputs are computed. The preorder traversal resumes at its

child nodes to satisfy the new required time while minimizing the
power dissipation. Our approach is similar to PDMAP presented
in [2].

6 Implementation and Experimental Results
We have implemented the clustering algorithm based on SIS [11]
and used 90nm CMOS technology process model to estimate
delay and power dissipation information of primitive cells. Large
combinational circuits were selected from the MCNC91
benchmark. We first ran low power technology mapping by using
PDMAP [2] and then applied our low power, minimal logic
replication clustering algorithm to the network.

In FPGAs, inter-cluster interconnect capacitance interconnect
is not ignorable. Thus, we use constant values representing those
capacitances in pASIC3 family FPGAs. However, in this research
we assumed that the capacitances of intra-cluster interconnect is
ignorable. The key limitation of the present work is that of
assuming a fixed capacitance of inter-cluster interconnections.
Inter-cluster interconnect is a major component in FPGAs and
accurately estimating the capacitance is crucial in early stages of
the design in order to increase the efficacy of this clustering
algorithm.

Table I shows the experimental results. Our approach could
reduce the total number of nodes by 18% on average, resulting in
savings in area and power dissipation without any sacrifice of
speed. The run time increases due to the repeated invocation of the
logic replication predictor for the same node with the same
required.

7 Conclusion
In this paper, a minimal-area clustering algorithm for low power
was proposed. The proposed algorithm builds PD curves for nodes
in a network by predicting the amount of logic replication based
on the timing constraint. The prediction provides accurate power
dissipation on a cost point on the curves.

Experimental results indicate that the proposed algorithm
generates much less duplicated logics with less delay and power
dissipation compared to the traditional cost distribution method.
The algorithm achieved 18% reduction on the total number of
nodes, resulting in saving both dynamic power and leakage power
dissipation by 16% and 20% respectively without any sacrifice of
delay.

References
[1] pASIC3 FPGA Family Datasheet, QuickLogic Corporations

(http://www.quicklogic.com).
[2] C. Tsui, M. Pedram, and A. M. Despain, “Technology

decomposition and mapping targeting low power
dissipation,” in Proc. Design Automation Conference, 1993,
pp. 68-73.

[3] H. Vaishnav and M. Pedram, “Delay-optimal clustering
targeting low-power VLSI circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 6, pp. 799 – 811, 1999.

[4] K. Chaudhary and M. Pedram, “Computing the area versus
delay trade-off curves in technology mapping,” IEEE Trans.
on Computer Aided Design, Vol. 14, No. 12, 1995, pp. 1480-
1489.

[5] J. Cong, J. Peck, and Y. Ding, “RASP: a general logic
synthesis system for SRAM-based FPGAs,” in Proc. FPGA,
pp. 137 – 143, 1996.

[6] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs:
area-efficiency vs. input sharing and size,” in Proc Custom
Integrated Circuits Conference, 1997, pp. 551 – 554.

Algorithm predict_logic_duplication(node, Network)

1. PD_curve = read_pd_curve(node)
2. for each point p for PD_curve
3. Λ = leaf_set_of(p)
4. if any node in Λ is not clustered
5. continue
6. end if
7. r = p.delay
8. compute_load_cluster(p.cluster)
9. compute_required_time(Λ, r)
10. for each node u for Λ
11. cycle_time = u.required_time
12. predict_cluster_selection(u, p.cluster, cycle_time)
13. end for
14. end for

Algorithm predict_cluster_selection(node, ParentCluster, cycle_time)
1. if node is a primary input or node is not clustered
2. return
3. end if
4. update_arrival_time(node)
5. if node.arrival ≤ cycle_time
6. return
7. end if
8. update_pd_curve(node)
9. p = get_best_point(node.PD_curve)
10. Λ = leaf_set_of(p)
11. compute_load_cluster(p.cluster)
12. compute_required_time(Λ, cycle_time)
13. for each node u for Λ
14. cycle_time = u.required_time
15. predict_cluster_selection(u, p.cluster, cycle_time)
16. end for

Figure 6: Prediction of logic replication.

83

[7] Alexander Marquardt, Vaughn Betz, and Jonathan Rose,
“Using cluster-based logic blocks and timing-driven packing
to improve FPGA speed and density,” in Proc. FPGA, pp. 37-
46, 1999.

[8] J. Cong and M. Romesis, “Performance-driven multi-level
clustering with application to hierarchical FPGA mapping,”
in Proc. Design Automation Conference, 2001, pp. 389 - 394.

[9] C-W. Kang, A. Iranli, and M. Pedram, “Technology mapping
and packing for coarse-grained, antifuse-based FPGAs,” in
Proc. Asia and South Pacific Design Automation Conference,
2004, pp. 209 - 211.

[10] C-W. Kang and M. Pedram, “Clustering techniques for
coarse-grained, antifuse-based FPGAs,” in Proc. Asia and
South Pacific Design Automation Conference, 2005, pp. 785
- 790.

[11] E.M. Sentovich, et al., SIS: A system for sequential circuit
synthesis, 1992, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley.

[12] C. M. Hoffman and M. J. O’Donnell, “Pattern matching in
trees,” Journal of the Association for Computing Machinery,
pp. 68 - 95, 1982.

Table I: Low-power clustering results
 Without replication prediction With replication prediction

Ckts Nodes Clusters Delay
(ns)

Dynamic
power
(μW)

Leakage
power
(μW)

CPU
time
(s)

Nodes Clusters Delay
(ns)

Dynamic
power
(μW)

Leakage
power
(μW)

CPU
time
(s)

i9 432 188 0.57 317 362 11 440 195 0.55 314 284 17
rot 514 189 0.46 380 450 6 392 175 0.43 306 336 14
i8 721 336 0.62 492 610 18 620 319 0.62 425 521 27

pair 1135 422 0.64 809 996 28 914 398 0.58 686 791 91
vda 563 206 0.36 217 514 14 408 161 0.34 149 368 16
x1 229 87 0.14 179 195 1 170 75 0.15 136 142 1

C5315 1016 391 0.47 866 872 9 883 378 0.46 748 757 18
alu4 672 224 0.68 354 594 36 545 224 0.68 293 471 116

apex6 546 170 0.27 346 477 4 419 174 0.29 295 355 6
C880 317 100 0.66 226 280 6 262 112 0.67 201 230 26

C3540 1085 357 0.88 692 954 49 858 346 0.85 577 735 205
alu2 343 112 0.48 212 295 13 276 108 0.47 172 234 10

C1355 306 109 0.33 229 266 3 271 96 0.32 174 237 6
C1908 301 108 0.50 203 263 3 241 87 0.49 159 210 7
C499 306 109 0.33 229 266 2 271 96 0.32 174 237 8

 1 1 1 1 1 1 0.82 0.95 0.98 0.84 0.80 2.8

84

