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Abstract In this paper we present a methodology and
techniques for generating cycle-accurate macro-models for
RT-level power analysis. The proposed macro-model
predicts not only the cycle-by-cycle power consumption of
a module, but the power profile of the module over time.
The proposed methodology consists of three steps: module
equation form generation and variable selection, variable
reduction, and population stratification. First order
temporal correlations and spatial correlations of up to
order 3 are considered to improve the estimation accuracy.
Experimental results show that, the macro-models have 15
or less variables and exhibit <5% error in average power,
and <15% errors in cycle-by-cycle power compared to
circuit simulation results using Powermill.

I. INTRODUCTION

Due to rapid progress in the semiconductor manufacturing,
the device density and operating frequency have greatly
increased, making power consumption a major design
concern. High power consumption exacerbates the
reliability problem by raising the die temperature and by
increasing current density on the supply rails. It also
reduces battery life which is a key concern in portable
devices. Therefore, low power design requirements are
driving a new breed of design automation methodologies
and tools which in turn rely on accurate and efficient
estimation tools at various design levels.

Power estimation at RT level is crucial in achieving a short
design cycle. Macro-modeling is the major technique for
power estimation at RT-level. In this technique, low-level
simulations of modules is replaced by power macro-model
equation evaluation (which can be performed very fast).

Macro-modeling techniques use capacitance models for
circuit modules and activity profiles for data or control
signals [1-3]. The simplest form of the macro-model
equation is given by:

                  SWCfVPower eff ⋅⋅⋅= 2
2
1                     (1.1)

where Ceff is the effective capacitance, SW is the mean of
the input switching activity, and f is the clock frequency.
The Power Factor Approximation (PFA) technique uses an
experimentally determined weighting factor, called the
power factor, to model the average power consumed by a
given module over a range of designs.

To improve the accuracy, more sophisticated macro-model
equations have been proposed. Dual Bit Type model,
proposed in [2], exploits the fact that, in the data path or
memory modules, switching activities of high order bits
depend on the temporal correlation of data when lower
order bits behave similarly to white noise data. Thus a
module is completely characterized by its capacitance
models in the MSB and LSB regions. The break-point

 between the two regions is determined based on the signal
statistics collected from simulation runs. The Activity-
Based Control (ABC) model [4] is proposed to estimate the
power consumption of random-logic controllers. All of the
above macro-models assume some statistics or properties
about the input sequence.

All of the above techniques are suitable for estimating the
average-power dissipation (and are referred to as
cumulative power macro-model). In some applications,
however, estimation of average power is just one task in the
broader sense of power evaluation.  Other tasks include the
estimation of the moving average of the power, power
profiling on a cycle-by-cycle basis, and rate of current
change estimation. This type of information is crucial for
system reliability analysis and DC/AC noise analysis. If the
macro-modeling technique does not provide such
information, the circuit designers will have to resort to
gate-level or circuit-level simulator again. Consequently,
this kind of macro-model is considered to be less useful.

The notion of cycle-accurate macro-models was proposed
in [5]. Let Pjk denote the power consumption of module j in
clock cycle k, then we can write:

                               ),( ,1, kjkjjjk VVFP −=                     (1.2)

where Vj,k and Vj,k-1 denote the input vectors for module j at
cycles k and k-1, and Fj is some function of the input vector
pairs. The goal of power macro-modeling is to find
function Fj given an input vector sequence V (the so called
training set) for module j and given the corresponding
power consumption values. Cycle based macro-models can
be easily transformed into cumulative macro-models [5].

This paper improves results of [5] in the following
directions. A new variable selection methodology is applied
to capture the relation between power consumption and
module inputs/outputs. The spatial correlation among
inputs are considered up to order three. Because we use
integer variables instead of 0-1 variables as in [5], our
macro-models have fewer variables (fewer than 15
variables compared to 40~100 variables in [5]) and higher
accuracy (10% error on cycle-by-cycle basis compared to
11.2% in [5]. In addition, we use population stratification to
obtain a macro-model with higher fidelity.

This paper is organized as follows. Section II gives the
theoretical background for regression analysis.  Section III
discusses a procedure of building the macro-model whereas
Section IV presents the experimental results. Section V will
discuss some applications of cycle-accurate macro-models.

II. BACKGROUND

Based on the theory of regression analysis, we define the
relation between power and input vector pair characteristics
as a statistical relation, which can be expressed as :* This research was supported in part by DARPA under contract number
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                   ε+= ),....,( 21 nXXXfY                   (2.1)

where ε is a random error term of normal distribution with

the mean 0}{ =εE  and the variance 22 }{ σεσ = , and X1,

X2, …, Xn are the characteristic variables related to the
input vector pairs. (2.1) is different from a functional
relation in that: 1) same variable assignment may produce
different Y values because different vector pairs which
result in different power consumption may produce the
same set of characteristic values, and 2) Y is thus regarded
as a random variable with  mean ),....,()( 21 nXXXfYE = .

We define the cycle-accurate macro-model as a linear
function describing the statistical relationship between
power dissipation of a vector pair and the characteristic
values of the vector, that is, we write:

              kk XXXP ββββ ++++= �22110            (2.2)

where P is the power (which is the power estimated from a
circuit-level simulator, such as Powermill [7]), β β β0 1, , ,� k

are constants called the regression coefficients of the
macro-model, and X X X k1 2, , ,�  are characteristic

variables extracted from the input vector pair.

Assume that we have been given the equation form of the
macro-model as (2.2), and have performed Powermill
simulations (observations) on m randomly sampled vector
pairs in the population (this set of m vector pairs is referred
to as the training set) so that we have obtained m
simulation results (observation values) of power. The linear
regression model for vector pairs from the training set can
be written as:

P x x x i mi i i k i k i= + + + + + =β β β β ε0 1 1 2 2 1 2, , , , , , ,� �    (2.3)

or in matrix form as:

                                     P X= +β ε                               (2.4)

where Pi’s are random variates corresponding to
observations: ( x x xi i i k, , ,, , ,1 2 � ) mi ,..,2,1= ; β β β0 1, , ,� k

are the regrssion coefficients; x x xi i i k, , ,, , ,1 2 �  are known

values derived from the input vector pair (V Vi i, ,,1 2 ); and

εi’s are independent random variates representing deviation
from the mean value of power with variance

,][ 2σε =iVAR  and 0],[ =ji εεCov , for ji ≠ .

Consequently, the random vector P has an expected value
of E[P]=Xβ and the variance-covariance matrix of P is

IPCov 2][ σ= , where I is the identity matrix.

The least square estimator for the coefficients β is:

                        b X X X P= ⋅ ⋅ ⋅−( )T T1                         (2.5)

where
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                      (2.6)

It has been proved in [6] that the lest square estimator is an
unbiased estimator for β, which means E[b]= β.The
estimated (fitted) power from macro-model is given by:

                       [ ]� � , � , , �P Xb= =P P Pm1 2 �                        (2.7)

and the residual terms (error) are defined as the difference
between the fitted power and observed (actual) power:

                  [ ]e P P P Xb= = − = −e e em1 2, , ��            (2.8)

 In the following, we define some relevant terms for
regression analysis [6].

sum of squares error: SSE ei
i

m

=
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mean squares error: MSE SSE m k= − −( )1

regrssion sum of squares: SSR P Pi
i

m

= −
=
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regrssion mean squares: MSR SSR k=

coefficient of correlation: )( SSESSRSSRR +=

The statistical nature of the macro-model enables us to
predict the accuracy level of fitted power value as follows.
Given any input vector pair, the values of its characteristic
variables (x1, x2, …, xk) are first computed. The fitted
(predicted) power is given by kk xbxbxbbP ++++= �22110

ˆ .

Given a confidence level 1-α, the confidence interval of the
actual power P is defined as an interval [P1, P2] such that
the probability that the actual power value lies inside this
interval is    1-α. We can thus compute the confidence
interval for P at any confidence level 1-α as:

]][)1;21(ˆ],[)1;21(ˆ[ PskmtPPskmtP ⋅−−−+⋅−−−− αα (2.9)

where t(1-α/2;m-k-1) is the (1-α/2)×100 percentile point of
the t distribution with degree of freedom of (m-k-1) and
s[P] is the standard deviation of the new observation which
is given by:

                ))(1(][ 1TT XXMSEPs −+⋅= XX           (2.10)

where X and MSE are the variable matrix and mean squares
error of the training set, respectively.

The quality of the macro-models can be evaluated in terms
of the following criteria:

1. Correlation coefficients: Coefficient of multiple
correlation R is a general measure of the quality of a
regression model since it represents linearity of the
model and the magnitude of the error. From its
definition, 10 ≤≤ R . Furthermore, the higher the R
value, the better the quality of the regression model.
The R value may differ from one population to next for
the same macro-model. Therefore, the R values of
different macro-models should be compared only when
they are subjected to the same input population.

2. Errors: Error in cycle power (ECP) gives the average
error when estimating power on cycle by cycle basis
while error in average power (EAP) gives the average
error when estimating the average power. More
precisely, we can write:
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III. GENERATING THE MACRO-MODEL

3.1 Variable Selection

3.1.1 Theoretical foundation of macro-model equation

If we ignore power consumption of the floating nodes
within gates (it is <5% in practice), the power consumption
of a combinational module is only a function of transitions
at the primary inputs and can be written as:
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where k is the number of inputs and kttt
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Note that the function is defined as a mapping from vector
space to real numbers. Equation (3.1) can be expanded
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where
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where it
�

 is called order 1 transition variable of input i,

ji tt
��

⊗  is called order 2 joint transition variable of inputs i

and  j, etc. Entries of these vector variables are either 0 or 1
and the sum of entries in each vector add up to 1.

Theorem 1 Equation (3.4) gives the exact power
consumption for any vector pair applied to the inputs of
any combinational module with k inputs. Furthermore,
coefficients in the equation are unique for given module.

3.1.2 Relevant input correlations

It is obvious that a0 = 0 since power consumption for vector
pair (00…0)→(00…0) must be zero. All other coefficients
in equation (3.4) can be uniquely determined from circuit-
level simulation on some specific vector pairs.

Definition Inputs i1,i2,…,ij are transitive fanout correlated
iff their transitive fanout cones in the circuit have at least
one common node, that is, there exists at least one node of
the module whose logic function includes all these inputs. j
is called the order of the correlation.

For sake of simplicity, we use “correlation” to mean
“transitive fanout correlation” in the rest of this paper.

The coefficients in (3.4) essentially reflect the correlation
between the corresponding (joint) transition probabilities
and the power consumption in a circuit.

Proposition 1 If  i1,i2,…,ij are not correlated, all entries of

jiiia ,,, 21 �

�
 are zero.

Corollary If J is the highest order of correlation among
inputs of a module, the first J+1 terms of equation (3.4) are
sufficient to model the exact power for any input vector
pair applied to the module.

3.1.3 The macro-model equation

We have empirically observed that, on average, low order
joint transition variables have higher coefficient values for
most circuits. Based on this observation, we approximate
(3.4) by ignoring the high order terms. Our first
approximation function is written as:

   

ε

ε

+⋅⊗⊗+

⋅⊗+⋅+=

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⊗⊗+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⊗+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅+=

∑ ∑ ∑

∑ ∑∑

∑ ∑ ∑

∑ ∑∑

= += +=

= +==

= += +=
→→→

→→→

→→→

= +=
→→

→→

→→

= →

→

→

k

i

k

ij

k

jl
ljilji

k

i

k

ij
jiji

k

i
ii

k

i

k

ij

k

jl

lji

lji

lji

lji

k

i

k

ij

ji

ji

ji

ji

k

i
i

i

i

i

attt

attata

a

a

a

ttt

a

a

a

tt

a

a

a

taP

1 1 1

T
,,

1 1

T
,

1

T
0

1 1 1
11,11,11

,,

01,10,10
,,

10,10,10
,,

1 1
11,11

,

01,10
,

10,10
,

1 11

01

10

0

      

    

        

����

�����

�

���

�

���

 (3.5)

where ε is the error caused by approximation.



We can minimize error ε  by re-computing the coefficient
values doing least-square fitting for (3.5). However (3.5) is
too large to be our macro-model equation because the

number of variables in it is 32 2793 kk CCk ⋅+⋅+⋅ , which is

too high! The use of 0-1 variables in (3.5) makes it difficult
to reduce the number of variables using regression
approach.

We thus use a variable partitioning approach which offers
two advantages: 1) uses integer variables, 2) has constant
number of variables independent of k.

We define G1 as the set of all inputs, G2 as the set of all
possible combinations of two inputs, G3 as the set of all
possible combinations of three inputs:
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Note that G1 consists of indices for order 1 transition
variables; G2 consists of indices for order 2 transition
variables, etc. The variable partitioning technique divides
G1 into L subsets, G2 into M subsets, and G3 into N subsets
such that:

K

GGG
L

g
g

L

g
g

≤

=Φ=
==

g1,

1
1

,1
1

,1

G               

   , ��
,   

K

GGG
M

g
g

M

g
g

≤

=Φ=
==

g2,

2
1

,2
1

,2

G                 

   , ��
,

KGGG
N

g
g

N

g
g ≤=Φ=

==
g3,3

1
,3

1
,3 G    ,   , ��

where K is some user-specified bound. The size constraint
is specified to manage the complexity of macro-model
equation characterization and evaluation.

We approximate equation (3.5) by assuming that:
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To minimize the error introduced by the above
approximation, we should do a careful variable partitioning
because variables may have very different coefficients. In
our approach, the partitioning criteria are based on the
coefficients in (3.4) which are computed as:
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Transition variables of the same order are sorted in
increasing order of the corresponding criteria values and
then divided into groups of at most K elements.
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We can thus introduce our cycle-accurate macro-model as
follows:
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In terms of L,M,N values, the number of variables in the
macro-model is 3L+9M+27N, which is independent of the
number of circuit inputs k.

Table 1 shows the experimental results for three macro-
models using different number of groups and using
different grouping strategies. For Macro-model 1, L = 1, M
= 1, N = 1; For Macro-model 2, L = 8, M = 8, N = 2, and
the single inputs, input pairs, and input triplets are grouped
randomly; For Macro-model 3, L = 8, M = 8, N = 2, and our
variable partitioning heuristic is used. The input sequence
are randomly generated. We did not include biased
sequence into this experiment because the R values are so
high that it is difficult to assess the merit of each method.

From Table 3,  we can draw the following conclusions:

• In general, input grouping improves the quality of
macro-models.

• A good input grouping technique is very important to
obtain a high quality macro-model.

Table 1 Experimental results of input partition

Macro-model 1 Macro-model 2 Macro-model 3

Module R ECP
(%)

R ECP
(%)

R ECP
(%)

C1355 0.7037 8.07 0.6041 9.2 0.7788 7.8

C1908 0.5387 15.4 0.5456 15.0 0.7987 11.2

C2670 0.3940 11.7 0.4022 11.6 0.6225 14

C3540 0.5439 17.5 0.6583 15.5 0.7599 12.2

C432 0.3169 29.1 0.3260 29.0 0.7706 20.2

C5315 0.4128 9.9 0.4813 9.4 0.8012 8.1

C6288 0.7318 8.1 0.7717 7.6 0.8011 6.8

C7552 0.1852 33.0 0.3176 31.0 0.9184 9.2

C880 0.5421 19.8 0.4854 20.8 0.6976 16.3

Mul16 0.7568 8.9 0.7813 8.3 0.8139 7.0

Adder16 0.7151 8.6 0.7268 8.4 0.8687 6.2

3.2 Population Stratification

From our experiments we have found that the regression
correlation R between the estimated power and the actual
power varies for different power ranges. This means that
the regression model is not strictly linear over the range of
possible power values. The reason for the lack of linearity
is that the macro-model equation is only an approximation
to the power-transition function. During the variable
selection, we discard the high order terms in the power-
transition function and group subsets of variables of given
order together. The approximation introduces some non-
linearity into the macro-model equation. This effect is more
pronounced when the number of variables is small.

To improve the quality of our macro-model, we refine the
macro-model to a piece-wise linear regression model [6].
At the first step, we stratify the training set into several
disjoint subsets (strata) based on the switching activity of
the vector pairs in the training set. A vector pair will fall
into one and only one of these strata. Then the macro-
model is trained separately for each subset of the training
set. When we apply this piece-wise linear macro-model to
estimate the power for a given vector pair, we first examine
the switching activity range of the vector pair, and then

invoke the macro-model equation which was trained using
vector pairs with a similar switching activity.

Theorem 2 The regression coefficient R of the macro-
model in population stratification approach is always larger
than or equal to that one without population stratification,
i.e.,

                                    nostrstr RR ≥
Experimental results in Table 2 shows the improvement on
the regression coefficient R of the macro-model with the
population stratification approach (Macro-model 1) and
without it (Macro-model 2). The experiment sequence
contains both biased and random vectors.

Table 2 Experimental results of population
stratification approach

Macro-model 1 Macro-model 2Module

R ECP (%) R ECP (%)

C1355 0.9806 7.86 0.9691 8.76

C1908 0.9603 9.34 0.9507 11.19

C2670 0.9786 8.77 0.9747 10.22

C3540 0.9743 11.45 0.9566 12.88

C432 0.9196 19.07 0.9001 22.96

C5315 0.9819 7.64 0.9812 8.72

C6288 0.9892 6.03 0.9864 7.16

C7552 0.9885 6.58 0.9871 7.36

C880 0.9506 14.19 0.9509 15.32

Mul16 0.9832 6.32 0.9819 6.90

ADDER16 0.9868 5.64 0.9725 6.73

3.3 Variable Reduction

In the macro-model equation (3.6), the number of variables
is about 150. Although the large number of variables will
improve the quality of the macro-model, we cannot afford
to evaluate a large macro-model equation for every clock
cycle at RT-level. Therefore, we must reduce the number of
variables in the equation.

In our approach, the search method develops a sequence of
regression models. At each step, one X variable is added
into or deleted from the final macro-model equation. The
criterion used for adding or deleting variables is the F*

statistics of the regression theory [6]. The algorithm is
described next:

Input of the algorithm: Given are a set of candidate
variables { X1, X2, …, Xn } which is in the initial macro-
model, a training set (values of variables for input vector
pair and corresponding Powermill power value), a low
threshold t0 for deleting a variable, a high threshold t1 for
adding a variable, an upper bound of number of variables
MAXvar, S is the set of selected variables.

Step 0 (Initialization) : Set S = Φ and C = { X1, X2, …, Xn }

Step 1 (Find the first variable) : Fit a one-variable linear
regression model for each variable Xi in C. The F* test for
each model is given by:
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Assume that Xj is the variable with the maximum F* value.

If F tj
* ≥ 1  then move Xj from C to S and denote it as X1

* .

Otherwise, no macro-model can be found for the given t1

value (t1 must be reduced). The algorithm terminates.

Step 2 (Add a variable) : Assume S = { **
2

*
1 ,,, aXXX � },

for each Xi remaining in C, fit the regression model with

a+1 variables X X X a1 2
* * *, , ,�  and Xi . For each of them,

the partial F test statistics is:
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where bi is the estimated value of βi coefficient and s{bi} is
the standard deviation of bi. Let Xj be the variable with the

maximum Fi
*  value. If F tj

* ≥ 1  then move Xj form C to S

and denote it as Xa+1
* , increase a by 1, and go to Step 3;

Otherwise the algorithm terminates.

Step 3 (delete a variable) : Assume S={ **
2

*
1 ,,, aXXX � },

and X a
*  is the latest variable added in Step 2. Compute the

partial F test statistics for all other variables in S:
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Let X j
*  be the variable with minimum F* value. If

F tj
* < 0  then remove X j

*  form S.

Step 4 : Repeat Steps 2 and 3 until one of following three
conditions is true:
1. Algorithm terminates in Step 2
2. C=Φ.
3. The number of variables in S equals to MAXvar

In our approach, the number of variables in the candidate
set is 162 at the beginning. We choose t0 = t1 = 10.0,
MAXvar = 15. For most macro-models, the algorithm
terminates at the 3rd condition at step 4 when the number of
variables equals to MAXvar. Only for one of them the

algorithm terminates at step 3 when 1
* tF j < .

3.4 Other issues in macro-model generation

Another important issue in macro-model generation is the
design of the training set. In our approach the training set is
designed using stratified sampling techniques proposed in
[5]. The population (collected or probabilistically generated
sequence and the corresponding power values) covers the
whole ranges of macro-model variables and actual power
values, the training set design technique also ensure that
these ranges are covered by the training set. The validation
of macro-model is carried out based on the criteria we
mentioned in Section II, which are R, ECP, and EAP.

IV. EXPERIMENTAL RESULTS

We have built our cycle-accurate macro-models for several
modules, including the ISCAS-89 benchmarks. In our
macro-models, we have also used information about

transitions on circuit outputs, but only for two of the
circuits (C432 and C880) variables related to outputs
survive the variable reduction phase.

The experimental setup is as follows. For each circuit, the
population size is set to 80,000 vector pairs (constructed by
both biased and random sequences). We first simulate each
circuit for the entire sequence using Powermill and record
the cycle-by-cycle power. Size of the training set is set to
3,000 . The macro-model is then trained using the training
set. After the macro-model is built, we apply it to different
subsets of the population. These subsets are selected such
that  their power behaviors are different from that of the
training set. Average ECP and EAP are computed by
averaging the ECP’s and EAP’s of all  sub-sets. The
regression coefficient R is computed based on the fitted
results on the entire population. Experimental results for
our cycle-accurate macro-models is summarized in Table 3.

Experimental results shows that our macro-model
technique are very accurate when estimating power
consumption at RT-level. The average ECP and EAP are
10.2% and 2.0%, respectively.

Table 3 Experimental results of cycle-accurate macro-
models

Circuit No. of Var. R ECP (%) EAP (%)

C1355 15 0.9615 9.3 2.7

C1908 15 0.9343 11.6 2.0

C2670 15 0.9744 9.6 2.0

C3540 15 0.9472 12.5 2.0

C432 14 0.8971 19.3 3.1

C5315 15 0.9816 7.8 1.6

C6288 15 0.9902 6.2 1.9

C7552 15 0.9885 6.9 1.1

C880 15 0.9405 14.3 3.2

Mul16 15 0.9853 6.5 1.6

ADDER16 15 0.9825 6.4 1.1
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