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Abstract—Demand response is an important part of the 

smart grid technologies. This is a particularly interesting 
problem with the availability of dynamic energy pricing models. 
Electricity consumers are encouraged to consume electricity 
more prudently in order to minimize their electric bill, which is 
in turn calculated based on dynamic energy prices. In this 
paper, task scheduling policies that help consumers minimize 
their electrical energy cost by setting the time of use (TOU) of 
energy in the facility. Moreover, the utility companies can 
reasonably expect that their customers reduce their 
consumption at critical times in response to higher energy prices 
during those times. These policies target two different scenarios: 
(i) scheduling with a TOU-dependent energy pricing function 
subject to a constraint on total power consumption; and (ii) 
scheduling with a TOU and total power consumption-dependent 
pricing function for electricity consumption. Exact solutions 
(based on Branch and Bound) are presented for these task 
scheduling problems. In addition, a rank-based heuristic and a 
force directed-based heuristic are presented to efficiently solve 
the aforesaid problems. The proposed heuristic solutions are 
demonstrated to have very high quality and competitive 
performance compared to the exact solutions. Moreover, ability 
of demand shaping utilizing the aforementioned pricing schemes 
is demonstrated by the simulation results. 

I. INTRODUCTION 

Availability of affordable and sustainable electrical energy is the 
key to prosperity and continued socio-economic growth of nations 
and the world. Traditional static centralized infrastructure of 
electricity grid consists of: (i) a global transmission network, which 
transmits the electrical power generated at remote power plants 
through long-distance high-voltage lines to substations, and (ii) a 
local distribution network, which adapts and delivers electricity 
from the substations to end users. In this structure, the local network 
is adjusted to match a given load profile from the end users 
connected to it. The end user demands, however, vary drastically 
based on the day of the week and time of the day. The Power Grid 
must however be able to provide the worst-case level of power to 
the end users in order to avoid blackouts. At the same time, the 
electrical power consumption is rising rapidly. Without a major 
change in the way the Power Grid is organized, built, monitored, 
and utilized, the U.S. alone must invest hundreds of billions of 
dollars in building new power plants over the next 20 years to meet 
the expected growth in electrical energy consumption under worst-
case demand conditions  [1]. 

To avoid expending this large amount of capital for the 
expansion of the power generation capacity in the U.S. a 
decentralized Smart Grid, which delivers electricity from suppliers 
to consumers, monitors and controls the power flow in the Grid, and 
provides the required networks, sensing/metering gear, dynamic 
control, applications and databases to match the power generation to 
power consumption and to optimize the overall cost of electrical 
power delivered to the end users  [2]  [6]. The key idea is to shift load 
so that loads are diverted from a peak period to an off peak period, 
whereby shaving the power peaks and filling the power valleys. 

In a smart grid infrastructure, utility companies can perform 
demand-side management by deploying a dynamic electricity 
pricing strategy to encourage the consumers to schedule their most 

power-hungry function and tasks at those times (of the week or the 
day) when the Grid is not overly loaded. A well designed dynamic 
pricing function is thus able to incentivize customers to tune their 
loads to the current state of the network. On the other hand, the 
consumers can shape their power consumption profile to minimize 
their electrical bill while scheduling the start times of their most 
power-hungry functions. This is called demand shaping.  The design 
of energy pricing-aware scheduling algorithms is thus an important 
task that must be undertaken in order for the Smart Grid technology 
to bear fruit. 

Based on the degree of security with respect to sharing the 
network information, a number of different scheduling strategies are 
introduced in  [2]. The proposed distributed stochastic energy 
consumption scheduling algorithms utilize the available (complete 
or partial) knowledge to improve the overall load profile. In  [3] an 
optimal algorithm utilizing real-time energy pricing functions is 
presented to find the optimal energy consumption levels for each 
consumer. The algorithm is implementable in a distributed manner 
so as to maximize the aggregate utility of all users and minimize the 
cost to the energy producer  [3]. This work models the consumers’ 
preferences and their energy consumption patterns in form of utility 
functions. Shaping the power demand to match available power 
supply is addressed in  [4], where two market models are considered. 
The authors propose distributed demand response algorithms to 
achieve equilibrium states that maximize the social welfare.  

The authors of  [5] present an energy management system 
algorithm that learns users’ behavior and schedules their tasks to 
perform optimal energy scheduling and allocation decisions.  
Because of the complexity of the solution technique, the approach 
presented in  [5] is only applicable to cases with a small number of 
users and tasks. In  [6], it is assumed that houses and buildings are 
equipped energy management controllers that control the operation 
of some of their appliances. The energy management controller uses 
both dynamic prices and user preferences to control the power usage 
within a single house and across multiple houses in a neighborhood. 
To minimize the electricity bill of cooperative users, a quasi-
dynamic pricing model is presented in  [7]. In this model, the 
electricity price comprises of two components: a time-of-use (TOU) 
dependent base price for kWh of energy used and a penalty term 
corresponding to instantaneous power consumption exceeding a 
TOU-dependent bound on total power consumption. Subsequently, 
two different methods (a deadline-driven continuous-variable 
method and a timeslot-based method) are presented to optimize the 
energy cost of a networked community of cooperative users. 

References  [5]- [7] are representative of the kind of work that 
has been reported in the literature with respect to task/appliance 
scheduling to minimize the electrical energy cost to the end users. 
None of these works, however, considers a TOU and total power 
consumption dependent energy pricing function with a hard bound 
on the instantaneous power consumption. The inconvenience cost is 
considered in  [6]. However this reference relies on a very simple 
(and idealistic) energy pricing function. Similarly, reference  [7] 
treats the instantaneous power consumption limit a soft constraint 
and includes its effect in the overall cost function using a penalty 
term. Furthermore, it does not have any notion of a target 
(preferred) start time for the scheduled tasks, and hence, ignores the 
inconvenience cost.  



This paper proposes two different scheduling strategies for 
managing the profile of loads considering user preferences and peak 
power constraints. The first strategy, called Power-Constrained, 
Minimum-Cost Scheduling with Fixed Prices, assumes that the 
energy price is a function of TOU and that the total power 
consumption of the consumer is bounded. The second strategy, 
Minimum-Cost Scheduling with Power-Dependent Variable Prices, 
assumes that the electrical energy price is a function of TOU and the 
total power usage of the consumer. Both strategies are formulated 
and two efficient heuristics are proposed for solving them. 
Furthermore we present branch and bound algorithms (designed to 
have a low average time complexity) to find the optimal solutions to 
set the golden result against which the performance of the proposed 
heuristics is measured. All the proposed algorithms consider two 
different costs paid by users: electricity energy price and 
inconvenience cost.  

The system model, energy price function, and overall cost 
function are presented in section  II of the paper. Sections  III and  IV 
present provably optimal and heuristic solutions for task scheduling 
problems subject to (a) TOU-dependent energy pricing function 
subject to a constraint on total power consumption; and (b) 
scheduling with TOU and total energy consumption dependent 
pricing function for electricity consumption, respectively. 
Experimental results are reported in section  V and paper is 
concluded in section  VI. 

II. SYSTEM MODEL, ENERGY PRICE AND COST FUNCTIONS 

In this paper, we consider task scheduling in households, buildings 
and warehouses to minimize a composite cost function comprised of 
an electricity price paid by the tenants for their electrical energy 
usage plus an inconvenience cost incurred by the tenants if and 
when their jobs are scheduled outside a preferred timing window. In 
the rest of the paper we use the term facility to represent any 
residential, commercial or industrial facilities with one or more 
electricity-consuming tenants, occupants or workers, but a unified 
electricity bill.  

In this paper, we assume that there are a number of tasks in each 
facility that should be executed daily. These tasks are identified by 
index i. The set of task indexes is denoted by K={1, …,N}. For each 
task i∈K, the earliest start time (���), the latest end time (���), and the 
duration of task (�� ) are specified. At each step of the task 
scheduling process, there are a set of assigned tasks Ka and a set of 
unassigned tasks Ku such that Ka∪Ku=K and Ka∩Ku=∅. Tasks are 
assumed to be non-interruptible i.e., they executed from the 
scheduled start times (��) until they are completed. Moreover, each 
task consumes electricity according to a known power dissipation 
profile. This means that if the start time and duration of task i are 
denoted by  �� and ��, respectively, then the power consumption of 
task i will follow a known profile of ���	
 as t ranges from ��  to 
�� + �� . Notice that function ���	
 is a stationary function in the 
sense that its value is independent of the scheduled start time of the 
task. The value of the task power consumption function ���	
 for 
times outside the execution time of the task is zero. 

Each task has a preferred start time. This start time, which lies 
in the range [��� , ��� − ��]	 , is denoted by ��

�  for task i. This 
preference is captured by assigning an inconvenience cost (�����
) to 
each task which is scheduled in a time different from ��

� . The 
inconvenience cost function ���	
 for task i is thus a function that 
assumes zero value for a start time equal to ��

� and non-negative 
values for all other start times. 

We assume that the electricity price function (��	
 ) is pre-
announced by the utility company just before the start of the day; 
furthermore, the price function is not changed until possibly the next 
day. If, however, the utility company is unable or unwilling to 
provide the electricity price function for the entire day and, for 
example, chooses to pre-announce the price function for the next 
hour just prior to the beginning of the hour, then the users may 
utilize a history-based price function prediction algorithm (which is 

straight-forward to design but falls outside the scope of this paper) 
to obtain an expected electricity price function for the whole day. 
This is important for energy cost-aware scheduling in small 
facilities because there may not be enough tasks or enough 
flexibility to achieve meaningful reductions in cost if the length of 
the scheduling epoch is too short. In large facilities with a multitude 
of users/occupants generating many tasks, a finer granularity 
scheduling epoch (e.g., in order of hours) will be just fine. Without 
loss of generality, in the remainder of this paper, we assume that the 
length of the scheduling epoch is 24 hours.  

We also assume that the electricity price at each time instance is 
fixed and independent of the total amount of power consumption in 
the facility, i.e., ��	
 is only a function of time of the day and not 
the total power consumption at that time. This electricity price 
function is used in some of the previous works, e.g.,  [6] and  [7]. 
Task scheduling based on this kind of electricity price model will 
reduce the overall electrical bill by moving the bulk of the tasks to 
time slots during the day where the electricity prices are low. 
Unfortunately, however, this can create large peaks of power 
consumption during such low-cost time slots, which can burden the 
Power Grid supplying power to the facility.  In the worst case, all 
facilities in a given utility service area, will schedule their tasks to 
run in the same set of low-cost timing slots, thereby, causing a 
potential power delivery failure (blackout or brownout) on the Grid. 
To contain this potential disastrous effect, the utility company sets a 
peak power consumption limit for each facility. This limit may vary 
for different facilities and at different times of the day at the sole 
discretion of the utility company. In the remainder of this paper, we 
shall use ���	
 to denote the upper bound on the peak instantaneous 
power drawn by the target facility at time t. TOU-dependent (but 
otherwise, fixed) electricity prices are assumed in section  III while a 
price model with both TOU and total power consumption 
dependence is assumed in section  IV. 

In this paper, we assume a slotted time model, i.e., all system 
cost parameters and constraints as well as scheduling decisions are 
provided for discrete time intervals of constant length. The 
scheduling epoch is thus divided into a fixed number of equal-sized 
time slots (a day is divided into T time slots, each of duration D). 
Tasks can be launched only at the beginning of one of these time 
slots and will be completed at the end of the slots.  

III.  POWER-CONSTRAINED LOAD SCHEDULING FOR TOU-
DEPENDENT ENERGY PRICING FUNCTION 

In this section we provide both the optimal solution (albeit with 
exponential worst-case complexity) and an efficient heuristic 
solution for the problem of task scheduling with TOU-dependent 
energy pricing function subject to a constraint on total power 
consumption. The objective function is to minimize the energy cost 
plus the inconvenience cost as defined in section  II.  

Let ���	�
��  denote the total cost of assigning task i to start at si. 

Clearly,  

���	�
�� = �����
	+ ∑ ��	
���	 − ��
����������   (1) 

The first term in (1) is the inconvenience cost of the task 
whereas the second term corresponds to the aggregated electricity 
cost of the task in the facility. 

Problem 1: Power-Constrained, Minimum-Cost Scheduling 
with Fixed Prices, or PMSF for short) -- Minimize the total 
electrical energy cost plus the inconvenience cost in a facility 
through task scheduling, i.e., 
� !	 ∑ ���	�

��"��#   (2) 
s.t. 
∑ ���	 − ��
"��# ≤ ���	
,  ∀	 (3) 
��� ≤ �� ≤ ��� − �� ,  ∀  (4) 

Constraint (3) captures the peak power limit constraint in each 
time slot while constraint (4) appropriately bounds the start time for 
each task. 



Theorem 1: The PMSF problem is at least as hard as the 
Generalized Assignment Problem (GAP)  [9]. 

Proof: If the duration of tasks (�∗) is only one time slot and 
constraint (4) is relaxed to only finding a single time slot to 
schedule the task, solution of the PMSF problem can solve the 
MINGAP with the following efficient transformation: (i) Cost of 
assigning task i to start time (��) is ����
� + �����
 and (ii) Power 
capacities of different time slots are set to ���	
.∎ 

Theorem 1 shows that the PMSF problem is an NP-Hard 
problem. Multi-slot tasks can make this minimization problem 
harder because assignment of tasks to a start time can cause capacity 
violation in more than one time slot and this complicates the proper 
solution for this problem.  

Note that because the MINGAP problem is reducible to the 
PMSF problem, determining whether an instance of the PMSF 
problem has a feasible solution is also an NP-complete problem.  

A. Branch and Bound –Based Scheduling Solution 

To solve the PMSF problem optimally, a Branch and Bound (B&B) 
algorithm based on both lower and upper bounding of remaining 
costs is used as explained next. The proposed B&B algorithm 
recursively (and implicitly) enumerates all possible solutions. In 
particular, at each decision (branching) point, a task is picked 
according to the adopted branching strategy (see description below) 
and assigned to one of the least-cost available time slot for the 
selected task. This scheduling step must be repeated for all 
remaining (unscheduled) tasks in order to generate a complete 
solution. Now then, at each decision point, a lower bound on the 
total cost (already accrued plus minimum remaining) is calculated 
(see below for how this lower bound is calculated.) Furthermore, an 
upper bound on the total cost (already accrued plus actual 
remaining) is calculated using a highly effective heuristic algorithm 
(called rank-based scheduling, see below for a description.) If the 
lower bound cost is greater than the cost of the best complete 
solution found previously or if it is equal to the upper bound cost, 
then the remaining scheduling steps are skipped and the next 
available time slot assignment for the selected task is explored. The 
best found solution at the end of this process will be the globally 
optimum solution to the PMSF problem.  

The proposed branching strategy is based on the difference of 
the best possible assignment (with respect to power limit 
constraints) and second best possible assignment of the tasks. The 
intuition is that the task that exhibits the largest cost increase if it is 
not assigned to its optimum time slot is given the highest priority so 
that it is scheduled first when the power constraint has not yet 
eliminated too many of the available time slots.  
 
Branching Strategy:  

For each unassigned task i∈Ku do: 
Calculate ���	�

�� from (1) respecting constraints of PMSF 
Calculate Δ�, which is the difference between the two smallest ���	�

�� 
values where ��� ≤ 	� ≤ ��� − �� 

Branching is performed on task  ∗ where 
 ∗ = arg	max

�
. Δ�/	 (5) 

 

To calculate the cost lower bound at each decision point in the 
B&B search tree, the solution of PMSF with relaxation of constraint 
(3) is used. Because of this relaxation, PMSF can be efficiently and 
optimally solved with the following greedy algorithm. Note that 
here some tasks have already been assigned to time slots, i.e., we 
start with known sets of Ku and Ka.  
Cost Lower Bound Algorithm: 
Initialize the lower bound cost as ∑ ���	�

���∈12  
While Ku≠∅ do 

Pick a task i∈Ku 
Calculate ���	�

�� for each start time si respecting constraint (4)   
Find the start time si

* that minimizes ���	�
�� . The start time si

* is the best 
possible slot assignment for task i  

Set Ku= Ku –{i} and Ka= Ka ∪{ i} and add ���	�
��∗ to the lower bound cost 

 

In fact in order to find the best possible time slot to assign a 
task, because we have made no assumptions about the form of the 
electricity price function or the inconvenience cost function, 
minimization of (2) subject to (4) is a constrained nonlinear 
(potentially non-convex) mathematical program, which is best 
solved by full enumeration of all possible time slot assignments for 
task i. (as is done in the proposed greedy algorithm.)  
 
Cost Upper Bound Algorithm (Rank-based Scheduling): 
Initialize the Upper bound cost as ∑ ���	�

���∈12  
While Ku≠∅ do 

Apply the Branching Strategy to pick a task i∈Ku  
Find the start time si

* that minimizes ���	�
�� 

Schedule task i at si
* and set Ku=Ku–{ i} and Ka=Ka∪{ i} and add ���	�

��∗ 
to the upper bound cost 

Set Flag = TRUE if  ∀j∈Ku , task j can be scheduled to start at some slot 
sj without violating (3) else FALSE 

If (! Flag) 
Set Ka=Ka–{ i} and Ku=Ku∪{ i} and exclude start time si

*  from 

possible start times of task i and subtract ���	�
��∗ from the upper 

bound cost 
 

In Rank-based scheduling, a task is scheduled only if it does not 
prohibit other tasks from being scheduled at any start time. Even 
with this policy, it is possible that Rank-based Scheduling reaches a 
point that some of the tasks are not schedulable because of the 
previous assignment.  To overcome this problem, all un-schedulable 
tasks at the end of the first iteration of the proposed heuristic are 
scheduled at their best possible time slots (while checking the 
condition that their slot assignment does not prohibit other tasks 
from being scheduled) and then second iteration of the proposed 
heuristic is executed for all the remaining tasks. While there is no 
guarantee that this iterative approach will converge and produce a 
complete scheduling solution, in practice and for all examples tried, 
the approach converges in one or at most three iterations if a 
feasible solution exists.   

Computational complexity of this heuristic is 
3�4567 log�56

 where A denotes the number of iterations of the 
heuristic to find a solution. It can be seen that the complexity can be 
decreased by calculating the outcome of assigning tasks to different 
start times and updating them whenever needed.  

B. Rank-based Scheduling Solution 

Since the proposed exact B&B algorithm has an exponential worst 
case time complexity, we have found that the aforesaid Rank-based 
scheduling algorithm is highly effective and very efficient in 
practice. In fact it can be used to solve the complete scheduling 
problem by passing Ku=K and Ka= ∅ to it. 

IV.  LOAD SCHEDULING FOR TOU- AND POWER-DEPENDENT ENERGY 

PRICING FUNCTION 

A. System Model 

In section  III, task scheduling problem to minimize the total energy 
cost plus the inconvenience cost in the system was considered when 
there is an instantaneous power consumption upper bound in the 
facility. In this section, this upper bound constraint on the power 
consumption is relaxed and another electricity price model (called 
TOU-and power consumption dependent energy price) is 
considered. Under this electricity price model, energy price at each 
time slot is not a fixed value; instead it varies as a function of the 
total power consumption of the facility at that time. This means that 
the TOU-and power consumption dependent electricity price model 
is a two-dimensional electricity price in which the energy price for 
the facility depends on the time of day and the amount of power 
consumed at that time. 

Problem 2: Minimum-Cost Scheduling with Power-Dependent 
Variable Prices, or MSPV for short) -- The cost minimization 
problem is as follows: 



� !	� : ; <	,: ���	  ��

"

��#
=: ���	  ��


"

��#

>

��#
�:�����


"

��#
 (6) 

subject to constraint (4). Note that ;�	, �
 denotes the energy price 
at time t and total power consumption of P on that time. 

The price function presented in the MSPV problem is assumed 
to be monotonically increasing. This characteristic means that a 
facility cannot incur a lower energy price by consuming more 
energy. It can be seen that MSPV is an integer nonlinear 
programming problem. In general there is no efficient solution for 
this problem. Using nonlinear optimizers can help to solve the 
problem for small set of unknowns but their run time is not 
acceptable for large number of unknowns. 

B. Branch and Bound –Based Scheduling Solution 

To find the exact solution for the MSPV problem, the branch and 
bound technique presented in section  III is used by appropriately 
revising it to adopt the energy price model. More precisely, at each 
branching point, whenever an energy price is needed to calculate the 
best time slot for the selected task, the energy price function value 
on the power consumption of the previously assigned tasks is used. 

Similar to the previous case, this exact algorithm finds the 
optimal task scheduling policy at the cost of exponential worst-case 
computational complexity. Moreover, the average computational 
complexity of this exact solution is more than that of the exact 
solution of the PMSF problem because the bounding technique 
(lower bound on the total cost) is less effective when the energy 
price is not fixed given TOU and rather varies based on the total 
power consumption at that time. 

C. Force Directed Scheduling Solution 

A heuristic inspired by Force-Directed Scheduling (FDS), which is 
one of the significant scheduling techniques in high-level 
synthesis  [8], is applied to find a good solution with a low 
computational complexity. 

FDS is a technique used to schedule directed acyclic task graphs 
so as to minimize the resource usage under a latency constraint (or 
with appropriate modification to the basic FDS algorithm, known as 
FDLS, minimize the latency under resource constraints.)  The 
algorithm consists of three steps: (i) determine the range of 
available time slots for scheduling a task; (ii) Create a distribution 
graph, which captures the resource pressures on each time slot, by 
assuming that a task is equally likely to be scheduled to start in any 
feasible time slot; (iii) A metric called force is utilized to maximize 
resource utilization. By repeatedly assigning tasks to various time 
slots and calculating the force associated with the choice, several 
force values will be available. We choose the assignment with the 
lowest force value, which also balances the concurrency of tasks 
(i.e., reduces resource pressure.)  

In the context of our problem formulation, the goal is to 
schedule all tasks so that their total energy cost plus the 
inconvenience cost is minimized. Range of possible start times for 
each task is determiend directly in this problem. Moreover, same as 
FDS algorithm, distribution graph (also referred to as the initial 
state) is created for this problem by assuming that a task is equally 
likely to be scheduled to start in any feasible time slot. 

There are two different forces in this system to capture both 
parts of the total cost: (i) energy cost force, and (ii) inconvenience 
cost force. To model the concurrency in the system, each time slot 
(also referred to as control step in high level synthesis) is modeled 
by a spring. Similarly, the inconvenience cost is modeled with 
rubber bands in the system. Forces in the rubber bounds are not 
related to the masses but it depends on the displacement. 

Spring and rubber band constants are determined based on the 
specified objective function and current scheduling solution. The 
FDS scheduler tries to minimize the total forces in the system which 
means minimizing the objective function of the problem by 
iteratively changing the scheduling solution.  

The reader recalls that strain (force) in springs is linearly related 
to the stress (displacement) applied to the spring per well-known 
Hooke’s Law. The initial value of the spring constant is determined 
from the corresponding distribution graph calculated in step (ii). In 
this approach, tasks are modeled as masses in the system. The 
displacement of a spring corresponding to time slot i is given by the 
change in the probability of assigning some task to that time slot 
(i.e., due to tentatively scheduling that task in some available slot.) 
In other words, as expected, moving masses to different locations 
produces different forces in the system. Moreover, rubber band 
constants are fixed and equal to the inconvenience cost of each task 
in each time slot. Assigning a task to a start time produces a 
displacement of one for a rubber band with rubber band constant 
equal to the inconvenience cost of that task on that start time. Figure 
1 shows an example FDS-based scheduling setup in this problem. 

Figure 1. An example of modeling the MSPV problem as force-directed 
scheduling. 

K* and R denote the springs and rubber bands constants in the 
model. In this figure, tasks 1, 2 and 3 have two, three and two 
possible start times, respectively. It can be seen that the initial state 
is generated by probabilistically placing each task in every possible 
start time. For instance, task 1, which has two possible start times, is 
assigned to these two start times and its power consumption value is 
multiplied by ½ for each assignment. Summation of the weights in 
each time slot is used to calculate the spring’s constant associated 
with each time slot. This spring constant is set to the value of the 
energy price function on that time and summation of the power 
probability of the tasks on that time. Moreover, in this system, a 
rubber band is associated with each version of each task. These 
rubber bands are added to model the inconvenience cost of 
scheduling each task to start at a time slot other than its preferred 
start time. Rubber band’s constant for each version of tasks is equal 
to the inconvenience cost of assigning the task on that start time and 
initial displacement of each rubber band is equal to the probability 
of assigning each task to each start time. Assigning a task to its 
preferred start time does not have an inconvenience cost and no 
rubber band is associated for this case. 

We want to move from the initial state (distribution graph) to 
the final state. In the final state, each task is exactly scheduled to 
start on a known start time. We want this final state to have the least 
total force in the system because the total force in the system 
represents the total energy cost of the facility owner in one day. So 
we need to change the initial state to a state in which each task has a 
certain start time and the total force in the system is minimized. 

Force of a move in this system is defined as the difference 
between the total force in the system after the move and before the 
move. For example, scheduling a task in time slot �� moves the full 
weight of the task to this time slot while simultaneously eliminating 
all the weight contribution of the task put to other start times. Thus, 
the self force for this move is defined as: 



?��� ≡ A∑ �����	
B�
��������� � �����
C  

							<∑ <∑ �D���EF�
1GHI

��JF��FK�L

��J
E�K�L

=��J
��K�L

� ∑ < M���

��JF��FK�L

=��JF��
��K�L

=  (7) 

where B�  is the spring’s constant associated with time slot t. The 
first term in (7) is the total forces in the system due to assigning task 
i to start time ��  while the second term is the summation of the 
forces in the system by probabilistically assigning task i to all 
possible start times. Note that every possible re-assignment of tasks 
creates a force that can be calculated based on (7). For example, if 
the selected move is assigning task i to two possible start times 
uniformly (still not the final state for this task), the force can be 
calculated by (8). 

?��N,�O � #
7?�

�N � #
7?�

�O   (8) 
To move from the initial state to the final state, a gradual 

movement is considered: (i) a move from the initial state to a state 
where each task is assigned to at most two start times; and (ii) a 
move from this state to the final state. 

For each movement, the move associated with a task with the 
least force is selected and done and then other tasks are considered. 
To improve the time complexity of the algorithm, only forces 
affected by the previous move are updated. Figure 2 shows the 
pseudo code for this task scheduling algorithm. 
 

Figure 2. Pseudo code for Force directed task scheduling. 

V. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed algorithms, cases 
corresponding to the two aforesaid pricing models are examined. In 
these simulations, duration of a time slot is set to one hour. For this 
reason, the minimum duration of a task is also set to one hour, and 
the durations of tasks are integer multiples of one hour. Moreover, 
power consumption of the tasks is determined with a granularity of 
one hour. 

For the first energy pricing model (TOU-dependent energy 
pricing function subject to a constraint on total power consumption), 
we randomly set the energy price for each hour of the day according 
to a uniform distribution with a mean value of 15¢/KWh and a 
range of 10 to 20¢/KWh. We generate a task workload that would 
violate this power limit if each task were simply scheduled at its 
best possible time slot. As stated in section II, this makes the 
problem hard. 

For all of the B&B simulation results, if the time required to 
find the final solution is more than 3 hours, the B&B algorithm is 
halted and no result is reported. 

Tasks in the facility are generated arbitrarily with average 
duration of 4 hours. Power consumptions of tasks are determined 
based on power consumption data about real appliances. 
Inconvenience costs are set arbitrarily to capture the cost of 
scheduling tasks to non-preferred time slots. The average 
inconvenience cost for one time slot deviation from the preferred 
time is set to 2.5¢. The number of possible start times of the tasks is 
set arbitrarily using a normal probability distribution function with 
mean of 4 hours and variance of 3 hours.  

 
Figure 3. Performance and time complexity of the rank-based heuristic 

with different number of tasks. 

We define the performance index of solution A with respect to 
solution B as the ratio of the cost of A to the cost of B. Typically 
solution B is the minimum cost solution obtained by the B&B 
method. Therefore smaller indices approaching unity are more 
favorable to A.   

Figure 3 shows the worst case and average performance indices 
of the proposed rank-based algorithm (for over 10000 cases) with 
respect to the optimal B&B solution. Moreover, the average time 
complexity of the algorithm is reported in this figure.  

It can be seen that the worst-case performance index of the 
rank-based scheduling is improved as the number of total tasks in 
the facility grows. Moreover, the average performance index of the 
rank-based scheduling is no worse that 1.02 for all cases. Note also 
that the rank-based scheduling was always able to find a feasible 
solution if one exists (i.e., if the B&B method can find it.) 

We next report results for the second pricing model (Power- and 
TOU-dependent energy pricing function.) To show the effectiveness 
of the force-directed task scheduling in this case, a step-wise pricing 
function is considered. For each time slot, values of the step prices 
are determined arbitrarily increasing.  

TABLE I. PERFORMANCE AND TIME COMPLEXITY OF THE FORCE-DIRECTED 
HEURISTIC AND GREEDY SOLUTION WITH DIFFERENT NUMBER OF TASKS. 

# of 
tasks 

Average 
performance 
of the FDS 

Alg. 

Average 
performance 

of greedy 
solution 

Worst-case 
performance 
of the FDS 

Alg. 

Time 
complexity 

of the 
heuristic(s) 

5 1.007 1.272 1.048 0.076 
10 1.013 1.396 1.046 0.104 
15 1.012 1.491 1.024 0.138 
20 1.006 1.322 1.012 0.159 

30 B&B not 
finished 1.1821 B&B not 

finished 0.182 

40 -- 1.176 -- 0.227 
50 -- 1.153 -- 0.300 

 

Table I shows the worst-case and average performance indices 
of the force-directed scheduling heuristic with respect to the B&B 
solution. We also implemented a greedy solution for this problem. 
In this greedy solution, tasks are picked in an arbitrary manner and 
scheduled to start at the best possible time slot based on the TOU-
dependent component of the energy pricing function and the total 

                                                                    
1 In case of not finding a solution from B&B method, performance 

of the greedy method is calculated with respect to the force-
directed heuristic solution 
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Algorithm  Force Directed Task Scheduling () 
// Schedule tasks to minimize the total cost of facility 
Create the distribution graph assuming that a task is equally likely to be 
scheduled to start in any feasible time slot. 
Initialize forces for each version of the tasks by (7). 
Initialize forces for each pair of 2 versions of the tasks by (8). 
Ka=∅ and Ku=K; 
Add tasks with only one possible start time to Ka and delete from Ku; 
While (Ku≠∅) { 

i*  = arg min (FQRN,RO); (similarly find t1 and t2 for i*) 
Remove all versions of task i* , Ku=Ku∪{ i *} and Ka=Ka-{ i *}; 
Add 2 versions of task i* with weight of ½ for each to t1 and t2; 
Update springs’ constants; 
FOR (i∈ Ku){  

If  (task i has been affected by changing springs’ constants){ 
Update forces for each version of task i; 
Update forces for each pair of 2 versions of task i;}}} 

Initialize forces for each version of the tasks by (7). 
Ka=∅ and Ku=K; 
While (Ku≠∅) { 

i*  = arg min (FQ��); (similarly find ��∗ for i*) 
Remove all versions of task i* ; 
Schedule task i at time slot ��∗, Ku=Ku∪{ i *} and Ka=Ka-{ i *}; 
Update the springs’ constants; 
FOR (i∈ Ku){  

If  (task i has been affected by changing springs’ constants) 
Update the forces for each version of task i;}} 

Calculate the total Cost; 



power consumption of all previously scheduled tasks whose 
execution time overlaps with the time slot in question. The table 
also reports the average performance index of this greedy solution 
compared to the best solution found. Moreover, the average time 
complexities of the FDS based algorithm is reported in the table. 

It can be seen that the performance index of the force-directed 
scheduling algorithm compared to the B&B solution is improved as 
the number of tasks grows. Interestingly, this means that the force-
directed scheduling does better as the number of scheduled tasks 
that overlap each other increases. Moreover, it can be seen that 
performance index of the greedy solution gets worse than that of the 
force-directed heuristic solution (by more than a factor of 1.15.)  

As can be seen in Figure 3 and Table I performance indices of 
the proposed heuristics are close to the optimal solution while their 
time complexities are significantly lower and certainly acceptable 
even for online decision making in response to changes in the 
dynamic energy prices on an hourly or even shorter time basis. 

To capture the effect of the proposed pricing models and 
algorithms in shaping the energy consumption at the facilities, we 
consider a scenario with 10 facilities. Each facility has 100 tasks to 
schedule and the preferred start times, inconvenience cost functions, 
duration of tasks, and possible start times for each task have been 
specified. 

 

 
Figure 4. (a) Combined energy consumption of 10 houses in different 

scenarios, (b) Energy price for fixed energy price scenarios. 

For this scenario, three different energy pricing models are 
examined: First, TOU-dependent energy prices without any power 
limit (specified at the hourly granularity); Second, TOU-dependent 
energy prices with a fixed power limit for all hours of the day;  and 
Third, both TOU and total power consumption dependent energy 
prices. 

For the first energy pricing model, a real hourly pricing scheme 
from  [10] is used. This pricing function is shown in Figure 4-b. For 
the second pricing model, the power consumption limit for each 
facility is set to 1.5KW. To produce a TOU and total power 
consumption dependent energy price, two different functions are 
used. In the first case, a linear pricing function is used. This linear 
function is assumed to cross two fixed points. The first point is at 
zero power consumption and price is equal to zero. The second 
point’s power consumption is 750W and price for this point is the 
energy price specified for that hour by the TOU-dependent energy 
price. In the second case, a second order energy price function is 
used. Also in this case, energy price function is assumed to cross the 
previous fixed points. 

Figure 4 shows the combined energy consumption of these 
facilities under different pricing models and the energy price that we 
used for this simulation. 

To compare different solutions, we define a figure-of-merit to 
measure the uniformity of energy consumption over time. The 
flatness is defined as: 
?S � TU5/∑ |T�  TU|>��#   (9) 

where T�  and TU  denote the energy consumption in time 	 and the 
average energy consumption in a day, respectively. Larger flatness 
value means the energy consumption profile is closer to constant 
energy consumption. Table II shows flatness value, Fm, for 
different solutions. 

TABLE II . FLATNESS VALUES FOR DIFFERENT SCENARIOS. 

Scenarios Flatness value(Fm) 
TOU-dependent scenario without power limit 2.0977 
TOU-dependent scenario with power limit 4.2186 
TOU and power dependent scenario (1sr order) 3.4857 
TOU and power dependent scenario (2nd order) 6.6396 

 

It can be seen that adding power limit increase the flatness value 
with respect to the base scenario. Moreover, increasing the order of 
the energy-price function in TOU and total power consumption 
dependent pricing function increases the flatness value because by 
increasing the order of pricing function, facilities try to avoid using 
a large amount of energy in each time slot even if the base price for 
that time is cheap. Also it is important to note that we can change 
the flatness value (reduce the peak in energy consumption) or shape 
the electricity demand by changing the energy-price function form. 

VI.  CONCLUSION 
Two algorithms were presented to schedule tasks in facilities based 
on various dynamic pricing models for the electricity. The paper 
described optimal (based on branch and bound algorithms) and 
heuristic solutions for TOU-dependent energy pricing with fixed 
power limit and TOU and power consumption dependent energy 
pricing. Simulation results depicted the near-optimal performance of 
the proposed heuristic algorithms. Furthermore results demonstrated 
the ability of the proposed policies for reshaping the energy 
consumption profile of the consumers. 
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