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Abstract—Demand response is an important part of the
smart grid technologies. This is a particularly ineresting
problem with the availability of dynamic energy pricing models.
Electricity consumers are encouraged to consume eleicity
more prudently in order to minimize their electric bill, which is
in turn calculated based on dynamic energy pricesin this
paper, task scheduling policies that help consumerminimize
their electrical energy cost by setting the time ofise (TOU) of
energy in the facility. Moreover, the utility companies can
reasonably expect that their customers reduce their
consumption at critical times in response to higheenergy prices
during those times. These policies target two diffent scenarios:
(i) scheduling with a TOU-dependent energy pricingfunction
subject to a constraint on total power consumption;and (ii)
scheduling with a TOU and total power consumption-dpendent
pricing function for electricity consumption. Exact solutions
(based on Branch and Bound) are presented for thesmsk
scheduling problems. In addition, a rank-based heustic and a
force directed-based heuristic are presented to étfently solve
the aforesaid problems. The proposed heuristic sdlions are
demonstrated to have very high quality and competite
performance compared to the exact solutions. More@v, ability
of demand shaping utilizing the aforementioned primg schemes
is demonstrated by the simulation results.

INTRODUCTION

Availability of affordable and sustainable elecatienergy is the
key to prosperity and continued socio-economic ginoaf nations
and the world. Traditional static centralized isfracture of
electricity grid consists of: (i) a global transsizn network, which
transmits the electrical power generated at renpmeer plants
through long-distance high-voltage lines to sulimtat and (ii) a
local distribution network, which adapts and deléveslectricity
from the substations to end users. In this strectine local network
is adjusted to match a given load profile from thed users
connected to it. The end user demands, howevey, drastically
based on the day of the week and time of the dag.Fower Grid
must however be able to provide the worst-case lefvpower to
the end users in order to avoid blackouts. At thmes time, the
electrical power consumption is rising rapidly. Witut a major
change in the way the Power Grid is organized,tbmibnitored,
and utilized, the U.S. alone must invest hundrefddiltions of
dollars in building new power plants over the n2@tyears to meet
the expected growth in electrical energy consumptinder worst-
case demand conditiofis.

To avoid expending this large amount of capital tbe
expansion of the power generation capacity in the.Ua
decentralized Smart Grid, which delivers electyidiom suppliers
to consumers, monitors and controls the power flothe Grid, and
provides the required networks, sensing/meteringr,gdynamic
control, applications and databases to match theepgeneration to
power consumption and to optimize the overall cafstelectrical
power delivered to the end users [2] [6]. The ki®a is to shift load
so that loads are diverted from a peak period tofapeak period,
whereby shaving the power peaks and filling the govalleys.

In a smart grid infrastructure, utility companieancperform
demand-side management by deploying a dynamic rieiggt
pricing strategy to encourage the consumers todstbeheir most

power-hungry function and tasks at those timeghefweek or the
day) when the Grid is not overly loaded. A well igegd dynamic
pricing function is thus able to incentivize custmto tune their
loads to the current state of the network. On ttfeerohand, the
consumers can shape their power consumption prafil@inimize

their electrical bill while scheduling the starintés of their most
power-hungry functions. This is called demand shgpiThe design
of energy pricing-aware scheduling algorithms isstlan important
task that must be undertaken in order for the S@dd technology
to bear fruit.

Based on the degree of security with respect tairghahe
network information, a number of different schedglstrategies are
introduced in[2]. The proposed distributed stochastic energy
consumption scheduling algorithms utilize the ala# (complete
or partial) knowledge to improve the overall loadfpe. In [3] an
optimal algorithm utilizing real-time energy prignfunctions is
presented to find the optimal energy consumptiaelefor each
consumer. The algorithm is implementable in a itisted manner
S0 as to maximize the aggregate utility of all aserd minimize the
cost to the energy producE]. This work models the consumers’
preferences and their energy consumption patterfarin of utility
functions. Shaping the power demand to match aMailpower
supply is addressed [4], where two market models are considered.
The authors propose distributed demand responswithlgs to
achieve equilibrium states that maximize the sog&lfare.

The authors of[5] present an energy management system
algorithm that learns users’ behavior and schedilies tasks to
perform optimal energy scheduling and allocationciglens.
Because of the complexity of the solution technjghe approach
presented if5] is only applicable to cases with a small numbgr
users and tasks. [§], it is assumed that houses and buildings are
equipped energy management controllers that cotiteobperation
of some of their appliances. The energy managenwaritoller uses
both dynamic prices and user preferences to cotftegbower usage
within a single house and across multiple housesrieighborhood.
To minimize the electricity bill of cooperative use a quasi-
dynamic pricing model is presented fi]. In this model, the
electricity price comprises of two components:raetiof-use (TOU)
dependent base price for kWh of energy used andnalfy term
corresponding to instantaneous power consumptiareezhing a
TOU-dependent bound on total power consumption s&aiently,
two different methods (a deadline-driven continusasable
method and a timeslot-based method) are presemteptimize the
energy cost of a networked community of cooperatisers.

Referenceg5]-[7] are representative of the kind of work that
has been reported in the literature with respectasi/appliance
scheduling to minimize the electrical energy casthte end users.
None of these works, however, considers a TOU atal power
consumption dependent energy pricing function withard bound
on the instantaneous power consumption. The ingoamee cost is
considered in6]. However this reference relies on a very simple
(and idealistic) energy pricing function. Similarlyeference[7]
treats the instantaneous power consumption lingbfa constraint
and includes its effect in the overall cost funetissing a penalty
term. Furthermore, it does not have any notion oftasget
(preferred) start time for the scheduled tasks, lamte, ignores the
inconvenience cost.



This paper proposes two different scheduling sgiate for
managing the profile of loads considering usergrefces and peak
power constraints. The first strategy, callBdwer-Constrained,
Minimum-Cost Scheduling with Fixed Priceassumes that the
energy price is a function of TOU and that the Itg@wer
consumption of the consumer is bounded. The sestraiegy,
Minimum-Cost Scheduling with Power-Dependent Vagidtrices
assumes that the electrical energy price is ailmaf TOU and the
total power usage of the consumer. Both strategiesformulated
and two efficient heuristics are proposed for savithem.
Furthermore we present branch and bound algoritfai@signed to
have a low average time complexity) to find theirmat solutions to
set the golden result against which the performarfitke proposed
heuristics is measured. All the proposed algorittoossider two
different costs paid by users: electricity energyicg and
inconvenience cost.

The system model, energy price function, and olerabt
function are presented in sectibrof the paper. Sectiondl and IV
present provably optimal and heuristic solutionstésk scheduling
problems subject to (a) TOU-dependent energy midimction
subject to a constraint on total power consumptiand (b)
scheduling with TOU and total energy consumptiompetheent
pricing function for electricity consumption, resgeely.
Experimental results are reported in sectignand paper is
concluded in sectioW/|.

Il. SysTEMMODEL, ENERGY PRICE AND COSTFUNCTIONS

In this paper, we consider task scheduling in hioalsks, buildings
and warehouses to minimize a composite cost fumcanprised of

an electricity pricepaid by the tenants for their electrical energy

usage plus armnconvenience cosncurred by the tenants if and
when their jobs are scheduled outside a prefem@dd window. In
the rest of the paper we use the tefamility to represent any
residential, commercial or industrial facilities ttvione or more
electricity-consuming tenants, occupants or workbrg aunified
electricity bill.

In this paper, we assume that there are a numkeasks$ in each
facility that should be executed daily. These tamtesidentified by
indexi. The set of task indexes is denoted®{1, ...,N}. For each
taskiOK, the earliest start timeg), the latest end timezk), and the

duration of task {;) are specified. At each step of the task

scheduling process, there are a set of assignkslKgsand a set of
unassigned task$, such thak,OK,=K andK,nK,=0. Tasks are
assumed to be non-interruptible i.e., they execufean the

scheduled start times;} until they are completed. Moreover, each

task consumes electricity according to a known posissipation
profile. This means that if the start time and dioraof taski are

denoted bys; andd;, respectively, then the power consumption of

taski will follow a known profile ofp;(t) ast ranges frons; to
s; + d;. Notice that functiom;(t) is a stationary function in the
sense that its value is independent of the schéduitet time of the
task. The value of the task power consumption fong;(t) for
times outside the execution time of the task i zer

Each task has a preferred start time. This sta,twhich lies
in the range §¢, el —d;], is denoted b)sl.” for taski. This
preference is captured by assigningramonvenience cogf; (s;)) to
each task which is scheduled in a time differemmfs?. The
inconvenience cost functidp(t) for taski is thus a function that
assumes zero value for a start time equai’tand non-negative
values for all other start times.

We assume that thelectricity price function(C(t)) is pre-
announced by the utility company just before tratsdf the day;
furthermore, the price function is not changedlyrassibly the next
day. If, however, the utility company is unable wmwilling to
provide the electricity price function for the entiday and, for
example, chooses to pre-announce the price funétionhe next
hour just prior to the beginning of the hour, thée users may
utilize a history-based price function predictidgagithm (which is

straight-forward to design but falls outside thepse of this paper)
to obtain an expected electricity price function foe whole day.
This is important for energy cost-aware scheduling small
facilities because there may not be enough tasksermugh
flexibility to achieve meaningful reductions in tasthe length of
thescheduling epocis too short. In large facilities with a multitude
of users/occupants generating many tasks, a fimanugarity
scheduling epoch (e.qg., in order of hours) willjbgt fine. Without
loss of generality, in the remainder of this papex,assume that the
length of the scheduling epoch is 24 hours.

We also assume that the electricity price at e@wé instance is
fixed and independent of the total amount of poe@rsumption in
the facility, i.e.,C(t) is only a function of time of the day and not
the total power consumption at that time. This teieity price
function is used in some of the previous works,,46) and[7].
Task scheduling based on this kind of electricitg model will
reduce the overall electrical bill by moving thdkaf the tasks to
time slots during the day where the electricitycpsi are low.
Unfortunately, however, this can create large peakspower
consumption during such low-cost time slots, whielm burden the
Power Grid supplying power to the facility. In thwrst case, all
facilities in a given utility service area, will lsedule their tasks to
run in the same set of low-cost timing slots, thgrecausing a
potential power delivery failure (blackout or brasut) on the Grid.
To contain this potential disastrous effect, thityicompany sets a
peak power consumption limit for each facility. $himit may vary
for different facilities and at different times tife day at the sole
discretion of the utility company. In the remaindéithis paper, we
shall useP? (t) to denote the upper bound on the peak instantaneou
power drawn by the target facility at tinleTOU-dependent (but
otherwise, fixed) electricity prices are assumesddationlll while a
price model with both TOU and total power consummpti
dependence is assumed in sectién

In this paper, we assumesktted timemodel, i.e., all system
cost parameters and constraints as well as schegddéicisions are
provided for discrete time intervals of constanngi. The
scheduling epoch is thus divided into a fixed nundfeequal-sized
time slots (a day is divided infb time slots, each of duratidp).
Tasks can be launched only at the beginning of afrthese time
slots and will be completed at the end of the slots

Ill.  POWER-CONSTRAINED LOAD SCHEDULING FOR TOU-

DEPENDENTENERGY PRICING FUNCTION

In this section we provide both the optimal solati@lbeit with
exponential worst-case complexity) and an efficidrguristic
solution for the problem of task scheduling with O@ependent
energy pricing function subject to a constraint wtal power
consumption. The objective function is to minimthe energy cost
plus the inconvenience cost as defined in sedtion

Let costisi denote the total cost of assigning tashk start ats.
Clearly,

cost;' = I;(s;) + NI C()py(t — 5:)D (1

t=s;

The first term in (1) is the inconvenience costtbé task
whereas the second term corresponds to the aggdeghctricity
cost of the task in the facility.

Problem 1: Power-Constrained, Minimum-Cost Scheduling
with Fixed Prices, or PMSF for shortr Minimize the total
electrical energy cost plus the inconvenience donsta facility
through task scheduling, i.e.,

Min ¥, cost; 2
s.t.

it —s) < PP(D), vt ®3)
sf<s;<el—d, Vi 4

Constraint (3) captures the peak power limit caistrin each
time slot while constraint (4) appropriately bourls start time for
each task.



Theorem 1: The PMSF problem is at least as hard as the
Generalized Assignment Problem (GAB).

Proof: If the duration of tasksd() is only one time slot and
constraint (4) is relaxed to only finding a singiene slot to
schedule the task, solution of the PMSF problem salve the
MINGAP with the following efficient transformationi) Cost of
assigning task to start time £;) is C(s;)D + I;(s;) and (ii) Power
capacities of different time slots are sePt{t).m

Theorem1 shows that the PMSF problem is an NP-Hard
problem. Multi-slot tasks can make this minimizatigroblem
harder because assignment of tasks to a starcimeause capacity
violation in more than one time slot and this cacgiks the proper
solution for this problem.

Note that because the MINGAP problem is reducilblethte
PMSF problem, determining whether an instance & BMSF
problem has a feasible solution is also an NP-cetegiroblem.

A. Branch and Bound —Based Scheduling Solution

To solve the PMSF problem optimally, a Branch andifigl (B&B)
algorithm based on both lower and upper boundingeafaining
costs is used as explained next. The proposed B&Brithm
recursively (and implicitly) enumerates all possildolutions. In
particular, at each decision (branching) point,aaktis picked
according to the adoptdmtanching strategysee description below)
and assigned to one of the least-cost available siot for the
selected task. This scheduling step must be repefde all
remaining (unscheduled) tasks in order to genesateomplete
solution. Now then, at each decision pointower boundon the
total cost (already accrued plus minimum remainiisggalculated
(see below for how this lower bound is calculatéaijthermore, an
upper boundon the total cost (already accrued plus actual
remaining) is calculated using a highly effectivahstic algorithm
(called rank-based scheduling, see below for argese.) If the
lower bound cost is greater than the cost of thst bemplete
solution found previously or if it is equal to thpper bound cost,
then the remaining scheduling steps are skipped thednext
available time slot assignment for the selecteld im&xplored. The
best found solution at the end of this process bellthe globally
optimum solution to the PMSF problem.

The proposed branching strategy is based on tlierefifce of
the best possible assignment (with respect to povlimit
constraints) and second best possible assignmetiedfasks. The
intuition is that the task that exhibits the lartgesst increase if it is
not assigned to its optimum time slot is given ltiighest priority so
that it is scheduled first when the power constrdias not yet
eliminated too many of the available time slots.

Branching Strategy
For each unassigned tag, do:
Calculatecosti‘i from (1) respecting constraints of PMSF
Calculater;, which is the difference between the two smattest;"
values wheref <t; <e! —d,
Branching is performed on tagskwhere
i = arg max{ A;} (5)
To calculate the cost lower bound at each decip@nt in the
B&B search tree, the solution of PMSF with relagatof constraint
(3) is used. Because of this relaxation, PMSF @efficiently and
optimally solved with the following greedy algonith Note that
here some tasks have already been assigned tcskitse i.e., we
start with known sets d&f, andK,.

Cost Lower Bound Algorithm
Initialize the lower bound cost 3¢, costf"
While K#z0 do
Pick a taskOK,
Calculatecostf‘ for each start timg respecting constraint (4)
Find the start time” that minimizegost; . The start time” is the best
possible slot assignment for task

SetK,= K, —{i} and K= K, ){i} and addcostisi* to the lower bound cost

In fact in order to find the best possible timet gl assign a
task, because we have made no assumptions abofdarthef the
electricity price function or the inconvenience ftcdsinction,
minimization of (2) subject to (4) is a constrainednlinear
(potentially non-convex) mathematical program, whis best
solved by full enumeration of all possible timetsgsignments for
taski. (as is done in the proposed greedy algorithm.)

Cost Upper Bound Algorithm (Rank-based Scheduling):
Initialize the Upper bound cost Xk, costf"
While K20 do
Apply theBranching Strategyo pick a taskOK,
Find the start tims that minimizegost; "
Schedule task ats” and setK,=K,~{i} and K.=K,0{i} and addcostfi
to the upper bound cost
Set Flag = TRUE if00j0K, , task j can be scheduled to start at some slot
s without violating (3) else FALSE
If (! Flag)
Set K=K—{i} and K.=K,O{i} and exclude start times~ from
possible start times of taskand subtractostf ¢ from the upper
bound cost

In Rank-based scheduling,task is scheduled only if it does not
prohibit other tasks from being scheduled at amytgtme. Even
with this policy, it is possible th&ank-based Schedulingaches a
point that some of the tasks are not schedulabtause of the
previous assignment. To overcome this problemyratéchedulable
tasks at the end of the first iteration of the sgd heuristic are
scheduled at their best possible time slots (wikhecking the
condition that their slot assignment does not fobhother tasks
from being scheduled) and then second iteratiothef proposed
heuristic is executed for all the remaining tadk#ile there is no
guarantee that this iterative approach will coneeagd produce a
complete scheduling solution, in practice and fbemamples tried,
the approach converges in one or at most threatites if a
feasible solution exists.

Computational  complexity  of  this  heuristic is
O(ATN?1og(TN)) where A denotes the number of iterations of the
heuristic to find a solution. It can be seen that¢omplexity can be
decreased by calculating the outcome of assigriskstto different
start times and updating them whenever needed.

B. Rank-based Scheduling Solution

Since the proposed exact B&B algorithm has an esptial worst
case time complexity, we have found that the afideRank-based
scheduling algorithm is highly effective and verficéent in
practice. In fact it can be used to solve the cetepkcheduling
problem by passing =K andK = to it.

IV. LoAD SCHEDULING FOR TOU- AND POWER-DEPENDENT ENERGY

PrICING FUNCTION

A. System Model

In sectionlll, task scheduling problem to minimize the to¢alergy
cost plus the inconvenience cost in the systemowmasidered when
there is an instantaneous power consumption uppendin the
facility. In this section, this upper bound consttaon the power
consumption is relaxed and another electricity gomiecodel (called
TOU-and power consumption dependent energy pricg) i
considered. Under this electricity price model, rggeprice at each
time slot is not a fixed value; instead it variesaafunction of the
total power consumption of the facility at that &nThis means that
the TOU-and power consumption dependent electrjmitye model
is a two-dimensional electricity price in which teeergy price for
the facility depends on the time of day and the wmh®f power
consumed at that time.

Problem 2: Minimum-Cost_Scheduling with Power-Dependent
Variable Prices, or MSPV for short) -Fhe cost minimization
problem is as follows:



Min D ZT; C (t,Zilpi(t - Si)) Zilpi(f —s)+ i Li(s) (6)

= i=1
subject to constraint (4). Note that, P) denotes the energy price
at timet and total power consumption Bfon that time.

The price function presented in the MSPV problerassumed
to be monotonically increasing. This characteristieans that a
facility cannot incur a lower energy price by comsog more
energy. It can be seen that MSPV is an integer imee
programming problem. In general there is no effitigolution for
this problem. Using nonlinear optimizers can hedpsblve the
problem for small set of unknowns but their run dims not
acceptable for large number of unknowns.

B. Branch and Bound —Based Scheduling Solution

To find the exact solution for the MSPV probleme thranch and
bound technique presented in sectlinis used by appropriately
revising it to adopt the energy price model. Morecfsely, at each
branching point, whenever an energy price is neéaledlculate the
best time slot for the selected task, the energefdunction value
on the power consumption of the previously assidasks is used.

Similar to the previous case, this exact algoritfinds the
optimal task scheduling policy at the cost of exguial worst-case
computational complexity. Moreover, the average jgotational
complexity of this exact solution is more than tlwhtthe exact
solution of the PMSF problem because the boundedrtique
(lower bound on the total cost) is less effectivieew the energy
price is not fixed given TOU and rather varies ldaea the total
power consumption at that time.

C. Force Directed Scheduling Solution

A heuristic inspired by Force-Directed Schedulif®§), which is
one of the significant scheduling techniques in hHeyel

synthesis[8], is applied to find a good solution with a low

computational complexity.

FDS is a technique used to schedule directed acgdk graphs
so as to minimize the resource usage under a lattstraint (or
with appropriate modification to the basic FDS aitdon, known as
FDLS, minimize the latency under resource constsgin The
algorithm consists of three steps: (i) determine tange of
available time slots for scheduling a task; (iie@e a distribution
graph, which captures the resource pressures dntieae slot, by
assuming that a task is equally likely to be schestito start in any
feasible time slot; (iii) A metric callefbrceis utilized to maximize
resource utilization. By repeatedly assigning tasksarious time
slots and calculating the force associated with dheice, several
force values will be available. We choose the asa@nt with the
lowest force value, which also balances the coecuy of tasks
(i.e., reduces resource pressure.)

In the context of our problem formulation, the gaal to
schedule all tasks so that their total energy cpkts the
inconvenience cost is minimized. Range of possitéet times for
each task is determiend directly in this problenerdbver, same as
FDS algorithm, distribution graph (also referred a® the initial
state) is created for this problem by assuming ghtatsk is equally
likely to be scheduled to start in any feasibledtistot.

There are two different forces in this system tptaee both
parts of the total cost: (i) energy cost force, &fjdinconvenience
cost force. To model the concurrency in the systeach time slot
(also referred to as control step in high leveltbgais) is modeled
by a spring. Similarly, the inconvenience cost isdeled with
rubber bands in the system. Forces in the rubbandm are not
related to the masses but it depends on the deplaat.

Spring and rubber band constants are determinegtlbas the
specified objective function and current schedulsajution. The
FDS scheduler tries to minimize the total forcethim system which
means minimizing the objective function of the pesb by
iteratively changing the scheduling solution.

The reader recalls that strain (force) in sprirsgniearly related
to the stress (displacement) applied to the sppiegwell-known
Hooke’s Law. The initial value of the spring comstéa determined
from the corresponding distribution graph calcudaite step (ii). In
this approach, tasks are modeled as masses iny#tens The
displacement of a spring corresponding to timeisi®given by the
change in the probability of assigning some taskhai time slot
(i.e., due to tentatively scheduling that taskame available slot.)
In other words, as expected, moving masses toreiffdocations
produces different forces in the system. Moreovehber band
constants are fixed and equal to the inconvenienseof each task
in each time slot. Assigning a task to a start tipreduces a
displacement of one for a rubber band with rubbmmdbconstant
equal to the inconvenience cost of that task ohsttaat time. Figure
1 shows an example FDS-based scheduling setugsipribblem.
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Figure 1. An example of modelincthe MSPV problem asforce-directed
scheduling.

K.« andR denote the springs and rubber bands constantein t
model. In this figure, tasks 1, 2 and 3 have tvweé¢ and two
possible start times, respectively. It can be skahthe initial state
is generated by probabilistically placing each taskvery possible
start time. For instance, task 1, which has tweibbs start times, is
assigned to these two start times and its poweswoption value is
multiplied by % for each assignment. Summationhef weights in
each time slot is used to calculate the springisstamt associated
with each time slot. This spring constant is seth® value of the
energy price function on that time and summationthef power
probability of the tasks on that time. Moreover,titis system, a
rubber band is associated with each version of e¢ask. These
rubber bands are added to model the inconvenierst of
scheduling each task to start at a time slot othan its preferred
start time. Rubber band’s constant for each versfdasks is equal
to the inconvenience cost of assigning the tasthanstart time and
initial displacement of each rubber band is eqaaht probability
of assigning each task to each start time. Assggrirtask to its
preferred start time does not have an inconveni@ost and no
rubber band is associated for this case.

We want to move from the initial state (distributigraph) to
the final state. In the final state, each taskxac#dy scheduled to
start on a known start time. We want this finatesta have the least
total force in the system because the total forcehie system
represents the total energy cost of the facilitnemin one day. So
we need to change the initial state to a statehiclweach task has a
certain start time and the total force in the sysie minimized.

Force of a move in this system is defined as tHterénce
between the total force in the system after theerawd before the
move. For example, scheduling a task in time slotoves the full
weight of the task to this time slot while simukausly eliminating
all the weight contribution of the task put to atiséart times. Thus,
the self force for this move is defined as:



F’i= (

L

D (K + Ii(s) ) —

Ze} Ze} (Dpi(T—D)K;_¢) +Ze}—di ()
t=sP \“r=s? el-a;-s? t=s? \e}-a;-s?

whereK; is the spring’s constant associated with time &ldEhe
first term in (7) is the total forces in the systdoe to assigning task
i to start times; while the second term is the summation of the
forces in the system by probabilistically assigniagki to all
possible start times. Note that every possiblessigament of tasks
creates a force that can be calculated based ofrd7)example, if
the selected move is assigning tasto two possible start times
uniformly (still not the final state for this taskthe force can be
calculated by (8).

1 1
Fitl'tz = ;Fitl + ;Fitz (8)

To move from the initial state to the final state,gradual
movement is considered: (i) a move from the inisi@te to a state
where each task is assigned to at most two stadsti and (ii) a
move from this state to the final state.

For each movement, the move associated with awébkthe
least force is selected and done and then othies tag considered.
To improve the time complexity of the algorithm, lprforces
affected by the previous move are updated. Figush@ws the
pseudo code for this task scheduling algorithm.

(@)

Algorithm Force Directed Task Schedul ()
/I Schedule tasks to minimize the total cost dfiiac
Create the distribution graph assuming that aitaskually likely to be
scheduled to start in any feasible time slot.
Initialize forces for each version of the taskg By
Initialize forces for each pair of 2 versions oé tiasks by (8).
K=0 and K=K;
Add tasks with only one possible start time toalkid delete from
While (K#0) {
i" = arg min §;**); (similarly find & and § for i")
Remove all versions of task K,=K,0{i"} and K=K{i'};
Add 2 versions of task with weight of ¥ for each tq &ind §;
Update springs’ constants;
FOR (i Ky){
If (task i has been affected by changing springssizonis]
Update forces for each version of task i;
Update forces for each pair of 2 versions of tagk i
Initialize forces for each version of the taskg By
K=0 and K=K;
While (K#0) {
i’ = arg min §); (similarly find s;- for i")
Remove all versions of task i
Schedule taskat time slots;-, K,=K,0{i"} and K=K{i'};
Update the springs’ constants;
FOR (i00 Ku){
If (task i has been affected by changing springssizonis)
Update the forces for each version of task i;}}
Calculate the total Co:

Figure 2. Pseudo code for Force directed task schedulir
V.  SIMULATION RESULTS

To demonstrate the effectiveness of the proposgatitims, cases
corresponding to the two aforesaid pricing modetsexamined. In
these simulations, duration of a time slot is sebrie hour. For this
reason, the minimum duration of a task is alsaene hour, and
the durations of tasks are integer multiples of boer. Moreover,
power consumption of the tasks is determined wititaaularity of
one hour.

For the first energy pricing model (TOU-dependenergy
pricing function subject to a constraint on totalyer consumption),
we randomly set the energy price for each houhefday according
to a uniform distribution with a mean value of 1®®h and a
range of 10 to 20¢/KWh. We generate a task workithad would
violate this power limit if each task were simplgheduled at its
best possible time slot. As stated in section his tmakes the
problem hard.

For all of the B&B simulation results, if the timequired to
find the final solution is more than 3 hours, th&Balgorithm is
halted and no result is reported.

Tasks in the facility are generated arbitrarily hwiaverage
duration of 4 hours. Power consumptions of tasles determined
based on power consumption data about real applanc
Inconvenience costs are set arbitrarily to capttire cost of
scheduling tasks to non-preferred time slots. Theerame
inconvenience cost for one time slot deviation frime preferred
time is set to 2.5¢. The number of possible starés of the tasks is
set arbitrarily using a normal probability distritmn function with
mean of 4 hours and variance of 3 hours.

12

mm Average performance of rank-based heurisitc
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Figure 3. Performance ard time complexity of the rank-based heuristic
with different number of tasks.

We define the performance index of solution A wiglspect to
solution B as the ratio of the cost of A to thetooksB. Typically
solution B is the minimum cost solution obtained the B&B
method. Therefore smaller indices approaching umitg more
favorable to A.

Figure 3 shows the worst case and average perfaeriadices
of the proposed rank-based algorithm (for over D068ses) with
respect to the optimal B&B solution. Moreover, theerage time
complexity of the algorithm is reported in thisudig.

It can be seen that the worst-case performancexinfehe
rank-based scheduling is improved as the numbeéotaf tasks in
the facility grows. Moreover, the average perforoeimdex of the
rank-based scheduling is no worse that 1.02 focadks. Note also
that the rank-based scheduling was always abléntbd feasible
solution if one exists (i.e., if the B&B method cimd it.)

We next report results for the second pricing m¢Beler- and
TOU-dependent energy pricing function.) To showeffectiveness
of the force-directed task scheduling in this casstep-wise pricing
function is considered. For each time slot, valolethe step prices
are determined arbitrarily increasing.

TABLE |. PERFORMANCE AND TIME COMPLEXITY OF THE FORCIIRECTED
HEURISTIC AND GREEDY SOLUTION WITH DIFFERENT NUMBERF TASKS

Average Average Worst-case Time
# of performance performance performance | complexity
tasks of the FDS of greedy of the FDS of the
Alg. solution Alg. heuristic(s)
5 1.00% 1.27: 1.04¢ 0.07¢
1C 1.01% 1.39¢ 1.04¢ 0.10¢
15 1.01Z 1.491] 1.02¢ 0.13¢
2C 1.00¢ 1.32: 1.017 0.15¢
B&B not B&B not
30 finishec 1.182 finishec 0.182
40 - 1.17¢ -- 0.22%
5C -- 1.15¢ -- 0.30(

Table | shows the worst-case and average perforenauaices
of the force-directed scheduling heuristic withpmst to the B&B
solution. We also implemented a greedy solutiontiiis problem.
In this greedy solution, tasks are picked in ariteaty manner and
scheduled to start at the best possible time slsed on the TOU-
dependent component of the energy pricing funcéiod the total

Y In case of not finding a solution from B&B methqakrformance
of the greedy method is calculated with respecthi® force-
directed heuristic solution



power consumption of all previously scheduled tasisose
execution time overlaps with the time slot in gigst The table
also reports the average performance index ofgteedy solution
compared to the best solution found. Moreover, gherage time
complexities of the FDS based algorithm is repoiteithe table.

It can be seen that the performance index of theefdirected
scheduling algorithm compared to the B&B solutisrimproved as
the number of tasks grows. Interestingly, this nseidwat the force-
directed scheduling does better as the number leddsded tasks
that overlap each other increases. Moreover, it lmarseen that
performance index of the greedy solution gets wtiraa that of the
force-directed heuristic solution (by more thametér of 1.15.)

As can be seen in Figure 3 and Table | performamtiees of
the proposed heuristics are close to the optimatisa while their
time complexities are significantly lower and certa acceptable
even for online decision making in response to gkanin the
dynamic energy prices on an hourly or even sharter basis.

To capture the effect of the proposed pricing medahd
algorithms in shaping the energy consumption atfaéiedities, we
consider a scenario with 10 facilities. Each fagilias 100 tasks to
schedule and the preferred start times, inconvenienst functions,
duration of tasks, and possible start times foheask have been
specified.

—A—TOU-dependent pricing scenario w/o power limit

10 —— TOU-dependent pricing scenario w power limit

—b—Energy Consumption Limit

—%—TOU and pow er dependent pricing scenario (linear func.)
TOU and pow er dependent pricing scenario (2nd order func.)
T T T T T T
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Energy C
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Figure 4. (a) Combined energy consumption of 10 houses in tBfent

scenarios, (b) Energy price for fixed energy pricecenarios.

For this scenario, three different energy pricingdels are
examined: First, TOU-dependent energy prices witlemy power
limit (specified at the hourly granularity); SeconidOU-dependent
energy prices with a fixed power limit for all heuof the day; and
Third, both TOU and total power consumption depemndmergy
prices.

For the first energy pricing model, a real hourticing scheme
from [10] is used. This pricing function is shown in &ig 4-b. For
the second pricing model, the power consumptiorit lfior each
facility is set to 1.5KW. To produce a TOU and topower
consumption dependent energy price, two differemictions are
used. In the first case, a linear pricing functisrused. This linear
function is assumed to cross two fixed points. Tirgt point is at
zero power consumption and price is equal to z&®e second
point’s power consumption is 750W and price fosthoint is the
energy price specified for that hour by the TOUateent energy
price. In the second case, a second order eneigg fumction is
used. Also in this case, energy price functiorssuaed to cross the
previous fixed points.

Figure 4 shows the combined energy consumptionhebet
facilities under different pricing models and thergy price that we
used for this simulation.

To compare different solutions, we define a figafanerit to
measure the uniformity of energy consumption ouveret The
flatness is defined as:

Fm = ET/¥{_4|E, — E| ©)

whereE; andE denote the energy consumption in timand the
average energy consumption in a day, respectitelsger flatness
value means the energy consumption profile is cléseconstant
energy consumption. Table Il shows flatness valke, for
different solutions.

TABLE Il. FLATNESS VALUES FOR DIFFERENT SCENARIQS

Scenarios Flatness valueFm)
TOU-dependent scena without power limi 2.097%
TOU-dependent scenario with power li 4.218¢
TOU and power dependescenario (1sr orde 3.485%
TOU and power dependent scenario (2nd o 6.639¢

It can be seen that adding power limit increasdlttpress value
with respect to the base scenario. Moreover, irstngathe order of
the energy-price function in TOU and total powensamption
dependent pricing function increases the flathnedsevbecause by
increasing the order of pricing function, facilgi&ry to avoid using
a large amount of energy in each time slot evénefbase price for
that time is cheap. Also it is important to notattive can change
the flatness value (reduce the peak in energy ecopsan) or shape
the electricity demand by changing the energy-gduoetion form.

VI. CONCLUSION

Two algorithms were presented to schedule tasKaciltities based
on various dynamic pricing models for the electyiciThe paper
described optimal (based on branch and bound #iges) and
heuristic solutions for TOU-dependent energy pgcimith fixed

power limit and TOU and power consumption dependardrgy
pricing. Simulation results depicted the near-optiperformance of
the proposed heuristic algorithms. Furthermoreltesiemonstrated
the ability of the proposed policies for reshapittee energy
consumption profile of the consumers.
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