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Abstract - With the increasing levels of variability in the 
behavior of manufactured nano-scale devices and dramatic 
changes in the power density on a chip, timely identification of 
hot spots on a chip has become a challenging task. This paper 
addresses the questions of how and when to identify and issue a 
hot spot alert. There are important questions since 
temperature reports by thermal sensors may be erroneous, 
noisy, or arrive too late to enable effective application of 
thermal management mechanisms to avoid chip failure. This 
paper thus presents a stochastic technique for identifying and 
reporting local hot spots under probabilistic conditions induced 
by uncertainty in the chip junction temperature and the system 
power state. More specifically, it introduces a stochastic 
framework for estimating the chip temperature and the power 
state of the system based on a combination of Kalman Filtering 
(KF) and Markovian Decision Process (MDP) model. 
Experimental results demonstrate the effectiveness of the 
framework and show that the proposed technique alerts about 
thermal threats accurately and in a timely fashion in spite of 
noisy or sometimes erroneous readings by the temperature 
sensor1. 

I. Introduction 
With IC process geometries shrinking below 65nm technology 
and many applications requiring higher performance, thermal 
control is becoming a first-order concern for not only IC 
designers but also package, board, and system designers due to 
the increased power density as well as the increasing 
vulnerability of the system. For example, the gate oxide lifetime 
is highly dependent on the junction temperature of the IC, 
where elevated temperature is a major contributor to lower IC 
reliability. If heat is not removed at a rate equal to or greater 
than its rate of generation, the junction temperature will rise [1], 
which reduces the mean time to failure (MTTF) for the devices. 
Furthermore, local hot spots, which have much higher 
temperatures compared to the average die temperature, are 
becoming more prevalent in VLSI circuits. Thus, identifying 
and removing heat from these hot spots is a major task facing 
design engineers concerned with higher circuit reliability. 

As reported in [2]-[7], the problem of thermal modeling and 
management has received a lot of attention. The work presented 
in [2] relies on a compact thermal model to achieve a 
temperature-aware design methodology. A thermal control 
mechanism used to cool the microprocessor’s temperature has 
been derived in [3]. Predictive thermal management [4], which 
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exploits certain properties of multimedia applications, is an 
example of online strategies for thermal management. In [5][6], 
design guidelines for power and thermal management for high-
performance microprocessors are provided. A summary of 
research that combines thermal management techniques and 
pitfalls is provided in [1][7]. 

Much of the past work has examined techniques for thermal 
modeling and management, but these techniques may be 
ineffective if the accuracy of identifying local hot spots in 
question. This is because thermal models, based on equivalent 
circuit models, cannot adequately capture structures with 
complex shapes and boundary conditions, which in turn gives 
rise to uncertainty in identifying local hot spots. In particular, it 
is extremely difficult to obtain exact solution of the heat 
transfer equations that arise from realistic die conditions [8]. 
Furthermore, temperature sensors have difficulty measuring the 
actual peak power dissipation and the resulting peak 
temperature, which renders stochastic the problem of 
identifying local hot spots. To the best of our knowledge, no 
research work has been conducted on estimation of the local hot 
spots on a die which rigorously account for the uncertainty in 
temperature sensing. 

In this paper, we present a stochastic hot spot estimation 
technique, which alerts against thermal problems. Uncertainties 
in the temperature measurements and power state identification 
are modeled by using stochastic processes. Our proposed 
framework is based on the Kalman filter (KF) algorithm and the 
Markovian decision process (MDP) model, which enable the 
framework to predict thermal behavior and power state of the 
system under variable, and uncertain, environmental conditions. 
Note that KF provides an estimation technique of the most 
probable state of a continuous-state system [10] while MDP is a 
theory of modeling sequential decision problem in a discrete-
state system [9]. The key rationale for utilizing MDP and KF 
for hot spot estimation is to manage uncertainty, combining 
continuous thermal state and discrete power state estimations, 
respectively. 

The remainder of this paper is organized as follows. Section 
II provides some preliminaries of the paper, while section III 
describes the details of uncertainty-aware estimation framework. 
Section IV presents a hot spot alerting algorithm. Experimental 
results and conclusions are given in section V and section VI. 

II. Preliminaries 
An integrated circuit (device) is typically allowed to operate 
when the ambient air temperature, TA, surrounding the device 
package, is within the range of 0 °C to 70 °C [11]. The package 
can be characterized thermally by a thermal resistance. The 



 

value of thermal resistance determines the temperature rise of 
the junction above a reference point by θJX = (TJ – TX) / P, 
where θJX is the thermal resistance from the device junction to 
the specific environment (°C/W), TJ is the device junction 
temperature (°C), TX is the reference temperature for a specified 
environment (°C), and P is the device power dissipation (W). If 
the reference temperature is denoted as TA (i.e., the temperature 
of ambient), TB (i.e., the temperature of PCB board), or TC (i.e., 
the temperature of the case top), then the thermal resistances for 
junction-to-air, θJA, junction-to-board, θJB, and junction-to-case, 
θJC, may be calculated as 

, ,θ θ θ
− − −

= = =J A J B J C
JA JB JC

T T T T T T
P P P

 (1) 

Note that the thermal resistance is highly dependent on the 
environment surrounding the package. As illustrated in Figure 1, 
heat is dissipated from the die into the ambient primarily 
through either the package encase bottom surface or its top 
surface, where PBGA (Plastic Ball Grid Array) plus HS (Heat 
Spreader) package is used. The arrows in this figure indicate the 
direction of heat flow. The two heat dissipation paths are 
graphically plotted in Figure 2, where the package is thermally 
represented with a two-resistance model, one corresponding to 
the heat transfer resistance from the device junction to the 
package bottom surface, θJB, and the other corresponding to the 
heat transfer resistance from the device junction to the package 
top surface, θJC. The thermal resistances, external to the 
package, include θBS, θBA, and θCA, which are determined by the 
thermal design of the target system. For example, if there are no 
heat sinks attached to the package in the system, the surface-to-
air thermal resistance, θBA and θCA, can be estimated from  

1
θ θ= =BA CA

s sh A
 (2) 

where hs and As denote the heat transfer coeffcient and exposed 
surface area of the package, respectively [12]. Note that θBS is 
the PCB board spreading thermal resistance, influenced by 
component population on board.  
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Figure 1. Heat flow in the Plastic Ball Grid Array plus Heat 
Spreader package. 
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Figure 2. One of the IC package heat transfer paths and the 
corresponding thermal resistive model.2 
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Then, the junction temperature can be estimated with 
θ= + ⋅ JAJ AT T P  (4) 

where the goal of thermal design of the package is to maintain 
the device θJA value small enough so that the junction 
temperature TJ does not exceed a maximum specified value 
during operation. It is worthwhile to note that θJA cannot be 
modeled directly due to the complexity of thermal models for 
the package, cooling system, and board stack-up. In addition, 
θJA is assumed to be a single parameter under the assumption 
that device power dissipation, P, is distributed uniformly across 
the die, which is not a realistic assumption. In practice, the 
package case top temperature, TT, is utilized along with 
temperature measurements to estimate TJ. 

Temperature reading can be performed by either external or 
internal thermal sensors. External thermal sensors, e.g., 
thermocouples, incur a rather large time delay in reading the 
temperature and tend to produce less accurate temperature 
measurements of TJ [1]. Internal thermal sensors, e.g., 
analog/digital CMOS sensors [13], which can be deployed in 
large numbers across a chip, have been widely used in pursuit 
of higher accuracy in measuring TJ. However there still remain 
inaccuracies associated with the internal sensors. For example, 
current biased temperature sensors are sensitive to noise on 
power and ground lines, and thus the sensor output for low 
temperature reading is affected by process variations [14], etc.  

III. Estimation under Uncertainty 
In this section, we present the theory of how to predict 
temperature under uncertainty (variability, noise, or error) in 
temperature reports. 
A. Background on POMDP and Kalman filter 
A Partially Observable Markov Decision Process (POMDP) [9] 
is a special Markov Decision Process (MDP), where the state is 
only partially observable. A POMPD, a way to model 
uncertainty in perceptions/observations made by a real system, 
is represented by a tuple (S, A, O, T, Z) where the state space S 
comprises of a finite set of states, the action space A consists of 
a finite set of actions, while the observation space O contains a 
finite set of observations. T is a state transition function, and Z 
is an observation function. The state transition function 
determines the probability of a transition from a state s to 
another state s’ after executing an action a, i.e., T(s’, a, s) = 
Prob(st+1 = s’ | at = a, st = s). 3 The observation function, which 
captures the relationship between the actual state and the 
observation, is defined as the probability of making observation 
o’ after taking an action a that would land the system in state s’, 
i.e., Z(o’, a, s’) = Prob(ot+1 = o’ | at = a, st+1 = s’). Since our 
goal in the problem setup is to find the best estimate of the 
current state, some elements of the POMDP model (i.e., reward 
function and policies) are not applicable to this paper.  

Instead of making decisions based on the current perceived 
state of the system, the POMDP maintains a belief, i.e., a 
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probability distribution over the possible (nominal) states of the 
system, and makes decisions based on its current belief. The belief 
state at time t is a |S|×1 vector of probabilities defined as: bt := 
[bt(s)], ∀s∈S, where bt(s) is the posterior probability distribution of 
state s at time t. These probabilities are calculated as a function of 
the observed history. Note that Σs∈S bt(s) = 1. 

The Kalman filter (KF) [10] is designed to estimate the state 
of a discrete-time controlled process that is governed by the 
linear stochastic difference equation (e.g., Eqn. 6(a)) based on 
the previous state, previous action, and the current observation. 
Briefly, the KF operates by first predicting the state of the 
process using the state update equations, then correcting the 
prediction using an observation, where error covariances of the 
state and the observation are used to balance the prediction 
models. In dynamic environments, the KF dynamics results 
from the consecutive cycles of prediction and filtering, where in 
turn the KF finds the optimal estimate of the process state by 
minimizing the expected least-square error. The details of the 
POMDP models and KF algorithms are omitted here to save 
space. Interested readers may refer to [9][10]. 
B. Rationale for Developing Uncertainty Management  
As illustrated in section 2, the junction temperature, TJ, is not 
estimated easily with Eqn. (4) due to the complexity of 
modeling θJA. To overcome this difficulty, we use an 
observation, i.e., temperature reading TT of the package top 
obtained by a thermal sensor, to estimate TJ as follows: 

JTJ TT T Pψ= +  (5) 
where ψJT is the junction-to-top of package thermal 
characterization parameter used as a measure of the temperature 
difference between junction and package top surface, and is 
estimated from JEDEC thermal tests [11]. There is, however, 
uncertainty in TT due to various noise sources. We overcome 
this problem by modeling TT readings as a stochastic process. 

Power dissipation of logic devices in the substrate is the 
major source of heat generation. Leakage power dissipation has 
become an important contributor to the total power dissipation 
of a VLSI design. Furthermore, process, voltage and 
temperature (PVT) variations result in statistical changes in the 
spatial distribution of power dissipation across the die, i.e., the 
power density and the resulting temperature profile will have 
different values from one part of the chip to another part and 
from one time instance to next on the same location in the chip. 
As a result, power dissipation, which is affected by PVT 
variation as well as time and space dependent gate-level 
switching activities in the circuit, cannot be easily characterized 
by the design itself.  

The key contribution of the proposed framework is to 
recognize the uncertainty in estimating the power state of the 
system and the resulting junction temperature of the IC, and to 
qualitatively manage this uncertainty by providing timely alerts 
about the local hot spots. 
C. Temperature Estimation Framework 
It is useful to describe how the KF can be adapted to our 
proposed framework, where our goal is to estimate the junction 
temperature of a device.  
Definition 1: Kalman Filter-based Temperature Estimation 
(KFTE) framework. The KFTE is tuple (s, a, o, X, Y, Z) where 
- s is a state representing the junction temperature, TJ, 
- a is a voltage and frequency assignment (VFA) action, 
- o is a temperature observation, TT, 

- X denotes a state transition matrix,  
- Y denotes an action-input matrix, and 
- Z denotes an observation matrix. 
We assume that a power manager (e.g., the operating system) 
commands an appropriate action a, which changes the 
operational mode (i.e., power state) of the design, and hence, 
will result in a change in its TJ value (i.e., a change in state s). 
In our proposed framework, we estimate the next value of TJ 
(state s’) by employing a prediction technique based on the KF 
algorithm, while analyzing (possibly noisy) TT values. The state 
and observation calculations are performed by using the 
following linear matrix equations: 

1 , ~ (0, )t t t t t ts s a u u N Q+ = + +YX  (6a) 
1 1 1 1, ~ (0, )t t t t t to s v v N R+ + + += +Z  (6b) 

where t denotes a time step, ut is a temperature state noise 
which is normally distributed with zero mean and variance Qt, 
vt+1 is a temperature observation noise normally distributed with 
zero mean and variance Rt. The state transition matrix X 
includes the probabilities of transitioning from state st to 
another state st+1 when action at is taken, the action-input matrix 
Y relates the action input to the state, whereas the observation 
matrix Z, which maps the true state space into the observed 
space, contains the probabilities of making observation ot+1 
when action at is taken, leading the system to enter state st+1. In 
practice X, Y and Z might change with each time step or 
measurement, but here we assume they are constant. 
Furthermore, we assume that the initial state, and the noise 
vectors at each step {s0, u1, ..., ut, v1, ..., vt} are mutually 
independent. 

KFTE tries to obtain an estimate of the junction temperature 
from the TT data. The estimation procedure for the temperature 
state consists of prediction and update phases as is explained in 
section 4. 
D. Power Profile Estimation Framework 
We assume that the target system has k power states denoted by 
pwr1, …, pwrk, where pwr1 < …< pwrk in terms of power 
dissipation values in the respective states. In the context of 
system modeling under uncertainty, a belief state b is the 
posterior distribution of the underlying power state given 
observations and actions. Thus, we use POMDP to formulate a 
power estimation framework as described below. 
Definition 2: POMDP-based Power Profile Estimation (P3E) 
framework. The P3E is a tuple (b, a, o, T, Z) such that 
- b is a belief state about power dissipation level of the 

system, 
- a is an action input, e.g., VFA, 
- o is an observation, e.g., temperature value TT, 
- T is a state transition function, and 
- Z is an observation function  

A belief state, bt+1, after action at and observation ot+1, may 
be calculated from the previous belief state bt as follows: 

1

, '

1 1 1

1

( , , ) ( , , )

( , , ') ( ', , )

t

pwrt
t

pwr pwr

t t t t t

t t

Z o a pwr b T pwr a pwr
b

Z o a pwr b T pwr a pwr
+

+ + +

+=
∑

∑
 (7) 

Note that the ranges of temperature measurement by a thermal 
sensor are defined by the temperature thresholds from ACPI 
(Advanced Configuration and Power Interface) specification. 

The estimation of power state of the system is performed by 



 

obtaining the maximum a posterior (MAP) estimate based on 
the Bayesian approach, which provides a way to include the 
prior knowledge concerning the quantities to be estimated, as 
will be explained in section 4.  

Figure 3 illustrates the proposed uncertainty-aware 
estimation framework, where the estimators are based on the 
KF algorithm for the junction temperature of the device and 
based on the POMDP for the power state of the system. Assume 
that the operating system, based on performance requirements, 
can choose an action from a finite set of action A = {a1, …an}, 
where a1 < …< an in terms of voltage and frequency values. 
These actions are taken at periodic time instances (synchronous) 
or interrupt-based event occurrences (asynchronous), which are 
called decision epochs.  
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Figure 3. Uncertainty-aware estimation framework. 

IV. Hot Spot Alerting Algorithm 
In this section, we first explain the method for estimating the 
junction temperature of the chip as well as the power state of 
the system in an uncertain environment (cf. Figure 4). 
We point out that the Kalman filter is a recursive estimator, 
which means that only the estimated state from the previous 
time step and the current measurement are needed to generate 
the estimate for the current state. The Kalman filter has two 
distinct phases: Predict and Update. The predict phase uses the 
state estimate from the previous time step to produce an (a 
priori) estimate of the state at the current time step. In the 
update phase, measurement information at the current time step 
is used to refine this prediction to arrive at a new, (hopefully) 
more accurate (a posteriori) state estimate, again for the current 
time step. 
A. Estimation of junction temperature of the chip 
In KFTE, the framework performs the temperature estimation 
based on the KF as follows.  

a) Initialize: The algorithm initializes the first state ts to s0, 
and the error covariance matrix which is a measure of the 
estimated accuracy of the state prediction tE to a diagonal 
matrix where the diagonal elements are set to some fixed 
value, signifying that the initial system state is uncertain. 

b) Predict: The algorithm computes the predicted (a priori) 
state 1ts +

−  and the predicted (a priori) error covariance 

matrix 1tE +

−
. 

c) Update: The algorithm first computes the optimal Kalman 
gain Kt+1 and uses it to produce an updated (a posteriori) 
state estimate, st+1 , as a linear combination of 1ts +

− and the 
Kalman gain-weighted residue between an actual 

observation ot+1 and the predicted observation 1ts +
−Z . The 

algorithm also updates the error covariance matrix. 
Please refer to [10] for details of prediction and correction 
stages. 
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Figure 4. The flow of the proposed estimation technique. 

B. Estimation of power state of the system 
We consider only the task of estimating the system power state, 
not controlling it, where the system generates temperature 
observation o ∈ O given an action a. Let history, h, denote a 
stream of action-observation pairs which characterize the 
system behavior as h0:t := (a0, o1, a1, o2, …, at−1, ot). Then, 
according to the Bayesian formula, the probability density 
function of belief state b given h can be written as 

( | ) ( )
( | )

( )

⋅
=

t t
t

t
t

t

Prob Prob
Prob

Prob

h b b
b h

h
 (8) 

where Prob(bt | h) is called the posterior probability density 
function (PPDF), Prob(ht | bt+1) is the likelihood function, 
Prob(ht) is the prior distribution, and Prob(bt) is precisely the 
probability of belief state which can be obtained from Eqn. (7). 
Once the PPDF is known, the most probable power state can be 
computed as follows 

arg max ( | )

arg max ( | ) ( )

t

MAP
b

t t

b

t

t

b Prob b h

Prob h b Prob b

=

= ⋅  (9)
 

Note that as a normalizing constant, the knowledge of Prob(ht) 
is not needed because we are not interested in making any 
decisions. Since we assume that action a is issued to the system 
at each decision epoch, we may consider that the current power 
state of the system is only affected by the previous action and 
observation, which results in 

1arg max ( , | ) ( )t t

MAP
b

t tb Prob a o b Prob b−= ⋅  (10) 



 

where we use a table-lookup method for obtaining Prob(at-1, ot | 
bt) efficiently. Note that even though we the know the given 
action at-1 with certainty, the observation ot is only known 
probabilistically. Let pwrMAP denote the power-state which has 
the maximum probability in the belief state, bMAP, obtained from 
Eqn. (10). 

C. Hot spot alerting algorithm  
In predicting hot spots, we combine estimation for the junction 
temperature of the chip (by using KF) with estimation for power 
dissipation of the system (by using POMDP). 

We assume the presence of a thermal sensor which produces 
a stream of continuous-valued temperature readings that are 
noisy. The thermal time constant of the sensor, i.e., the time it 
takes for the thermal sensor to produce a reading of temperature 
in the sensing region, is much larger than the circuit clock 
period [16]. This fact in turn implies that recognizing a 
temperature rise by using a thermal sensor may render the 
thermal control mechanism useless due to its slow response. 
Therefore, we propose a hot spot alerting algorithm based on 
the predictions of the junction temperature of the device and the 
power state of the system.  

 1:  do forever
2:            predict the junction temperature, Tj

t+1

3:            predict the power state of the processor, pwrt+1

4:                    if Tj
t+1 ≥ Ta.H

5:                            alert red hot spot 
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7:                            if pwrt+1 ≥ Pa
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13:                                   alert yellow hot spot 
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Figure 5. The proposed hot spot alerting algorithm. 

Figure 5 shows the proposed hot spot alerting algorithm. 
We define red and yellow hot spot levels in terms of the degree 
of thermal threat. Note that Ta.H and Ta.L are pre-defined 
temperature threshold values (Ta.L < Ta.H), Pa is the power 
threshold value, and Gj,a is the temperature gradient threshold 
value. All these parameters are set by system or package 
developers.  

V. Experimental Results 
The proposed technique is applied to a MIPS-compatible RISC 
processor with a 5-stage pipeline, instruction / data caches, and 
internal SRAM for code/data storage. To precisely evaluate the 
characteristics of the processor, we relied on the detailed 
Verilog RT-level description of the processor synthesized with 
a TSMC 65nm cell library. The power dissipation numbers 
were obtained through functional simulations with exact 
switching activity information.  

We do not have a packaged IC equipped with a thermal 
sensor to report TT. Hence, we estimate TT by combining Eqn. 
(4) and (5), resulting in ( )T A JA JTT T P θ ψ= + ⋅ − .Assuming that 

TA = 70°C and using package thermal performance data of 
Table 3 for θJA and ψJT. Note that device power P in the above 
equation is assumed to be a normally distributed random 

variable with a mean value of  Psim and a standard deviation of 
ΔP. Now, Psim is the simulated power number while ΔP is the 
standard deviation of power values, which is calculated by 
running different tasks on the processor at different process 
corners (e.g., fast, typical, and slow) available with the TSMC 
65nm library. We thus generate different TT values by running 
various benchmark programs, regularly monitoring and 
recording Psim values, but subsequently using a power value P 
which follows a normal distribution, ( )( )2,simN P PΔ . 

We first analyzed the power consumption inside the 
processor by executing SPECint2000 benchmarks [17] as 
reported in Table 1 (without accounting for memory power). 
This table indicates that non-uniform power density exists 
across the processor, which impacts local hot spot on a die. 

Table 1   Percentage of power consumption in different modules of 
a MIPS-like processor 
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Table 2   Definition of power and temperature states of the 
processor 

 

range

power [W] state observation [°C] state

[0.6  1.4] (2.2  3.0] (1.4  2.2] 

pow1 pow2 pow3 o3o2o1

[86  93] (100  107] (93  100] range

power [W] state observation [°C] state

[0.6  1.4] (2.2  3.0] (1.4  2.2] 

pow1 pow2 pow3 o3o2o1

[86  93] (100  107] (93  100] 
 

Next we set the power (W) and temperature (°C) ranges 
corresponding to three power states and three temperature states 
(see Table 2). These values were obtained during the active 
state of the processor (recall that thermal control occurs mostly 
during active state) with the extracted thermal data [18] for 
(31mm x 31mm) PBGA as summarized in Table 3. 

Table 3  PBGA package thermal performance data (TA = 70 °C) 
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Figure 6. Trace of estimation for the junction temperature. 



 

Figure 6 shows the trace of junction temperature estimation, 
where we randomly chose a sequence of 50 programs of 
SPECint2000, which include gcc, gap, and gzip. For example, 
one such sequence of programs may be gap1-gcc2-gcc3-…-
gzip49-gap50, where programi is the ith program in the sequence, 
which is executed on the processor. In this simulation setup, for 
simplicity but without loss of generality, we set that the values 
of Qt and Rt to 1. The time steps are abstractly defined. Note 
that the temperature trace of calculation in the figure is based on 
above-mentioned method (i.e., by using the estimate of TT).  

Considering the estimation of power state, Figure 7 shows 
the trace of belief state for power states, pow1, pow2, and pow3, 
as estimated by the proposed POMDP-based technique. Here 
belief state (pow1) denotes the probability we are in the pow1 
state. For this example data, the power dissiation of the system 
increases as time advances.  
 

Figure 7. Trace of belief state for the power profile. 
 

 

Figure 8. Evaluation of the hot spot alerting algorithm. 

Experimental results of the proposed hot spot alerting 
algorithm are shown in Figure 8. Here we have assumed that 
two processor core inside a multicore processor execute 50 
programs alternately. Hot spot levels are defined as red alert, 
yellow alert (cf. Figure 5) and safe (i.e., there is no thermal 

threat), where we set the required parameter values as: Ta.H = 
100°C, Ta.L = 90°C, Gj.a = 7°C, and Pa = 2.2W. The power state 
of each processor is also estimated as explained above. Results 
in this figure demonstrate that local hot spots (see Figure 8 
bottom) are estimated based on the power state of the processor 
(see Figure 8 top), considering the junction temperature of the 
device (see Figure 8 middle).  

VI. Conclusions 
We have proposed a stochastic hot spot alerting technique based 
on estimations of the junction temperature of a device and the 
power state of a system. The proposed uncertainty-aware 
estimation framework efficiently captures the uncertain 
dynamics of the system behaviors. Being able to handle various 
sources of uncertainty would improve the accuracy and 
robustness of the estimation technique, ensuring the thermal 
safety of the device with truly quality and reliability. 
Experimental results demonstrate that the proposed technique 
alerts thermal threats under probabilistic variations.  
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