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Abstract

Edge�Valued Binary�Decision Diagrams 
evbdd�s are directed acyclic graphs which can

represent and manipulate integer functions as e�ectively as Ordered Binary�Decision Di�

agrams 
obdds� do for Boolean functions� They have been used in logic veri�cation for

showing the equivalence between Boolean functions and arithmetic functions� In this paper�

we present evbdd�based algorithms for solving integer linear programs� computing spectral

coe�cients of Boolean functions� and performing function decomposition� These algorithms

have been implemented in C under the sis environment and experimental results are pro�

vided�



� Introduction

Edge�Valued Binary�Decision Diagram 
evbdd� ���� is an integer version of Ordered Binary�

Decision Diagram 
obdd� ���� evbdds not only preserve the canonical function and compact

representation properties of obdds but also provide a new set of operators � arithmetic

operators� relational operators and minimum�maximum operators ����� evbdds have been

used for logic veri�cation ���� and Boolean function decomposition �����

evbdds are directed acyclic graphs constructed in a similar way to obdds� As in obdds�

each node either represents a constant function with no children or is associated with a

binary variable having two children� and there is an input variable ordering imposed in every

path from the root node to the terminal node� However� in evbdds there is an integer

value associated with each edge� Furthermore� the semantics of these two graphs are quite

di�erent� In obdds� a node v associated with variable x denotes the Boolean function


x � fl� � 
x � fr�� where fl and fr are functions represented by the two children of v� On

the other hand� a node v in an evbdd denotes the arithmetic function x
vl � fl� � 
��

x�
vr�fr�� where vl and vr are values associated with edges going from v to its children� and

fl and fr are functions represented by the two children of v� To achieve canonical property�

we enforce vr to be ��

evbdds constructed in the above manner are more related to pseudo Boolean func�

tions ���� which have the function type f�� �gn � integer� For example� f
x� y� z� �

�x � �y � 	xz with x� y� z � f�� �g is a pseudo Boolean function� and f
�� �� �� � � and

f
�� �� �� � �� However� for functions with integer variables� we must convert the inte�

ger variables to vectors of Boolean variables before using evbdds� In the above example� if

x � f�� � � � � 	g� then f
x� y� z� � �
�x���x��x����y�	
�x���x��x��z and f
�� �� �� � ���

By treating Boolean values as integers � and �� evbdds are capable of representing

Boolean functions and perform Boolean operations� Furthermore� when Boolean functions

are represented by obdds and evbdds� they have the same size and require the same time

complexity for performing operations ����� Thus� evbdds are particularly useful in applica�

tions which require both Boolean and integer operations� We present three applications of

evbdds�

The �rst application is in solving integer linear programming 
ilp� problems� An ilp

problem is to �nd the maximum 
or minimum� of a goal function subject to a set of linear

inequality constraints� Each constraint de�nes a feasible subspace which can be represented

as a Boolean function� The conjoining of these constraint 
i�e�� the conjunction of the corre�
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sponding Boolean functions� de�nes the overall feasible subspace� The problem is then solved

by �nding the maximum 
or minimum� of the goal function over the feasible subspace�

The second application is in computing the spectral coe�cients of a Boolean function�

The main purpose of spectral methods ���� is to transform Boolean functions from Boolean

domain into spectral 
integer� domain so that a number of useful properties can be more

easily detected� When a Boolean function is represented in Boolean domain� the function

value for each minterm precisely describes the behavior of the function at that point but

says nothing about the behavior of the function for any other point� In contrast� spectral

representation of a Boolean function gives information which is much more global in nature�

For example� for function f
x�� � � � � xn���� the spectral coe�cient of x� � � � xn�� corresponds

to the number of onset points of f
x� � � � xn���� Since evbdds can represent functions in

both Boolean and spectral domains� we are able to use arithmetic operations in evbdds to

e�ciently carry out the spectral transformations�

The third application is in the representation of multiple output Boolean functions�

Clearly� we can use the obdd representation to solve integer problems through the bi�

nary encoding of integer variables� Similarly� we can also use the evbdd representation

to perform multiple output Boolean function operations through integer interpretation of

the functions 
e�g�� a multiple output function f�� � � � � fm�� can be represented by an integer

function �m��f�� � � ����fm���� We will present an evbdd�based function decomposition al�

gorithm as an example� When this algorithm is applied to an evbdd representing a Boolean

function� it performs single�output function decomposition� when it is applied to an evbdd

representing an integer function representing a multiple�output Boolean function� it performs

multiple�output function decomposition�

��� Background

The following de�nitions describe the syntax and semantics of evbdds� More details can be

found in ���� ����

De�nition �	� An evbdd is a tuple hc� fi where c is a constant value and f is a directed

acyclic graph consisting of two types of nodes�

�� There is a single terminal node with value � 
denoted by 
��

�� A nonterminal node v is a ��tuple hvariable
v�� childl
v�� childr
v�� valuei�

where variable
v� is a binary variable x � fx�� � � � � xn��g�

�



An evbdd is ordered if there exists an index function index
x� � f�� � � � � n � �g such that

for every nonterminal node v� either childl
v� is a terminal node or index
variable
v�� �

index
variable
childl
v���� and either childr
v� is a terminal node or index
variable
v���

index
variable
childr
v���� If v is the terminal node 
� then index
v� � n� An evbdd is

reduced if there is no nonterminal node v with childl
v� � childr
v� and value � �� and

there are no two nonterminal nodes u and v such that u � v�

De�nition �	� An evbdd hc� fi denotes the arithmetic function c�f where f is the function

denoted by f� 
 denotes the constant function �� and hx� l� r� vi denotes the arithmetic

function x
v � l� � 
�� x�r�

In this paper� we consider only reduced� ordered evbdds� In the graphical representation

of an evbdd hc� fi� f is represented by a rooted� directed� acyclic graph and c by a dangling

incoming edge to the root node of f� The terminal node is depicted by a rectangular node

labelled �� A nonterminal node is a quadruple hx� l� r� vi� where x is the node label� l and r

are the two subgraphs rooted at x� and v is the label assigned to the left edge of x�

Example �	� Fig� � shows two arithmetic functions f� � �� �x� �xy � xz � �y � yz and

f� � �x� � �x� � x� represented in evbdds� The second function is derived as follows�

f� � � � fx�

fx� � x�
� � fx�� � 
�� x��fx� � �x� � �x� � x��

fx� � x�
� � fx�� � 
�� x��fx� � �x� � x��

fx� � x�
� � �� � 
�� x��� � x��

�

Figure � goes here	

A generic 
evbdd� apply operator is described in ����� This operator takes hcf � fi� hcg�gi

and op as arguments and returns hch�hi such that ch � h � 
cf � f� op 
cg � g� where op

can be any operator which is closed over the integers�

�



evbdd representation enjoys a distinct feature� called the additive property� which is not

seen in the obdd representation� For example� consider the following operation�


cf � f�� 
cg � g� � 
cf � cg� � 
f � g��

Because the values cf and cg can be separated from the functions f and g� the key for this

entry in comp table is hh�� fi� h��gi��i� After the computation of hh�� fi� h��gi��i resulting

in hch�hi� we then add cf � cg to ch to have the complete result of hhcf � fi� hcg�gi��i� Hence�

every operation hhc�f � fi� hc
�

g�gi��i can share the computation result of hh�� fi� h��gi��i� This

then will increase the hit ratio for caching the computation results�

Another property of the evbdd representation� called the bounding property� is the fol�

lowing� when the maximum or minimum of a function exceeds a boundary value� then the

result can be determined without further computation� As an example� the following pseudo

code leq�
hcf � fi� performs operation 
cf � f� � ��

leq��hcf � fi� f

� if ��cf �max�f�� � �� return�h�� �i��

� if ��cf �min�f�� � �� return�h�� �i��

� if �comp table lookup�hcf � fi� leq�� ans�� return�ans��

	 hchl
�hli 
 leq��hcf � value�f�� childl�f�i��

� hchr
�hri 
 leq��hcf � childr�f�i��

� if �hchl
�hli 

 hchr

�hri� return �hchl
�hli��


 h 
 find or add�variable�f��hl�hr� chl
� chr

��

� comp table insert�hcf � fi� leq�� hchr
�hi��

� return �hchr
�hi�� g

A comp table storing previously computed results is used to achieve computation e��

ciency� The entries of comp table are used in line � and stored in line �� After the left

and right children have been computed resulting in hchl
�hli and hchr

�hri 
lines � and 	��

if hchl
�hli � hchr

�hri� the algorithm returns hchl
�hli to ensure that the case of hx�k�k� �i

will not occur� otherwise� it returns hchr
� hvar� hl� hr� chl

� chr
ii to preserve the property of

right edge value being �� There is another table 
uniq table� used for the uniqueness prop�

erty of evbdd nodes� Before leq� returns its result� it checks this table through operation

find or add which either adds a new node to the table or returns the node found in the

table�

To speed up the relational operators and the minimize 
Sec� ���� operation� we include

the minimum and maximum function values in each evbdd node� For the sake of readability�

�



we also use the �attened evbdd as de�ned below�

De�nition �	� A �attened evbdd is a directed acyclic graph consisting of two types of

nodes� A nonterminal node v is represented by a ��tuple hvariable
v�� childl
v�� childr
v�i

where variable
v� � fx�� � � � � xn��g� A terminal node v is associated with an integer v�

Reduced� ordered� 
attened evbdds are de�ned in the same way as obdds�

Example �	� The 
attened evbdd for the function in Fig� � 
b� is shown in Fig� �� �

Figure � goes here	

Multi�terminal binary decision diagram 
mtbdd� which was recently proposed in ����

is the same as 
attened evbdd� In general� in functions where the number of distinct

terminal values is large� mtbdd will require larger number of nodes than evbdd� However�

in functions where the number of distinct terminal values is small� mtbdd may require less

storage space depending on the number of nodes in the corresponding graphs�

From Example ��� 
Fig� �
b�� and Example ��� 
Fig� ��� we see that evbdd requires

n � � nodes to represent �n��x� � � � � � ��xn�� while 
attened evbdd 
or mtbdd� require

�n�� � � to represent the same function� When there are only two di�erent terminal nodes


e�g�� � and ��� evbdd� mtbdd� and obdd are equivalent in terms of the number of nodes

and the topology of the graph ����� In this case� evbdd will require more space to represent

the the edge�values�

The worst case time complexity for performing operations on evbdds is the same as

that for mtbdds� However� due to the additive� bounding� and domain�reducing properties

of evbdds� many operations on evbdds are much more e�cient the corresponding ones on

mtbdds� Details can be found in �����

The remainder of this paper is organized as follows� Three applications of evbdds� solv�

ing ilp problems� computing spectral coe�cients� and performing multiple output Boolean

function decomposition are presented in sections �� �� and �� respectively� Conclusions are

given in section 	�

	



� Integer Linear Programming

Integer Linear Programming 
ilp� is an np�hard problem ���� that appears in many appli�

cations� Most of existing techniques for solving ilp such as branch and bound ���� ��� ���

and cutting plane methods ���� are based on the linear programming 
lp� method� While

they may sometimes solve hundreds of variables� they cannot guarantee to �nd an optimal

solution for problems with more than � say� 	� variables� It is believed that an e�ective

ilp solver should incorporate integer or combinatorial programming theory into the linear

programming method ����

Jeong et al� ��	� describe an obdd�based approach for solving the ��� programming

problems� This approach does not� however� use obdds for integer related operations such as

conversion from linear inequality form of constraints into Boolean functions and optimization

of nonbinary goal functions� Consequently� the caching of computation results is limited to

only Boolean operations 
i�e�� for constraint conjunction��

Our approach for solving the ilp is to combine bene�ts of the evbdd data structure 
in

terms of subgraph sharing and caching of computation results� with the state�of�the�art ilp

solving techniques� We have developed a minimization operator in evbdd which computes

the optimal solution to a given goal function subject to a constraint function� In addition�

the construction and conjunction of constraints in terms of evbdds are carried out in a

divide and conquer manner in order to manage the space complexity�

��� Background

An ilp problem can be formulated as follows�

minimize
nX

i��

cixi�

subject to
nX

i��

ai�jxi � bj� � � j � m�

xi integer�

The �rst equation is referred as the goal function and the second equation is referred as

constraint functions� Throughout this section we will assume the problem to be solved is a

minimization problem� A maximization problem can be converted to a minimization problem

by changing the sign of coe�cients in the goal function�

There are three classes of algorithms for solving ilp problems ��	�� The �rst class is

�



known as the branch and bound method ���� ��� ���� This method usually starts with an

optimum continuous lp solution which forms the �rst node of a search tree� If the initial

solution satis�es the integer constraints� it is the optimum solution and the procedure is

terminated� Otherwise� we split on variable x 
with value x� from the initial solution� and

create two new subproblems� one with the additional constraint x � bx�c and the other

with the additional constraint x � bx�c � �� Each subproblem is then solved using the lp

methods� e�g�� the simplex method ���� or the interior point method ����� A subproblem

is pruned if there are no feasible solutions� the feasible solution is inferior to the best one

found� or all variables satisfy the integer constraints� In the last case� the feasible solution

becomes the new best solution� The problem is solved when all subproblems are processed�

Most commercial programs use this approach �����

The second class is known as the implicit enumeration technique which deals with ���

programming ��� �� ���� Initially� all variables are free� Then� a sequence of partial solutions

is generated by successively �xing free variables� i�e�� setting free variables to � or �� A

completion of a partial solution is a solution obtained by �xing all free variables in the partial

solution� The algorithm ends when all partial solutions are completions or are discarded�

The procedure proceeds similar to the branch and bound except that it solves a subproblem

using the logical tests instead of the lp� A logical test is carried out by inserting values

corresponding to a given 
partial or complete� solution in the constraints� A complete

solution is feasible if it satis�es all constraints� A partial solution is pruned if it cannot

reach a feasible solution or could only produce an inferior feasible solution 
compared to

the current best solution�� One advantage of this approach is that we can use partial order

relations among variables to prune the solution space� For example� if it is established that

x � y� then portions of the solution space which correspond to x � � and y � � can be

immediately pruned ��� ����

In the early days� these two methods were considered to be sharply di�erent� The branch

and bound method is based on solving a linear program at every node in the search space

and uses a breadth �rst strategy� The implicit enumeration method is based on logical

tests requiring only additions and comparisons and employs a depth �rst strategy� However�

successively versions of both approaches have borrowed substantially from each other ����

The two terms branch and bound and implicit enumeration are now used interchangeably�

The third class is known as the cutting�plane method ����� Here� the integer variable

constraint is initially dropped and an optimum continuous variable solution is obtained�

�



The solution is then used to chop o� the solution space while ensuring that no feasible

integer solutions are deleted� A new continuous solution is computed in the reduced solution

space and the process is repeated until the continuous solution indeed becomes an integer

solution� Due to the machine round�o� error� only the �rst few cuts are e�ective in reducing

the solution space ��	��

��� A Model Algorithm

In this section� we �rst show a straightforward method to solve the ilp problem using

evbdds� We then describe how to improve this method in this and the following sections�

Example �	� We illustrate how to solve the ilp problems using evbdds through a simple

example� For the sake of readability� we use 
attened evbdds�

The following is a ��� ilp problem�

minimize �x� 	y�

subject to �x� 	y � �� ���

�x� �y � �� ���

x� y � f�� �g�

We �rst construct an evbdd for the goal as shown in Fig� � 
a�� We then construct the

constraints� The left hand side of constraint 
�� represented by an evbdd is shown in Fig� �


b�� After the relational operator � has been applied on constraint 
��� the resulting evbdd

is shown in Fig� � 
c�� Similarly� evbdds for constraint 
�� are shown in Fig� � 
d� and 
e��

The conjunction of two constraints� Fig� � 
c� and 
e�� results in the evbdd in Fig� � 
f�

which represents the solution space of this problem� A feasible solution corresponds to a

path from the root to ��

We then project the constraint function c onto the goal function g such that for a

given input assignment X� if c
X� � � 
feasible� then p
X� � g
X�� otherwise p
X� �

infeasible value� For minimization problems� the infeasible value is any value which is

greater than the maximum of g� and for maximization problems� the infeasible value is

any value which is smaller than the minimum of g� In our example� we use � as the

infeasible value� Thus� in Fig� � 
g�� the two leftmost terminal values have been replaced

by value �� The last step in solving the above ilp problem is to �nd the minimum in Fig� �


g� which is �� �

�



Figure � goes here	

The above approach has three problems�

�� Converting a constraint from inequality form to a Boolean function may require expo�

nential number of nodes�

�� Even if all constraints can be constructed without using excessive amounts of memory�

conjoining them altogether at once may create too big an evbdd� and

�� The operator projection is useful when we want to �nd all optimal solutions� How�

ever� in many situations� we are interested in �nding any optimal solution� Thus� full

construction of the �nal evbdd 
e�g�� Fig� � 
g�� is unnecessary�

In the remainder of this section� we will show how to overcome the �rst two problems

by divide and conquer methods� In the next section� we will present an operator minimize

which combines the bene�ts of computation sharing and branch and bound techniques to

compute any optimal solution�

In our ilp solver� called fgilp� every constraint is converted to the form AX � b � ��

Thus� we only need one operator leq� to perform the conversion� AX � b is converted to

AX � b � � � � 
since all coe�cients are integer�� AX � b is converted to �AX � b � ��

and AX � b is converted to two constraints AX � b � � and �AX � b � ��

Initially� every constraint is an evbdd representing the left hand side of an inequality


i�e�� AX�b� which requires n nonterminal nodes for an n�variable function� fgilp provides

users with an n supp parameter such that only if a constraint has less than n supp supporting


dependent� variables� then it will be converted to a Boolean function� fgilp allows users to

set another parameter c size to control the size of evbdds� Only if constraints� in Boolean

function form� are smaller in size than this parameter� they will be conjoined�

The function performed by leq� is the same as LI to BDD
I� of ��	� where I is some

representation of w�x�� � � ��wnxn � T � Our evbdd representation of a linear inequality is

more e�cient than their representation� because leq� can cache computation results as in all

evbdd operations while LI to BDD cannot� This is very important because the e�ciency of

obdd operations heavily depends on the extent by which this property is exploited� In ��	��

the authors suggest that it is not advisable to replace an equality by two inequalities because

the cost of testing terminal cases 
lines � and �� are the same for equality and inequality

�



relations� Our experiments� however� show a completely di�erent result� Performing two

inequalities followed by one conjunction 
all in terms of evbdd operations� is much faster

than carrying out one equality� We think that the di�erence is due to our computation

caching capability�

Parameters n supp and c size provide two advantages� First� they provide fgilp with

a space�time tradeo� capability� The more memory fgilp has� the faster it runs� Second�

combined with the branch and bound technique� some subproblems may be pruned before

the conversion to the Boolean functions or the conjunction of constraints are carried out�

When there is only one constraint and it is in Boolean form� then the problem is solved

through minimize� Otherwise� the problem is divided into two subproblems and is solved

recursively� Since both the goal and constraint functions are represented by evbdds� The

new goal and constraint functions for the �rst subproblem are the left children of the root

nodes of the current goal and constraints� Similarly� the new goal and constraint functions

for the second subproblem are the right children of the root nodes of the current goal and

constraints�

Our main algorithm� ilp min� employs a branch and bound technique� In addition to

goal and constraint functions� n supp� and c size� there are two parameters which are used

as bounding condition� Lower bound is either given by the user or computed through linear

relaxation or Lagrangian relaxation methods� Upper bound represents the best feasible solu�

tion found so far� The initial value of the upper bound is the maximum of the goal function

plus ��

If the maximum of goal function is less than the lower bound 
LB� or the minimum of

goal function is greater than or equal to the upper bound 
UB�� the problem is pruned�

Furthermore� if there exists a constraint whose minimum feasible solution is greater than or

equal to the current best solution 
upper bound�� then again the problem is pruned�

��



ilp min�goal� constr� LB� UB� n supp� c size�

f

� if �max�goal� � LB� return�

� if �min�goal� � UB� return�

� if ��c � constr � minimize�goal� c� UB� 

 �� return�

	 new constr 
 conjunction constr�constr� c size��

� if �new constr has only one element� f

� minimize�goal� new constr� UB��


 g

� else f

� hhgoall� new constrli� hgoal r� new constrrii 


divide problem�goal� new constr� n supp��

�� ilp min�goall� new constrl� LB� UB� n supp� c size��

�� ilp min�goalr� new constrr� LB� UB� n supp� c size��

�� g

g

Example �	� We want to solve the following problem�

minimize �	x � �y � z � �w�

subject to �x� �y � 	z � w � ��

�x� y � �z � 	w � ��

x� y� z� w � f�� �g�

Figure � goes here	

�� The initial goal and constraint evbdds are shown in Fig� � 
a�� Suppose both param�

eters n supp and c size are set to ��

�� Since the number of supporting variables in the constraint evbdds is not less than ��

we divide the problem into two subproblems� one with x � � 
Fig� � 
b�� and the other

with x � � 
Fig� � 
c��� The �nal solution is the minimum of solutions to these two

subproblems�

�� Next� we want to solve the subproblem with x � �� Since the number of support�

ing variables in constraint evbdds is smaller than n supp� we convert the constraint

evbdds into Boolean functions by carrying out operation leq� 
Fig� � 
d���

��



�� Since the size of constraint evbdds are not less than c size� we divide the problem

into two subproblems� one with y � � �Fig� � �e�� and the other with y � 	 �Fig� �

�f���


� Now� we want to solve the subproblem with y � �� Since the size of both constraint

evbdds are less than c size� we conjoin them together and then solve this subproblem

using the minimize operator �Sec� �����


� The remaining subproblems are solved in the same way� Note that the solution found

from a subproblem can be used as an upper bound for the subproblems which follow�

�

��� The Operator minimize

This operator is another key distinction between our approach and the one in ��
�� Oper�

ator minimize takes advantage of the additive and bounding properties of evbdds to achieve

much more computation sharing and pruning of the search space� These properties lead to

big savings in the memory requirement and run time of the ILP solver because of the way

the computed table entries are stored and updated as explained below�

Operator minimize is similar to the apply operator with one additional parameter b�

Given a goal function g� a constraint function c� and an upper bound b� minimize returns �

if it �nds a minimum feasible solution v � b of g subject to c� otherwise� minimize returns

	� If v is found� b is replaced by v� otherwise� b is unchanged�

Note that when minimize returns 	� it does not imply that there are no feasible solutions

with respect to g and c� This is because minimize only searches for feasible solutions that

are smaller than b� Those feasible solutions which are greater than or equal to b are pruned

because of the branch and bound procedure�

The parameter b serves two purposes� it increases the hit ratio for computation caching

and is a bounding condition for pruning the problem space� To achieve the �rst goal� an

entry of the computed table used by minimize has the form hg� c� hb� vii where v is set to

the minimum of g which satis�es c and is less than b� If there is no feasible solution �with

respect to g and c� which is less than b� then v is set to b�

The following pseudo code implements minimize� Lines ��� test for terminal conditions�

In line �� if the constraint function is the constant function 	� there is no feasible solution�

In line �� if the minimum of the goal function is greater than or equal to the current best

solution� the whole process is pruned� If the goal function is a constant function� it must be
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less than bound� otherwise� the test in line � would have been true� Thus� a new minimum is

found in line �� In line 
� if the constraint function is constant �� then the minimum of the

goal function is the new optimum� Again� this must be true� otherwise� the condition tested

in line � would have been true�

Lines ���� perform the table lookup operation� If the lookup succeeds� no further com�

putation is required� otherwise� we traverse down the graph in lines ����
 in the same way

as apply� Since minimize satis�es the additive property� we subtract cg from bound to obtain

a new local bound �local bound� in line �� cg will be added back to bound in lines �� or �� if

a new solution is found�

Suppose we want to compute the minimum of g subject to c with current local upper

bound local bound� We look up the computed table with key hg� ci� If an entry hg� c�

hentry�bound� entry�valueii is found� then there are the following possibilities�

�� entry�value � entry�bound� i�e�� a smaller value v was previously found with respect

to g� c� and entry�bound �i�e�� the minimization of g with respect to c has been solved

and the result is entry�value��

�a� If entry�value � local bound� then entry�value is the solution we wanted�

�b� Otherwise� the best we can �nd under g and c is entry�value which is inferior to

local bound� so we return with no success�

�� entry�bound � entry�value� i�e�� there was no feasible solution with respect to g� c�

and entry�bound �i�e�� there is no stored result for the minimization of g with respect

to c and entry�bound��

�a� If local bound � entry�bound� then we cannot possibly �nd a solution better than

entry�bound for g under c� Therefore� we return with no success�

�b� Otherwise� no conclusion can be drawn and further computation is required� Al�

though there is no better feasible solution than entry�bound� it does not imply

that there will be no better solution than local bound�

In cases ��b and ��a pruning takes place �also computation caching�� in case ��a� computation

caching is a success� while in case ��b both operations fail� Note that there is no need for

updating an entry �of the computed table� except in case ��b�

In lines �
��	� the branch whose minimum value is smaller is traversed �rst since this

increases chances for pruning the other branch� Finally� we update computed table and

return the computed results in lines ������
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minimize�hcg� gi� hcc� ci� bound�

f

�� test for terminal conditions ��

� if �hcc� ci �� h�� �i� return ��

� if �min�hcg� gi� � bound� return ��

� if �hcg� gi �� hcg� �i� f

	 bound � cg�


 return �� g

� if �hcc� ci �� h�� �i� f

� bound � min�hcg� gi��


 return �� g

�� use the additive property ��

� local bound � bound� cg�

�� look up the computed table ��

�� if �comp table lookup�h�� gi� hcc� ci� entry�� f

�� if �entry�value � entry�bound� f

�� if �entry�value � local bound� f

�� bound � entry�value� cg�

�	 return �� g

�
 else return �� g

�� else f

�� if �local bound � entry�bound� return �� g g

�
 entry�bound � local bound�

�� create two subproblems by traversing down g and c ��

�� hcgl� gli � hvalue�g�� childl�g�i�

�� hcgr � gri � h�� childr�g�i�

�� if �index�variable�c��� index�variable�g��� f

�� hccl � cli � hcc � value�c�� childl�c�i�

�� hccr � cri � hcc� childr�c�i� g

�	 else f hccl � cli � hccr � cri � hcc� ci� g

�� solve the subproblem with lower minimum �rst ��

�
 if �min�gl� � min�gr�� f

�� t ret � minimize�hcgl� gli� hccl� cli� local bound��

�� e ret � minimize�hcgr� gri� hccr � cri� local bound�� g

�
 else f

�� e ret � minimize�hcgr� gri� hccr � cri� local bound��

�� t ret � minimize�hcgl� gli� hccl� cli� local bound�� g

�� a new minimum is found ��

�� if �t ret jj e ret� f

�� bound � local bound� cg�

�� entry�value � local bound�

�	 comp table insert�h�� gi� hcc� ci� entry��

�
 return �� g

�� no new minimum is found ��

�� else f

�� entry�value � entry�bound�

�
 comp table insert�h�� gi� hcc� ci� entry��

�� return �� g

g

��



Example ��� We want to minimize the goal function ��x � 
y � z � �w subject to the

constraint �xz �w � �xyz �w � �x�yz � �x�y�zw � �� shown in Fig� 
� For the sake of readability� the

goal function is represented in evbdd while the constraint function is represented in obdd�

The initial upper bound is max�goal� � � � 	 � 
 � � � � � � � �� The reason for plus � is

to recognize the case when there are no feasible solutions�

�a� We traverse down to nodes a and b through path x � � and y � �� By subtracting

the coe�cients of x and y from upper bound� we have � � ���� � 
 � � which is the

local upper bound with respect to nodes a and b� That is� we look for a minimum of

a subject to b such that it is smaller than �� It is easy to see that the best feasible

solution of a subject to b is � which corresponds the assignments of z � � and w � 	�

Thus� we insert ha�b� h�� �ii as an entry into the computed table and recalculate the

upper bound as �� � 
 � � � 	 � ��

�b� We traverse down to nodes a and b this time through path x � � and y � 	� The

new local upper bound is � � ���� � 	 � 
� i�e�� we look for a feasible solution which

is smaller than 
� From computed table look up� we �nd that � is the best solution

with respect to a and b and it is smaller than 
� Thus� the new upper bound is

�� � 	 � � � ���

�c� We reach a and b through path x � 	 and y � �� The local upper bound is ���	�
 �

��� Again� from the computed table� we know � is the best solution which is larger

than ��� Thus� no better solution can be found under a and b with respect to bound

�� and the current best solution remains ���

�d� We reach nodes a and c through path x � 	 and y � 	� The local upper bound is

��� 	� 	 � ��� The minimum of the goal function a is 	 which is greater than ���

The optimal solution is �� with x � �� y � 	� z � �� and w � 	� �

Figure � goes here�
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��� Discussion

A branch and bound�implicit enumeration based ilp solver can be characterized by the way

it handles search strategies� branching rules� bounding procedures and logical tests� We will

discuss these parameters in turn to analyze and explore possible improvements to fgilp�

Search Strategy

Search strategy refers to the selection of next node �subproblem� to process� There are two

extreme search strategies� The �rst one is known as breadth �rst which always chooses

nodes with best lower bound �rst� This approach tends to generate fewer nodes� The second

one is depth �rst which chooses a best successor of the current node� if available� otherwise

backtracks to the predecessor of the current node and continues the search� This strategy

requires less storage space� fgilp uses the depth �rst strategy�

Branching Rule

This parameter refers to the selection of next variable to branch� Various selection criteria

which have been proposed use priorities ����� penalties ��
�� pseudo�cost �
�� and integer

infeasibility ��� conditions� Currently� fgilp uses the same variable ordering as the one used

to create evbdds because it simpli�es the implementation� When the variable selected does

not correspond to the variable ordering of evbdd� operation cofactor �instead of childl and

childr� should be used�

Bounding Procedure

The most important component of a branch and bound method is the bounding procedure�

The better the bound� the more pruning of the search space� The most frequently used

bounding procedure is to use the linear programming method� Other procedures which

can generate better bounds� but are more di�cult to implement include the cutting planes�

Lagrangian relaxation ����� and disjunctive programming ���� The bounding procedure used

in fgilp is similar to the one proposed in ���� In our experience� the most pruning takes

place at line � of the code for ilp min� This pruning rule however has two weak points�

First� it is carried out on each constraint one at a time� Thus� it is only a �local� method�

Second� it can only be applied to a constraint which is in the Boolean form� The other

bounding procedures described above are �global� methods which are directly applicable to

the inequality form�

Logical Tests

It is believed that logical tests may be as important as the bounding procedure ����� In

addition to partial ordering of variables� a particularly useful class of tests� when available�
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are those based on dominance ���� �
�� Currently� fgilp employs no logical tests� We believe

that the inclusion of logical tests in fgilp will improve its performance�

Despite the fact that there are many improvements which can be made to fgilp� the

performance of our ilp solver� as it is now� is already comparable to that of lindo ���� which

is one of the most widely used commercial tools ���� for solving ilp problems�

��� Experimental Results

fgilp has been implemented in C under the sis environment� Table � shows our experi�

mental results on ilp problems from miplib ��
�� It also shows the results of lindo ����

�a commercial tool� on the same set of benchmarks� fgilp was run under sparc station �

����
 mips� with 
� mb memory while lindo was run under sparc station �	 ��	��
 mips�

with ��� mb memory� In Table �� column �Problem� lists the name of problems� columns �In�

puts� and �Constraints� indicate the number of input variables and constraints� and columns

�fgilp� and �lindo� are the running time in seconds for obtaining the optimal solution shown

in the last column�

fgilp provides three options for the order in which constraints are conjoined together�

When all constraints are conjoined together� the order of conjunction will not a�ect the size

of �nal evbdd� but it does a�ect sizes of the intermediate evbdds� It is possible that an

intermediate evbdd has size much larger than the the �nal one� Our motivation for this

ordering is to control the required memory space and save computation time� These three

options are�

�� Based on the order of constraints in the input �le� This provides users with direct

control of the order�

�� evbdds with smallest size are conjoined �rst�

�� Constraints with the highest probability of not being satis�ed are conjoined �rst�

The parameters used for the problems in Table � are summarized below�

�� Constraint conjunction order� Using the third option in problem �p	�	�� led to much

less space and computation time than the other two options� The same option led

to more time in other problems due to the overhead of computing the probability of

function values being 	� For consistency� results are reported for this option only�
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�� evbdd size of constraints� Without setting c size� �bm��� failed to �nish and �stein���

required ���

 seconds� The run time reported in Table � for the above two problems

were obtained by setting c size � �			 while others were run under no limitation of

c size� In general� this parameter has a signi�cant impact on the run time� We believe

that the correct value for c size is dependent on the size of available memory for the

machine�

�� Size of supporting variables� There was no limitation on the size of n supp�

As results indicate� the performance of fgilp is comparable to that of lindo� Since ilp

is an NP�complete problem� it is quite normal that one solver outperforms the other solver

in some problems while performs poorly in others�

Since sparc station �	 is about 
X faster than sparc station �� fgilp runs faster than

lindo on the examples reported above� lindo aborted on �bm��� with the following message�

�Fatal out�of�space in invert� Re�installing best solution ���� Search aborted for numerical

reasons��

fgilp� however� requires much more space than lindo� As technology improves� memory

is expected to become cheaper in cost and smaller in size� Increasing the available memory

size will improve the speed of fgilp while will not bene�t lindo as much�

The amount of space needed by fgilp is a function of not only the number of variables

and constraints but also the structure of the constraint space in relation to the goal function�

In some cases� fgilp handles problems with thousands of constraints� in other cases� it runs

out of space in problems with a few hundred constraints�

Table � goes here�

� Spectral Transformation

The main purpose of spectral methods ���� is to transform Boolean functions from Boolean

domain into another domain so that the transformed functions have more compact imple�

mentations� It was conjectured that these methods would provide a uni�ed approach to the

��



synthesis of analog and digital circuits ��
�� Although spectral techniques have solid theo�

retical foundation� until recently they did not receive much attention due to their expensive

computation times� With new applications in fault diagnosis� spectral techniques have re�

cently invoked interest ����� New computational methods have been proposed� In ����� a

technique based on arrays of disjoint on� and dc�cubes is proposed� In ��
�� a cube�based

algorithm for linear decomposition in spectral domain is proposed�

Recently� ���� proposed two obdd�based methods for computing spectral coe�cients� The

�rst method was to treat integers as bit vectors and integer operations as the corresponding

Boolean operations� The main disadvantage of this representation is that arithmetic opera�

tions must be performed bit by bit which is very time consuming� The second method em�

ployed a variation of obdd called Multi�Terminal Binary Decision Diagrams �mtbdds� ��	�

which are exactly the same as the �attened form of evbdds� The major problem with using

mtbdds is the space requirement when the number of distinct coe�cients is large�

We propose evbdd�based algorithms for computing Hadamard �sometimes termedWalsh�

Hadamard� spectrum ����� In our approach� the matrix representing Boolean function values

used in spectral methods is represented by evbdds� This takes advantage of compact rep�

resentation through subgraph sharing� The transformation matrix and the transformation

itself are carried out through evbdd operations� Thus� the bene�t of caching computational

results is achieved�

In ����� the Walsh�Hadamard matrix and Boolean functions are represented by mtbdds

and the spectral transformation is carried out by matrix operations on mtbdds� In our

approach� no representation of this matrix is required as the transformation is carried out

by addition and subtraction on evbdds� It remains to be seen that which implementation

of the Walsh�Hadamard transformation is superior� As a footnote� if the number of distinct

coe�cients of a function is large� it is more advantageous to use the evbdd implementation�

However� due to the overhead of representing edge�values� for functions with small number

of distinct coe�cients� the mtbdd implementation may be better�

The reason we use the Hadamard transformation rather than other transformations �e�g��

Walsh� Rademacher�Walsh� and Walsh�Paley ����� is that the Hadamard transformation

matrix has the recursive Kronecker product structure which perfectly matches the recursive

structure of evbdds�

The algorithms presented here include both the transformation from Boolean domain to

spectral domain and the operations within the spectral domain itself�
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The Hadamard transformation is carried out in the following form�

T n Zn � Rn� ���

where T n is a �n � �n matrix called transformation matrix�

Zn is a �n � � matrix which is the truth table representation ofa Boolean function�

Rn is a �n � � matrix which is the spectral coe�cients of a Boolean function�

Di�erent transformation matrices generate di�erent spectra� Here� we use the Hadamard

transformation matrix ���� which has a recursive structure as follows�

T n �

�
T n�� T n��

T n�� �T n��

�
�

T � � ��

Example ��� The spectrum of function f�x� y� � x� y is computed as

�
�����
� � � �

� �� � ��

� � �� ��

� �� �� �

�
�����

�
�����
	

�

�

	

�
����� �

�
�����

�

	

	

��

�
����� �

The order of each spectral coe�cient ri �ith row of Rn� is the number of ��s in the binary

representation of i� 	 � i � �n � �� For example� r�� is the zeroth�order coe�cient� r��

and r�� are the �rst�order coe�cients� and r�� is the second�order coe�cient� Let Rn
i � f

multi�set of the absolute value of rk�s where rk is an ith�order coe�cient of Rng� 	 � i � n�

In Example ���� R�
� � f�g� R�

� � f	� 	g� and R�
� � f�g� An operation on f and its Rn

which does not modify the sets Rn
i is referred as an invariance operation� Given a function

f�x�� � � � � xn� with spectrum Rn� three invariance operations on f and Rn are as follows

�formal proofs may be found in ��
���

�� Input negation invariance� if xi is negated� then the new spectrum Rn� is formed by

r�k � �rk where the ith bit of k is �� and r�k � rk otherwise�

�� Input permutation invariance� if input variables xi and xj are exchanged� then the new

spectrum is formed by exchanging rk�s and rl�s where k � �i � l � �j� That is� the ith

and jth bits of k and l are h�� 	i and h	� �i� respectively� while all other bits of k and l

are the same�
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�� Output negation invariance� if f is negated� the Rn� is formed by replacing all rk by

�rk�

Lemma ��� Two Boolean functions are input�negation� input�permutation� and output�

negation equivalent �npn�equivalent� only if their Rn
i �s are equivalent�

With this property� Rn
i can be used as a �lter to improve performance in a Boolean matching

algorithm as presented in �����

��� Spectral evbdd �spbdd�

The major problem with Equation � is that all matrices involved are of size �n� Therefore�

only functions with a small number of inputs can be computed� We overcome this di�culty

by using evbdds to represent both Zn and Rn� When an evbdd is used to represent Rn�

we refer to it as SPectral evbdd� or spbdd for short� The di�erence between evbdds and

spbdds is in the semantics� not the syntax� A path in evbdds corresponds to a function

value while a path in spbdds corresponds to a spectral coe�cient� The matrix multiplication

by T n is implicitly carried out in the transformation from Zn to Rn �i�e�� from evbdd to

spbdd��

We de�ne Zn and Rn recursively as follows�

Zn �

�
Zn��
�

Zn��
�

�
�

Rn �

�
Rn��
�

Rn��
�

�
�

Then� Equation � can be rewritten as��
T n��Zn��

� � T n��Zn��
�

T n��Zn��
� � T n��Zn��

�

�
�

�
Rn��
�

Rn��
�

�
� ���

Equation � then is implemented through evbdd
� as �

� �hx�Zn��
� � Zn��

� i� � ���

hx� � �Zn��
�

�� � �Zn��
�

�� � �Zn��
�

� � � �Zn��
�

�i�

� ��� � ��

� �	� � 	�

�For the sake of readability� we use �attened evbdd in this section�
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where � is the transformation function which converts an evbdd representing a Boolean

function to an spbdd� To show the above equations correctly implement Equation �� we

prove the following lemma�

Lemma ��� Let � � evbdd� spbdd as de�ned in Equations ���� then � implementsT � that

is� � �fn� � T nfn� where fn is an n�input function� Or� equivalently� � �hxn� Z
n��
� � Zn��

� i� �

hxn� R
n��
� � Rn��

� i�

Example ��� The exclusive�or function in Example ��� is redone in terms of evbdd repre�

sentation�
� �hx� hy� 	� �i� hy� �� 	ii� �

hx� � �hy� �� 	i�� � �hy� 	� �i�� � �hy� �� 	i� � � �hy� 	� �i�i �

hx� hy���� �i � hy� �� �i� hy���� �i � hy� �� �ii �

hx� hy���� 	i� hy� 	� �ii

Pseudo code evbdd to spbdd�ev� level� n� is the implementation of Equation �� Because

of the following situation� this procedure requires level and n as parameters�

��hx� z� zi� � hx� ��z�� ��z�� ��z� � ��z�i�

� hx� �� �� ��z�i�

In reduced evbdd� hx� z� zi will be reduced to z while hx� 	� � � � �z�i cannot be reduced in

spbdd� We need to keep track of the current level so that when the index of the root node

ev is greater than level� we generate hlevel� 	� �� � �ev�i �lines �����

evbdd to spbdd�ev� level� n�

f

� if �level �� n� return ev�

� if �ev �� �� return ��

� if �index�ev� � level� f

	 sp � evbdd to spbdd�ev� level� �� n��


 left � ��

� right � evbdd add�sp� sp�

� return new evbdd�level� left� right��


 g

� spl � evbdd to spbdd�childl�ev�� level� �� n��

�� spr � evbdd to spbdd�childr�ev�� level� �� n��

�� left � evbdd sub�spr� spl��

�� right � evbdd add�spr� spl��

�� return new evbdd�level� left� right��

g

��



��� Boolean Operations in Spectral Domain

In this section� we show how to perform Boolean operations in spbdds� We �rst present the

algorithm for performing Boolean conjunction in spbdds by the following de�nition�

De	nition ��� Given two spbdds f and g� the operator � is carried out in the following

way� If f and g are terminal nodes� then

f � g � f � g�

Otherwise�

hx� fl� fri � hx� gl� gri �

hx� �fl � gr � fr � gl���� �fl � gl � fr � gr���i�

The following lemma and theorem prove that the above de�nition carries out the Boolean

conjunction in spbdds�

Lemma ��� �f � g�� �i� j� � f � i� f � j � g � i� g � j� where f� g� i� j 	 spbdd� �Note

that ��s may be replaced by ��s��

Theorem ��� Given two Boolean functions f and g represented in evbdds� � �f 
 g� �

� �f� � � �g�� where 
 is the conjunction operator in Boolean domain�

Other Boolean operations in spbdds are carried out by the following equations�

f � g � f � g � f � g� ���

f � g � f � g � � � �f � g�� �
�

�f � Jn � f� �
�

where � ���� and�� are or� xor� and not in spectral domain �spbdd�� Jn � ��n� 	� � � � � 	�t�

These operations ���� and�are from ���� with minor modi�cation to match the � operation�

Operations �� �� and � are carried out in the same way as in evbdds �e�g�� apply in ������

��



��� Experimental Results

Table � shows the results of some benchmarks represented in both evbdd and spbdd forms�

Column �evbdd� depicts the size and time required for representing and constructing a

circuit using evbdds while column �spbdd� depicts the size of spbdds and the time required

for converting from evbdds to spbdds� In average� the ratio of the number of nodes required

for representing spbdds over that of evbdds is 
��� and the ratio of the conversion time for

spbdds over the construction time of evbdds is ���

One application of spectral coe�cients is that they can be used as a �lter for pruning

search space in the process of Boolean matching ���� ���� The performance of a �lter depends

on its capability of pruning �e�ectiveness� and its computation time �cost�� Experimental

results of ���� show that this �lter is quite good because this �lter rejected all unmatchable

functions that were encountered� However� according to results of Table �� this �lter is

relatively expensive to compute when comparing with other �lters ����� We believe that this

�lter should be used only after other �lters have failed to prune�

Table � goes here�

� Function Decomposition

While a problem with �nite domain can be solved by conversion to Boolean functions� a

problem related to multiple�output Boolean functions can also be solved by interpreting

them as the bit representation of an integer function� For example� a multiple�output Boolean

function hf�� � � � � fm��i can be transformed to an integer function F by F � �m��f� � � � ��

��fm��� Based on this formulation� we present the application of evbdds to performing

function decomposition of multiple�output Boolean functions�

The motivation for using function decomposition in logic synthesis is to reduce the com�

plexity of the problem by a divide�and�conquer paradigm� A function is decomposed into a

set of smaller functions such that each of them is easier to synthesize�

The function decomposition theory was studied by Ashenhurst ���� Curtis ����� and Roth

and Karp ��	�� In Ashenhurst�Curtis method� functions are represented by Karnaugh maps

��



and the decomposability of functions are determined from the number of distinct columns

in the map� In Roth�Karp method� functions are represented by cubes and the decompos�

ability of functions are determined from the cardinality of compatible classes� Recently�

researchers �
� �� ��� ��� have used obdds to determine decomposability of functions� How�

ever� most of these works only consider single�output Boolean functions�

In this section� we start with de�nitions of function decomposition and cut sets in evbdd

representation� Based on the concept of cut sets� we develop an evbdd�based disjunctive

decomposition algorithm�

��� De	nitions

De	nition 
�� A pseudo Boolean function f�x�� � � � � xn��� is said to be decomposable under

bound set fx�� � � � � xi��g and free set fxi� � � � xn��g� 	 � i � n� if f can be transformed to

f ��g��x�� � � � � xi���� � � � � gj�x�� � � � � xi���� xi� � � � � xn��� such that the number of inputs to f � is

smaller than that of f � If j equals �� then it is simple decomposable�

Note that since inputs to a pseudo Boolean function are Boolean variables� function gk�s

are Boolean functions� Here� we consider only disjunctive decomposition �the intersection of

bound set and free set is empty��

De	nition 
�� Given an evbdd hc�vi representing f�x�� � � � � xn��� with variable ordering

x� � � � � � xn�� and bound set B � fx�� � � � � xig� we de�ne

cut set�hc�vi� B� � fhc��v�i j hc��v�i � eval�hc�vi� j�� 	 � j � �ig�

For the sake of readability� we use the �attened form of evbdds in this section�

Example 
�� Given a function f as shown in Fig� 
 with bound set B � fx�� x�� x�g�

cut set�f�B� � fa�b� c�dg� �

Figure � goes here�

If an evbdd is used to represent a Boolean function� then each node in the cut set

corresponds to a distinct column in the Ashenhurst�Curtis method ��� ��� and a compatible

class in the Roth�Karp decomposition algorithm ��	��

�




��� Disjunctive Decomposition

��� ��� ��� describe algorithms for disjunctive decomposition of single�output Boolean

functions based on the obdd representation of these functions� However the concept of

communication links used in ��� ��� cannot be directly applied to multiple output functions�

Here� we present an evbdd�based disjunctive decomposition algorithm which is an extension

of the algorithm presented in �����

Algorithm D� Given a function f represented in an evbdd vf and a bound set B� a

disjunctive decomposition with respect to B is carried out in the following steps�

�� Compute the cut set with respect to B� Let cut set�v� B� � fu�� � � � �uk��g�

�� Encode each node in the cut set by dlog� ke � j bits�

�� Construct vm�s to represent gm�s� 	 � m � j�

Replace each node u with encoding b�� � � � � bj�� in the cut set by terminal node bm�

�� Construct vf � to represent function f ��

Replace the top part of vf by a new top on variables g�� � � � � gj�� such that eval�vf �� l� �

ul for 	 � l � k � �� eval�vf �� l� � uk�� for k � � � l � �j �

The correctness of this algorithm can be intuitively argued as follows� For any input

pattern m in the bound set� the evaluation of m in function f will result at a node in the

cut set with encoding e� The evaluation of m on the gl functions should thus produce the

function values e� The evaluation of e in function f � should also end at the same node in the

cut set� Thus� the composition of f � and gl�s becomes equivalent to f �

In step � of Algorithm D� we use an arbitrary input encoding which is not unique�

Di�erent encodings will result in di�erent decompositions� Furthermore� when k � �j � not

every j�bit pattern is used in the encoding of the cut set� Function gl�s can never generate

function values which correspond to the patterns absent from the encoding� thus we can

assign these patterns to any node in the cut set� In step �� we assign them to the last node

in the cut set �uk���� Alternatively� we could have made them into explicit don�t�cares�

Lemma 
�� Given an evbdd vf with variable ordering x� � � � � � xn�� representing

f�x�� � � � � xn���� a bound set B � fx�� � � � � xi��g and cut set�vf � B� � fu�� � � � �uk��g� if

Algorithm D returns evbdds vf ��vg�� � � � �vgj��� then

f�x�� � � � � xn��� � f ��g��x�� � � � � xi���� � � � � gj���x�� � � � � xi���� xi� � � � � xn���

where f �� g�� � � � � gj�� are the functions denoted by vf ��vg�� � � � �vgj��� respectively�

�




Example 
�� Fig� � shows an example of disjunctive decomposition in evbdds� The eval�

uation of the input pattern x� � �� x� � 	� and x� � � in function F will end at the leftmost

x��node which has encoding �	� The evaluation of the same input pattern in functions g�

and g� would produce function values � and 	� Then� with g� being � and g� being 	 in

function F �� it would also end at the leftmost x��node� �

Figure � goes here�

When an evbdd is used to represent a Boolean function� Algorithm D corresponds to

a disjunctive decomposition algorithm for Boolean functions� when an evbdd represents an

integer function� then Algorithm D can be used as a disjunctive decomposition algorithm for

multiple�output Boolean functions as shown in the following example�

Example 
�� A ��output Boolean function as shown in Fig � �a� can be converted into

an integer function as shown in Fig� � �b� through F � �f� � �f� � f�� The application of

Algorithm D on F is the one shown in the previous example� After decomposition� we can

convert F � back to a ��output Boolean function f ��� f
�

�� and f ��� �

Figure 
 goes here�

��� Computing Cut sets for All Possible Bound Sets

In the previous section� we showed how to perform function decomposition directly on

evbdds when a bound set is given� In this section� we show how to compute the cut sets

for all bound sets of �single�output� Boolean functions�

Our method is based on the encoding of columns of the decomposition chart where free

variables de�ne the rows and bound variables de�ne the columns ��� ���� Decomposability

is determined by the number of distinct columns �i�e�� bit vectors�� By encoding these bit

��



vectors as integers� we transform the problem to that of computing the cardinality of a set

of integers�

Initially� every variable is in the free set� For each variable xi� we perform the following

two operations�

�� include� include xi in the bound set to derive a new cut set� and

�� exclude� partially encode the columns such that distinct columns are given unique

codes and variable xi is permanently excluded from the bound set�

Example 
�
 Fig� � �a� shows a decomposition chart where variable x is in the free set

and a� b� c� d� e� f� and g are Boolean values� To perform the include operation� we move the

bottom two rows to the left of the top two rows such that x now is in the bound set �Fig� �

�b��� To perform the exclude operation� we encode bit vectors hc� ai� hd� bi� hg� ei� and hh� fi

as �c � a� �d � b� �g � e� and �h � f � respectively �Fig� � �c��� The coded decomposition

chart preserves the distinctness of columns� that is� column ha� b� c� di is distinct from column

he� f� g� hi if and only if column h�c � a� �d � bi is distinct from column h�g � e� �h � fi�

Furthermore� variable x is absent from the encoded decomposition chart and will never be

included in the bound set� �

Figure � goes here�

Given an evbdd v with the top variable xi� the right and left children of v correspond

to the top and bottom halves of rows in the decomposition chart� Thus� operations include

and exclude in the evbdd representation are carried out in the following way�

�� include� construct the set fchildl�v�� childr�v�g� and

�� exclude� construct an evbdd representing ��
i

� childl�v� � childr�v� where ��
i

is to

ensure that the resulting evbdd has a unique encoded representation�

Example 
�� Fig� �	 �a� is the evbdd representation of the decomposition chart in Fig� �

�a�� The corresponding operations include and exclude are shown in Fig� �	 �b� and �c��

respectively� �

��



Figure �� goes here�

Pseudo code cut set all computes the cardinality of the cut set for every possible bound

set of a given function� The routine returns the set fhb� ki j b is a bound set and k is the

cardinality of the cut set of bg� Initially� we have i � 	 and node set � fvg where v is the

evbdd representing the given function� This corresponds to the bound set B � � and free

set X where X is the set of input variables� If i � n� then we reach the terminal case and

node set is the �encoded� cut set for bound set B �line ��� otherwise� we perform include

and exclude operations with respect to variable xi �lines � and ��� We repeat the process for

variable xi�� in lines � and 
� In line 
� the union of hb� ki�s from lines � and 
 is returned�

Pseudo code include and exclude perform the include and exclude operations for a set of

evbdd nodes�

cut set all�node set� B� i�

f

� if �i �� n� return�fhB� j node set jig��

� inc set � include�node set� i��

� exc set � exclude�node set� i��

	 inc � cut set all�inc set� B � fxig� i� ���


 exc � cut set all�exc set� B� i� ���

� return�inc� exc��

g

include�node set� i�

f

� new set � ��

� for each node u � node set f

� if �index�variable�u�� �� i�

	 new set � new set � fchildl�u�� childr�u�g�


 else �� index�u� � i ��

� new set � new set � fug�

� g


 return new set�

g

��



exclude�node set� i�

f

� new set � ��

� for each node u � node set f

� if �index�variable�u�� �� i�

	 new set � new set � f��
i

� childl�u� � childr�u�g�


 else �� index�u� � i ��

� new set � new set � f��
i

� u� ug�

� g


 return new set�

g

Example 
�� Fig� �� �a� shows a function represented by both a truth table and a �attened

evbdd� Initially� the bound set is empty� The applications of include and exclude with

respect to variable x� are shown in Fig� �� �b� and �c�� respectively� In Fig� �� �b�� the

bound set is fx�g and the cardinality of the cut set is �� In Fig� �� �c�� the bound set is �

with cut set size ��

The application of include and exclude on Fig� �� �b� with respect to variable x� results in

Fig� �� �a� and �b� with bound sets fx�� x�g and fx�g and cut set sizes � and �� respectively�

The application of include and exclude on Fig� �� �c� with respect to variable x� results in

Fig� �� �c� and �d� with bound sets fx�g and � and cut set sizes � and �� respectively�

The application of include and exclude on Fig� �� �b� with respect to variable x� results

in Fig� �� �a� and �b� with bound sets fx�� x�g and fx�g and encoded cut sets f������
g

and �� ��� respectively� In Fig� ��� the top row shows the encoded decomposition charts� the

second row shows the encoded cut sets� and the third row shows the decomposition charts�

The encodings used for the bottom row in Fig� �� �a� and �b� are �� row� � �� row� and

�� row� � �� row� � � � row� � � � row�� respectively� �

Figure �� goes here�

Figure �� goes here�

�	



Figure �� goes here�

Since there are �n di�erent bound sets for an n variable function� the computation of the

cut set for every bound set is very expensive� If we replace line � in cut set all by

� if �level �� n jj j var set j� k� return�fhB� j node set jig��

then cut set all becomes a routine for computing the cardinality of the cut set for every

bound set whose size is less than or equal to k which is useful for the technology mapping

of k�input look�up table �eld programmable gate arrays �����

A naive way to compute the cut set for every bound set is to move the bound variables

to the top of the evbdd� Compared to this approach� our approach has the following

advantages� Firstly� it is well known that the size of obdd �and evbdd� is very sensitive

to the variable ordering �at least in many practical applications ��
��� Moving the bound

variables to the top will change the variable ordering and hence may cause storage problems�

Our method will not change the variable ordering� Secondly� the number of variables in the

direct variable exchange approach is never reduced� In contrast� in our approach� after the

include and exclude operations� the number of variables will be decreased by ��

��� Experimental Results

In order to evaluate the e�ectiveness of cut set all� we compared our program with the

Roth�Karp decomposition algorithm implemented in sis� In particular� we used the following

command on a number of mcnc�� benchmark sets�

�xl k decomp� �n � �e �d �f �		� which for every node in the Boolean network� �nds the best

bound set of size � � that reduces the node�s variable support after decomposition�

and then decomposes the node� and modi�es the network to re�ect the change�

We provided equivalent evbdd�based implementation of this sis command�

To assign a unique encoding for each evbdd node� we need integers with �i bits where

i is the number of variables considered so far� This is clearly very expensive� One way

to overcome this di�culty is to relax the uniqueness condition �e�g� use � instead of ��
i

��

Then� two di�erent evbdd nodes representing di�erent functions may be assigned the same

encoding� As a result� the size of the cut set for a given bound set may be underestimated�

�xl k decomp does not process circuits with � �� inputs�

��



This scheme may be used as a �lter� For example� to �nd the bound set which has the

smallest cut set� we �rst perform cut set all to �nd the best ones� and then check for the

real cut sets by moving the bound variables to the top of the evbdd�

Results shown in Table � used � as the weight in exclude operation� We stopped the

processes which took more that ���� cpu seconds on a Sun Sparc	Station II with 
� MB of

memory� We obtain signi�cant speed	ups �by an average factor of ����
�

Table � goes here�

� Conclusions

Because of the compactness and canonical properties� obdds and evbdds have been shown

e�ective for handling veri�cation problems ��� ���� because of the additive property� evbdds

are also useful for solving integer linear programming problems �e�g�� Sec� �
� Boolean values

are a subdomain of integer values and Boolean operations are special cases of arithmetic

operations� With this interpretation� evbdds are particularly useful for applications which

require both Boolean and integer operations� Examples are shown in performing spectral

transformations �e�g�� Sec� �
 and representing multiple output Boolean functions �e�g�� Sec�

�
�
evbdds could be used for other applications� For example� ���� uses mtbdds to represent

general matrices and to perform matrix operation such as standard and Strassen matrix
multiplication� and lu factorization� ���� uses obdds to implement a symbolic algorithm
for maximum �ow in �	� network� Equivalent evbdd	based algorithms can be developed to
solve these problems�
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