

Dynamic Voltage and Frequency Scaling based on
Workload Decomposition*

Kihwan Choi, Ramakrishna Soma, and Massoud Pedram
Department of EE-Systems, University of Southern California, Los Angeles, CA 90089

{kihwanch, rsoma, pedram}@usc.edu

ABSTRACT
This paper presents a technique called “workload decomposition” in
which the CPU workload is decomposed in two parts: on-chip and
off-chip. The on-chip workload signifies the CPU clock cycles that
are required to execute instructions in the CPU whereas the off-chip
workload captures the number of external memory access clock
cycles that are required to perform external memory transactions.
When combined with a dynamic voltage and frequency scaling
(DVFS) technique to minimize the energy consumption, this
workload decomposition method results in higher energy savings.
The workload decomposition itself is performed at run time based
on statistics reported by a performance monitoring unit (PMU)
without a need for application profiling or compiler support. We
have implemented the proposed DVFS with workload
decomposition technique on the BitsyX platform, an Intel PXA255-
based platform manufactured by ADS Inc., and performed detailed
energy measurements. These measurements show that, for a number
of widely used software applications, a CPU energy saving of 80%
can be achieved for memory-bound programs while satisfying the
user-specified timing constraints.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineering

General Terms
Algorithms, Measurement, Experimentation

Keywords
Dynamic voltage and frequency scaling, workload decomposition.

1. INTRODUCTION
Demand for low power consumption in battery-powered computer
systems has risen sharply. This is due to the fact that extending the
service lifetime of these systems by reducing their power
dissipation requirements is a key customer requirement. Low
power design is a critical design consideration even in high-end
computer systems where expensive cooling and packaging costs and
lower reliability often associated with high levels of on-chip power
dissipation are the important concerns.

Dynamic voltage and frequency scaling (DVFS) technique has
proven to be a highly effective method of achieving low power

consumption while meeting the performance requirements. The key

idea behind DVFS technique is to dynamically scale the supply
voltage level of the CPU so as to provide “just-enough” circuit
speed to process the system workload while meeting total
computation time and/or throughput constraints, and thereby,
reduce the energy dissipation (which is quadratically dependent on
the supply voltage level.) A number of modern microprocessors
such as Intel’s XScale [1] and Transmeta’s Cruso [2] are equipped
with the DVFS functionality.

The workload of a task is often represented by the number of CPU
clock cycles required to complete the task and is either given in
advance for hard real-time operation or is predicted at run-time for
soft-real time operation such as multimedia processing. In both
cases, however, the question of workload composition in terms of
the CPU-bound versus memory-bound instructions is often
overlooked. Recall that the main memory is asynchronous with the
processor and often has its own clock. Now if the execution time of
a task is dominated by the memory access time, then the CPU speed
can be slowed down with little impact on the total execution time of
that task. However, this can result in significant CPU energy saving.

The decomposition of CPU workload of a task can be done either
statically using off-line profiling and compiler support or
dynamically using a performance monitoring unit (PMU), which
most modern processors such as XScale80200 [1] or PXA255 [3]
come equipped with. In this paper, we present a Dynamic Voltage
and Frequency Scaling based on Workload Decomposition (DVFS-
WD). The proposed technique has been implemented on an
embedded system platform built around the PXA255 processor.
Detailed energy savings results have been obtained by doing current
measurements in actual hardware. On this platform, we achieved
energy saving (CPU+memory) of 20-40% with 10-30%
performance loss for CPU-bound applications, whereas 10-20%
saving was achieved for memory-bound applications. Considering
CPU energy saving only, about 80% saving can be possible for
memory-bound programs. For both CPU and memory-bound
programs, target performance degradation was finely controlled.

The main contributions of our paper are as follows. 1) We propose a
DVFS technique for saving energy consumption in which the
workload of a task is dynamically decomposed into on-chip and off-
chip by using an embedded hardware unit in the processor. 2) We
show how to accurately and efficiently calculate the ratio of on-chip
computation time to off-chip access times by using information
about the data cache misses and the CPU stall cycles due to data
dependencies. 3) We present a simple timing model for calculating
the off-chip access overhead in terms of internal bus and external
memory access clock cycle times. 4) We implement the proposed
DVFS-WD policy on a popular hardware platform and report
hardware-based measurements of energy consumption savings for a
number of common applications under different timing constraints.

The remainder of this paper is organized as follows. Related work is
described in Section 2. In Section 3 and 4, a new DVFS policy is
presented. Details of the implementation, including both hardware

* This research was supported in part by DARPA PAC/C program under
contract DAAB07-02-C-P302 and by NSF under grant no. 9988441.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9-11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

and software, are described in Section 5. Experimental results and
conclusions are given in Sections 6 and 7, respectively.

2. RELATED WORKS
Previous DVFS works may be divided into two categories based on
the scaling granularity: Inter-task and intra-task voltage scheduling.
Inter-task voltage scheduling determines the supply voltage on task-
by-task basis, i.e., coarse-grained, while intra-task voltage
scheduling adjusts the supply voltage within an individual task
boundary, i.e., fine-grained. Many scheduling policies for hard real-
time applications are classified as inter-task scheduling and multi-
task scheduling in the operating system (OS) is the focus of
[4][5][6][7][8]. More precisely, scheduling is performed at task
level by the OS so as to reduce energy consumption while meeting
hard timing constraints for each task. There are also a number of
studies that implement intra-task DVFS as part of compile-time
optimization or by modifying application program itself. In [9], an
intra-task voltage scheduling technique was proposed in which the
application code is divided into many segments and the worst-case
execution time of each segment (which is obtained from a static
timing analysis) is used to determine a suitable voltage for the next
segment. In [10] a method based on a software feedback loop was
proposed. In this method, a deadline for each time slot is provided.

There are different DVFS approaches that make use of the
asynchrony of memory access to the CPU clock during task
execution. In [11] and [12], compiler-assisted DVFS techniques
were proposed, in which frequency is lowered in memory-bound
region of a program with little performance degradation. DVFS
approaches that rely on micro-architecture or embedded hardware
without any assistance from a compiler or a simulator have also
been reported. In [13] a microarchitecture-driven DVFS technique
was proposed in which cache miss drives the voltage scaling. In
[14] IPC (instruction per cycle) rate of a program execution was
used to guide the voltage scaling. Reference [15] presented a policy
to choose the optimal CPU clock frequency under a fixed
performance degradation constraint (of say 10%) based on dynamic
program behavior such as the number of executed instructions and
memory access counts during the whole execution time by using a
performance monitoring unit (PMU). In [16], a DVFS technique
which enables more precise energy-performance trade-off using
PMU was presented in which the optimal CPU clock frequency and
the corresponding minimum voltage level are chosen based on the
ratio of the on-chip computation time to the off-chip access time.

In this paper, we propose a DVFS policy for non real-time
applications, which makes use of the same ratio of on-chip to off-
chip workload. However, our work is different from that of [16] in a
number of key points. First, the platform used in [16] was the
Apollo Testbed II which uses an Intel’s XScale processor, an Intel
80312 memory controller with separate controllers (USB, PCMCIA,
FireWire, etc.) connected to the CPU through a PCI bus interface.
In contrast, our experimental platform - BitsyX designed and built
by ADS Inc. [17] - is built around the Intel’s PXA255 processor
with integrated controllers and no PCI bus. This platform is more
representative of a typical low-power, embedded system. Second, in
[16], the external bus clock frequency was fixed at 100 MHz (for
SDRAM access) or 33 MHz (for frame buffer access through the
PCI bus.) In contrast, in BitsyX platform, the memory bus clock
frequency also is scaled in synchrony with the CPU frequency. As a
result, the problem we must solve here is more complex than the
one solved in [16]. More precisely, we must estimate the on-chip
and off-chip execution times differently in order to account for the
synchronized scaling effect of the memory bus frequency. Third,
the PMU in Xscale processor reports the number of off-chip

accesses directly and so the task of estimating the off-chip
execution time in [16] was rather straightforward. Unfortunately,
the PXA255’s PMU does not provide this information. Instead it
provides other statistics that can only indirectly capture the required
off-chip event count. More precisely, we propose a novel technique
whereby the off-chip execution time is calculated based on two
separate events: the data cache miss count and the CPU stall cycle
count. Finally, whereas in the XScale processor case two events
were sufficient to differentiate between on-chip and off-chip
workloads, in the PXA255 case, we ought to monitor three different
events. However, the PXA255’s PMU only reports two events. So
we present a scheme whereby the events of interests are read in a
time-multiplexed fashion.

3. WORKLOAD DECOMPOSITION
3.1 Energy-performance trade-offs
A software program consists of a stream of instructions to be
executed. Execution time of the program can be represented in
terms of the CPI, the number of instructions being executed, and the
CPU frequency as follows [18]:

 ==
∑

1

n

i
i

CPU

CPI
T

f

 (1)

where n is the total number of instructions in the instruction stream,
CPIi is the number of CPU clock cycles for the ith instruction, and
fCPU is the CPU frequency. Note that as we will show later, eq. (1) is
only valid for CPU-intensive application programs.

Workload of a task is defined as the sum of the CPI’s of all
instructions in the instruction stream of the task. It depends on
various dynamic parameters such as the on-chip stall cycle count
due to data/control dependency or branch misprediction, and the off-
chip stall cycle count due to instruction/data (I/D) cache miss or I/D
TLB miss. Some of these events result in a small overhead (e.g.,
cache hit) while others give rise to a large penalty due to external
memory access e.g., cache miss. Thus, the workload of a program,
W, can be written as:
 = ⋅

⋅ + + +0 _ _ _ = ()

avg

avg avg avg
branch miss stall onchip stall offchip

W N CPI

N CPI CPI CPI CPI

 (2)

where N is the number of instructions, CPI0 is the ideal CPI which
is 1 for a single-issue general-purpose microprocessor,
CPIavg

branch_miss denotes the number of CPU clock cycles due to
branch misprediction overhead, and CPIavg

stall_onchip and
CPIavg

stall_offchip denote the numbers of CPU clock cycles due to on-
chip stalls and off-chip stalls, respectively.

During an off-chip access (which is asynchronous with respect to
the CPU clock), the CPU stalls until the requested memory
transactions are completed. Thus, N*CPIavg

stall_offchip CPU clock
cycles are wasted without doing any useful work. Furthermore, the
off-chip access time is solely determined by the external access
clock cycle, not by the CPU clock cycle. Considering this fact, it is
obvious that eq. (1) does not hold for memory-intensive
applications in which frequent memory accesses occur.

To illustrate the key point of the workload decomposition for the
system energy reduction, we define two different types of workload:
on-chip and off-chip workload.

Definition 1: On-chip workload, WON, is the number of CPU clock
cycles required to perform the set of on-chip instructions, which are
executed inside the CPU only. The execution time required to finish
WON, TON, varies depending on the CPU frequency, fCPU, and is
calculated as TON = WON/fCPU.

Definition 2: Off-chip workload, WOFF, is the number of external
clock cycles needed to perform the set of off chip accesses. Note

that the CPU stalls until the external memory transactions are
completed (see discussion about out-of-order execution processors
later in this section.)

The execution time required to complete WOFF, TOFF, depends on
the external memory clock frequency, fEXT, and is calculated as TOFF
= WOFF/fEXT.

Based on the def. 1 and 2 and eq. (2), WON and WOFF are written as:
 = ⋅ = ⋅ + +

= ⋅ = ⋅
0 _ _

_

()ON avg avg avg
on branch miss stall onchip

OFF avg avg
stall offchip off

W N CPI N CPI CPI CPI

W N CPI M CPI

 (3)

where CPIavg
on denotes the number of CPU clock cycles per on-chip

instruction, M is the number of off-chip accesses, and CPIavg
off

denotes the number of external clock cycles per an off-chip access.
From these two definitions, the execution time, T, for a task is
calculated as:

 ⋅ ⋅= + = +
avg avg

ON OFF on off
CPU EXT

N CPI M CPI
T T T

f f
 (4)

Notice that this breakdown of the total execution time is inexact
when the target processor supports out-of-order execution whereby
instructions after the instruction that has caused an off-chip access
may be executed during the off-chip access. In such a case, TON and
TOFF can overlap. However, in practice, the error introduced in this
way tends to be quite small considering that the external memory
access time is about two orders of magnitude greater than the
instruction execution time. Therefore, out-of-order execution does
not cause a large error in eq. (4). When the CPU frequency changes,
the change in T is solely due to TON:

 ∆ ∆ ∆= ≈
∆ ∆ ∆

, 0
ON OFF

CPU CPU CPU

T T T
f f f

 (5)

The increased execution time of a program due to lowered clock
frequency represents the performance loss (PFloss), which is defined
as follows:

= −

max

1
CPU

CPU

f
loss

f

T
PF

T

 (6)

where
max
CPUf is the maximum frequency of the CPU,

CPUf
T and

max
CPUf

T are

the total task execution times at CPU frequencies of CPUf and
max
CPUf ,

respectively. From eq. (4) and (6), the optimal frequency,
arg
CPU
t etf , for

a given PFloss value is calculated as follows:

=
   

+ ⋅ + ⋅   
    

max
arg

max1 1

CPU
CPU

t et CPUOFF

loss ON CPU

f
f

fT
PF

T f

 (7)

Notice that
arg
CPU
t etf denotes the target frequency for the next time slot

whereas CPUf is the CPU frequency of the current time slot. From

the above equation,
arg
CPU
t etf is closely related to the ratio of TOFF and

TON of a program. Consequently, accurate calculation of TOFF and
TON, i.e., WOFF and WON, is quite important to the effectiveness of
our proposed DVFS approach. We will show how this calculation
can be done online for the BitsyX system with PXA255 as the main
processor (cf. Section 4.)

3.2 Scaling granularity
The ideal DVFS can instantaneously change the voltage/frequency
values. In reality, however, it takes time to change the CPU
frequency/voltage due to factors such as the internal PLL (phase
lock loop) locking time and capacitances that exist in the voltage
path. For the PXA255 processor, the latency for switching the CPU
voltage/frequency is 500 µsec [19]. The minimum quantum of time
for scaling the CPU frequency/voltage must be at least two to three
orders of magnitude larger than this switching latency. At the same

time, we would like to minimize the overhead of the
voltage/frequency scaling as far as the OS is concerned. Therefore,
we use the start time of an (OS) quantum (approximately 60msec in
Linux) used by the OS to schedule processes as DVFS decision
points, that is, each time the OS invokes the scheduler to schedule
processes in the next quantum, we also make to decision as to
whether or not the CPU voltage/frequency is changed, and if so, we
then scale the voltage/frequency of the CPU.

4. SYSTEM DESCRIPTION
4.1 BitsyX
Our target system for DVFS is the BitsyX system from ADS Inc.
[17]. BitsyX has a PXA255 microprocessor which is a 32-bit RISC
processor core, with a 32KB instruction cache and a 32KB write-
back data cache, a 2KB mini-cache, a write buffer, and a memory
management unit (MMU) combined in a single chip. It can operate
from 100MHz to 400MHz, with a corresponding core supply
voltage of 0.8V to 1.3V. Power supply for the PXA255 core is
provided externally through an on-board variable voltage generator.
There are nine different frequency combinations, F1 to F9. Each
combination is given as a 3-tuple consisting of the processor clock
frequency (fCPU), the internal bus clock frequency (fINT), and the
external bus clock frequency (fEXT) . These frequency combinations
are reported in Table 1. The internal bus connects the core and other
functional blocks inside the CPU such as I/D-cache unit and the
memory controller whereas the external bus in the target system is
connected to SDRAM (64MB). It should be noted that when
frequency scaling is performed, not only fCPU is changed but also
fINT and fEXT are scaled. Therefore, the effect of fINT and fEXT on the
total program execution time should also be considered.

 Table 1: Frequency combinations in BitsyX system

No CPU
(MHz)

Internal
bus (MHz)

External bus
(MHz)

F1 100 50 100

F2 200 50 100

F3 300 50 100

F4 200 100 100

F5 300 100 100

F6 400 100 100

F7 400 200 100

F8 133 66 133

F9 265 133 133

4.2 Execution time model for BitsyX system
To derive a suitable execution time model of our target system,
three different applications were run over all frequency sets, F1 to F9,
and the total execution time for each case was measured. Figure 1
provides the execution time for each frequency setting normalized
to the execution time with the maximum performance setting, i.e.,
setting F7. From this Figure, we can easily see that “djpeg” is more
CPU-intensive (i.e., TON >> TOFF) than the “gzip” and “qsort”
applications since lowering the CPU frequency for “djpeg”
introduces significant execution time increase compared to “gzip”
and “qsort”. Comparing execution times of settings F1, F2 and F3
(where only the CPU frequency is different, while all other clocks
are the same) also validates this observation. In fact, this
comparison allows us to determine that “gzip” is more memory-
bound than “qsort” by looking at time variation according to CPU
frequency only. The same observations can be made by examining
settings F4, F5, and F6, which are again only different from each
other in terms of the CPU clock frequency.

Clearly, TOFF is strongly dependent on the external clock frequency.
However, an important observation from the data reported in Figure

1 is that the internal bus clock frequency also affects TOFF. The
relation between the internal bus clock and TOFF can be understood
from a closer examination of the operations performed during the
external memory access. For example, a D-cache miss requires two
operations: data fetch from the external memory and data transfer to
the CPU core where the cache-line and destination register are
updated. The time needed for the latter operation is obviously
affected by the internal bus frequency. Due to lack of exact timing
information about these two operations which are performed during
a D-cache miss service, we have opted to model TOFF as a function
of both the internal clock frequency and the external memory access
clock as follows:
 α α⋅ − ⋅= + (1)OFF OFF

OFF
INT EXT

W W
T

f f
 (8)

where α is the ratio between the data transfer time and the data
fetch time and f INT is internal bus clock frequency.

Based on the experimental results on various application programs,
an α value of ~0.35 was obtained for all applications. For this value,
the error in predicting the execution time was less than 3% for all
nine frequency settings with tested applications.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

Frequency combination [Fn]

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e djpeg
qsort
gzip

Figure 1. Execution time variation over different frequency

combinations.

4.3 Events monitored through PXA255’s PMU
Static calculation of WON and WOFF of a program e.g., during the
compilation time, is very difficult because on/off-chip latencies are
greatly affected by dynamic behavior such as cache statistics and
different access overheads for various external devices. So, these
dynamic behaviors should be captured at run time. This task can be
accomplished by using PXA255’s PMU. The PMU supports
monitoring of 15 performance events including cache hit/miss, TLB
hit/miss, and number of executed instructions. The overhead for
accessing the PMU (for both read and write operations) is less than
1usec [15] and can thus be ignored. However, there is a limitation in
using these events in the sense that only two events can be
monitored at the same time along with the number of clock counts
in a quantum (CCNT).

For our DVFS technique with workload decomposition, we need
CPIavg

on to separate workload. We performed many experiments to
figure out which events can give useful information about the
workload decomposition. Based on our experimental results, the
following three events proved to be most helpful: (i) number of
instructions being executed (INSTR) and (ii) number of stall cycles
due to data dependency (STALL) (iii) number of D-cache miss
(DMISS). INSTR is required to get the CPI value, which indirectly
represents the amount of off-chip workload. STALL captures the
number of clock cycles when the CPU is stalled due to data
dependency either because of on-chip stalls from internal register
dependencies or off-chip stalls from external memory access. Note
that DMISS is not exactly equivalent to the off-chip access count,
because of the “miss-under-miss” capability using the “fill buffer”
and “pending buffer” in PXA255-microarchitecture [3]. When a D-
cache miss requests data in the same cache line as a previous D-

cache miss event, then an external memory access does not occur
for the current D-cache miss. In spite of this complication, the D-
cache miss event can be used as an approximate metric to determine
whether a task is CPU or memory-bound.

4.4 Calculating the average on-chip CPI
Using INSTR and STALL event statistics along with CCNT,
CPIavg

on can be extracted. At the start of each quantum, the PMU
reports the CCNT, INSTR, and STALL. From these parameter
values, we can calculate the average CPU cycles per instruction
(CPIavg) for the instruction stream as the ratio of CCNT to INSTR.
Similarly, we can calculate the average number of stall cycles per
instruction (SPIavg). Here, SPIavg accounts for both on-chip
(SPIavg

on) and off-chip access (SPIavg
off) stalls. In Figure 2, we plot

CPIavg on the y-axis and SPIavg on the x-axis for (a) “gzip” and (b)
“djpeg” applications under different frequency settings per Table 1.
Each dot in the plot represents one PMU report. From this figure,
we can easily see that CPIavg is linearly related to SPIavg:
 = ⋅ +avg avgCPI k SPI c (9)
k is the slope (~1). The intercept c is equal to the average on-chip
CPI without any stall cycles, CPImin

on. Furthermore, CPImin
on is

equal to CPI0+CPIavg
branch in eq. (3). Finally note that

SPIavg=CPIavg
stall_onchip+CPIavg

stall_offchip.

0

2

4

6

8

10

12

0 2 4 6 8 10

SPI avg

C
P

Iav
g

(a) gzip

0

2

4

6

8

10

12

0 2 4 6 8 10

SPI avg

C
P

Iav
g

(a) gzip

0

1

2

3

4

0 0.5 1 1.5 2

SPI avg

C
P

Iav
g

(b) djpeg

0

1

2

3

4

0 0.5 1 1.5 2

SPI avg

C
P

Iav
g

(b) djpeg

Figure 2. Contour plots of CPIavg versus SPIavg for different

clock frequencies combinations.

SPIavg

CPIavg

CPImin
on

SPImin

CPImax
on

CPImin
on+DF*(n-1)

Kn is constant: K1 < K2 < … < Kn

CPIavg = k*SPIavg+c

CPImax
on

CPImin
on

CPImin
on+DF*1

CPImin
on+DF*2

DPI < K1

CPIavg
on(DPI) DPI

K1 < DPI ≤ K2

Kn-2 < DPI ≤ Kn-1

Kn-1 < DPI ≤ Kn

DPI > Kn

DF = (CPImax
on-CPImin

on)/n

CPIavg
on

SPIavg

CPIavg

CPImin
on

SPImin

CPImax
on

CPImin
on+DF*(n-1)

Kn is constant: K1 < K2 < … < Kn

CPIavg = k*SPIavg+c

CPImax
on

CPImin
on

CPImin
on+DF*1

CPImin
on+DF*2

DPI < K1

CPIavg
on(DPI) DPI

K1 < DPI ≤ K2

Kn-2 < DPI ≤ Kn-1

Kn-1 < DPI ≤ Kn

DPI > Kn

DF = (CPImax
on-CPImin

on)/n

CPIavg
on

Figure 3. SPIavg

on extraction using DPI.

To obtain CPIavg
on, which is obviously equal to CPImin

on+SPIavg
on, it

is required to extract SPIavg
on from SPIavg. Figure 3 shows a method

of obtaining SPIavg
on from the D-cache miss statistics. The range in

which CPIavg
on can exist is CPImin

on to CPImax
on which is the CPI

value at the minimum SPIavg (SPImin) reported. Based on the
experimental results in Figure 2, it is found that CPIavg

on tends to be
closer to CPImax

on in case of CPU-intensive (“djpeg”) and closer to

CPImin
on in case of memory-bound program (“gzip”). Let DPI

denotes D-cache miss count per instruction, defined as
DMISS/INSTR. When there are many D-cache miss events, there is
a higher probability of off-chip accesses (although a D-cache miss
does not always result in an off-chip access as explained
previously.) So, we equally divided the region from CPImax

on to
CPImin

on, into n sub-regions and each region is selected with the
reported DPI value, which results in CPIavg

on = CPIavg
min +

CPIavg
k(DPIk), where CPIavg

k(DPIk) is the CPIavg value for the
corresponding DPIk value.

4.5 Determining the optimal frequency setting
After obtaining the average on-chip CPI value for the current
quantum i, CPIavg

on,i, we calculate the on-chip and off-chip
execution times for this quantum, TON

i and TOFF
i, as follows:

 ⋅
= = −, ,

avg
i on iON OFF ON

i i i iCPU
i

N CPI
T T T T

f

 (10)

where Ni is the number of executed instructions in this quantum,
and Ti and fCPU

i are the execution time and the CPU frequency
during quantum i, respectively.

WON
i and WOFF

i are derived from the calculated values of TON
i and

TOFF
i based on def. 1 and eq. (8). It is assumed that WON

i+1 and
WOFF

i+1 are equal to WON
i and WOFF

i, respectively. Next, a
frequency setting for the quantum i+1, Fopt

i+1, which satisfies the
following equation is chosen as the optimal frequency setting:

+
+ ≤ + ⋅1

max

1 (1)i
opt

i i
loss FF

T PF T
 (11)

where
+
+

1
1

i
opt

i
F

T is the expected execution time of quantum i+1 at Fopt
i+1

and
max

i
FT is the execution time of quantum i at Fmax. If there are

more than one frequency settings that satisfy the above condition,
then the setting that gives the expected execution time, which is
closest to the target execution time, will be chosen.

5. IMPLEMENTATION
We implemented the proposed policy on the BitsyX platform,
which runs Linux (v2.4.17). In particular, we wrote a software
module implementing the proposed policy. This module is tied to
the linux OS scheduler in order to allow voltage scaling to occur at
every context switch. Figure 4 shows the software architecture for
our DVFS implementation.

“proc” interface module

Linux
scheduler

policy module

PMU access
module

DVFS
module

XScale processor

Kernel space

external PFloss input
(ex, battery status or user request)

“proc” interface module

Linux
scheduler

policy module

PMU access
module

DVFS
module

XScale processor

Kernel space

external PFloss input
(ex, battery status or user request)

Figure 4. Software architecture of our DVFS implementation.

Our DVFS approach requires three events: INSTR, STALL and
DMISS. Since PXA255’s PMU can only provide two event
statistics at a time, the PMU must be read twice in every quantum:
(INSTR, STALL) pair is read during the first half whereas (INSTR,
DMISS) pair is read during the second half of every quantum.
During the context switch, the PMU values for the previous process
are read and the ideal frequency calculation for the next quantum is
performed as described in section 4. A regression equation is
maintained for each process, which consists of no more than five
long-type variables, resulting in little space overhead for
implementing our DVFS policy.

To measure the power consumption of the system, we inserted a
0.125 ohm precision resistor between the external power source
(~12V) and the system power line, and the actual power
consumption at run time was measured by using a data acquisition
system which operates up to 100 KHz sampling frequency by
reading voltage drop across the precision resistor [22].

6. EXPERIMENTAL RESULTS
Our experiments are performed on a number of applications
including a common UNIX utility program, “gzip”, and four
representative benchmark programs available on the web [20].

Figure 6 represents the measured performance degradation with
target performance loss ranging from 10% to 30% at steps of 10%.
As seen in this figure, we obtained actual performance loss values
very close to the target values for all programs (i.e., actual average
within 2.5% of the target.) Figure 7 depicts the power consumption
waveform of the BitsyX system when running “djpeg” for two
cases: (a) without DVFS and (b) with DVFS In case (a), the
program is run with the maximum performance frequency setting,
i.e., F7, and a 20% target PFloss. As mentioned previously, power
consumptions of the CPU core and the main memory could not be
separately measured. We went about calculating the power
consumption of the CPU core and main memory in BitsyX as Pactive
– Pidle, where Pactive and Pidle denote the total system power
consumptions when the BitsyX is active (performing some task)
and when it is idle. Based on this experimental setup, for this
benchmark, we were able to achieve a 25% energy saving in the
CPU and main memory at the cost of a 22% increase in the total
execution time. The measured energy savings (in CPU and main
memory) for all benchmarks are shown in Figure 8. From these
measurements, we conclude that our proposed DVFS technique
results in energy savings of 20-40% for CPU-bound applications
(“crc”, “djpeg”, and “math”), and 10-20% energy savings for
memory-bound applications (“qsort” and “gzip”) under 10-30%
performance loss bounds. The lower energy saving results for
memory-bound applications should be understood in light of the
fact that in these applications most of the energy is consumed in
accessing the main memory, and of course, the memory energy
consumption is fixed (since operating voltage of memory is fixed
although memory clock frequency varies.) It would be interesting to
report the actual energy saving values for the CPU only as in [16].
Unfortunately, we cannot do this because of the current limitation
of the BitsyX platform (no separate power planes for the CPU and
main memory are provided.) So we go about reporting this data in
an approximate manner as explained below.

When we consider energy savings of the proposed DVFS approach
for the PXA255 processor only, higher energy savings can be
obtained for memory-bound applications. For example, in case of
“gzip”, the total execution time without DVFS is 3.463sec and
1.6016sec is spent for data fetch from memory. Power consumption
of memory chips can be calculated using the specified value
(130mA in active mode) in the memory manufacturer’s data sheet
[21]. Since two memory chips, each of size 32MB, are used in the
BitsyX platform, power consumption of the main memory in
BitsyX board is 3.3V * (130mA + 130mA) = 858mW. CPU power
is calculated as 400mW/(0.85*0.85) = 553.6mW by considering
that two DC-DC converters, one for 12V to 3.3V conversion and
the other for 3.3V to CPU operating voltage conversion with a
conversion efficiency of 0.85 are used in the variable voltage
generator. From these approximate calculations, we conclude that
the ratio of the energy consumptions in the CPU and the main
memory is about 0.75. Now, with this ratio, we can go ahead and
estimate the CPU energy saving from the actual power consumption

data for the CPU plus main memory. Doing this calculation, we
obtain a CPU energy saving of 80% for the memory-bound
applications and 20% for the CPU-bound applications under a 20%
performance loss bound.

32.4 31.0
28.7

31.9
34.6

10.4 10.8 9.9 10.4 10.7

19.5
22.321.7 21.320.9

0

10

20

30

40

50

crc djpeg math qsort gzip

A
ct

u
al

 P
er

fo
rm

an
ce

 L
o

ss
 [

%
]

10% 20% 30%

Target Performance Loss

Figure 6. Actual performance loss values as a function of the

corresponding target values.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time [sec]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

5.6995 sec

“djpeg” @ F7

Pactive / Pidle : 1861.6 /1561.6 mW
PCPU+memory : 300 mW

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time [sec]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

5.6995 sec

“djpeg” @ F7

Pactive / Pidle : 1861.6 /1561.6 mW
PCPU+memory : 300 mW

(a) without DVFS - at maximum frequency setting

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time [sec]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

6.972 sec (22.3% PFloss)

“djpeg” with 20% PFloss

Pactive / Pidle : 1743 / 1560.8 mW

PCPU+memory : 182.2 mW
(25.7 % energy saving)

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time [sec]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

6.972 sec (22.3% PFloss)

“djpeg” with 20% PFloss

Pactive / Pidle : 1743 / 1560.8 mW

PCPU+memory : 182.2 mW
(25.7 % energy saving)

(b) with DVFS under a 20% performance loss constraint

Figure 7. CPU power consumption of with/without DVFS.

0

10

20

30

40

50

crc djpeg math qsort gzip

E
n

er
g

y
S

av
in

g
 [

%
]

10% 20% 30%

Target Performance Loss

Figure 8. Energy saving (CPU+memory) for various

applications.

7. CONCLUSION
In this paper, a regression-based DVFS policy for finely-tunable
energy-performance trade-off was proposed and implemented on an
PXA255-based platform. In the proposed DVFS approach, a
program execution time is decomposed into two parts: on-chip
computation and off-chip access latencies. The CPU
voltage/frequency is scaled based on the ratio of the on-chip and
off-chip latencies for each process under a given performance

degradation factor. This ratio is given by a regression equation,
which is dynamically updated based on runtime event monitoring
data provided by an embedded performance monitoring unit.
Through actual current measurements in hardware, we
demonstrated that energy saving of 20-40% with 10-30%
performance loss for CPU-bound applications, whereas 10-20%
saving was achieved for memory-bound applications. For both CPU
and memory-bound programs, target performance degradation was
finely controlled.

8. REFERENCES
[1] Developer manual: “Intel 80200 Processor Based on Intel XScale

Microarchitecture,” http://developer.intel.com/design/iio/manuals/27
3411.htm

[2] “Cruso SE Processor TM5800 Data Book v2.1,”
http://www.transmeta.com/everywhere/products/embedded/embedde
d_sefamily.html .

[3] User’s manual: “Intel XScale Microarchitecture for the PXA255
Processor” http://www.intel.com/design/pca/applicationsprocessors
/manuals/278796.htm

[4] F. Yao, A. Demers, and S. Shenker, “ A scheduling model for
reduced CPU energy,” IEEE Annual Foundations of Computer
Science, 1995, pp.374-382

[5] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” Proc. of the 36th Annual Design
Automation Conference, pp.134-139, 1999

[6] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava, “Synthesis
techniques for low-power hard real-time systems on variable voltage
processor,” In Proc. of the 19th IEEE Real-Time Systems
Symposium, pp.178-187, 1998

[7] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” Proc. of The International
Symposium on Low Power Electronics and Design, pp.197-202,
Monterey, Aug. 1998

[8] G. Quan and X. Hu, “Minimum energy fixed-priority scheduling for
variable voltage processors,” Proc. of Design Automation and Test
in Europe, pp. 782-787, March 2002.

[9] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task voltage
scheduling using static timing analysis,” Proc. of Design Automation
Conference, 2001, pp. 438-443.

[10] S. Lee and T. Sakurai, “Run-time power control scheme using
software feedback loop for low-power real-time applications,” Proc.
of Asia-Pacific Design Automation Conference, 2000, pp. 381-386.

[11] C. Hsu and U. Kremer, “Compiler-directed dynamic voltage scaling
for memory-bound applications,” Technical Report DCS-TR-498,
Department of Computer Science, Rutgers University, August 2002.

[12] C. Hsu and U. Kremer, “Single region vs. multiple regions: A
comparison of different compiler-directed dynamic voltage
scheduling approaches,” Proc. of Workshop on Power-Aware
Computer Systems, February 2002.

[13] D. Marculescu, “On the use of microarchitecture-driven dynamic
voltage scaling,” Workshop on Complexity-Effective Design, 2000.

[14] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC variation in
workloads with externally specified rates to reduce power
consumption,” Workshop on Complexity Effective Design, 2000.

[15] A. Weissel and F. Bellosa, “Process Cruise Control,” CASES 2002,
October 2002, Grenoble, France.

[16] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance trade-off
based on the ratio of off-chip access to on-chip computation times,”
Proc. of Design, Automation and Test in Europe, 2004

[17] http://www.applieddata.net/products_bitsyX.asp
[18] J. Hennessy and D. Patterson, “Computer Architecture – A

Quantitative Approach,” Morgan Kaufmann Publishers, Inc. 1996
[19] Developer’s manual: “Intel XScale Microarchitecture for the

PXA255 Processor” http://www.intel.com/design/pca/applications
processors /manuals/278693.htm

[20] http://www.eecs.umich.edu/mibench
[21] http://download.micron.com/pdf/datasheets/dram/sdram/256MSDR

AM_G.pdf
[22] http://www.instrument.com/pci/udas.asp

