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ABSTRACT  
This paper presents a technique called “workload decomposition” in 
which the CPU workload is decomposed in two parts: on-chip and 
off-chip. The on-chip workload signifies the CPU clock cycles that 
are required to execute instructions in the CPU whereas the off-chip 
workload captures the number of external memory access clock 
cycles that are required to perform external memory transactions. 
When combined with a dynamic voltage and frequency scaling 
(DVFS) technique to minimize the energy consumption, this 
workload decomposition method results in higher energy savings. 
The workload decomposition itself is performed at run time based 
on statistics reported by a performance monitoring unit (PMU) 
without a need for application profiling or compiler support. We 
have implemented the proposed DVFS with workload 
decomposition technique on the BitsyX platform, an Intel PXA255-
based platform manufactured by ADS Inc., and performed detailed 
energy measurements. These measurements show that, for a number 
of widely used software applications, a CPU energy saving of 80% 
can be achieved for memory-bound programs while satisfying the 
user-specified timing constraints.    

Categories and Subject Descriptors 
J.6 [Computer Applications]: Computer-Aided Engineering  

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Dynamic voltage and frequency scaling, workload decomposition. 

1. INTRODUCTION 
Demand for low power consumption in battery-powered computer 
systems has risen sharply. This is due to the fact that extending the 
service lifetime of these systems by reducing their power 
dissipation requirements is a key customer requirement.  Low 
power design is a critical design consideration even in high-end 
computer systems where expensive cooling and packaging costs and 
lower reliability often associated with high levels of on-chip power 
dissipation are the important concerns.  

Dynamic voltage and frequency scaling (DVFS) technique has 
proven to be a highly effective method of achieving low power 

consumption while meeting the performance requirements. The key 

idea behind DVFS technique is to dynamically scale the supply 
voltage level of the CPU so as to provide “just-enough” circuit 
speed to process the system workload while meeting total 
computation time and/or throughput constraints, and thereby, 
reduce the energy dissipation (which is quadratically dependent on 
the supply voltage level.) A number of modern microprocessors 
such as Intel’s XScale [1] and Transmeta’s Cruso [2] are equipped 
with the DVFS functionality. 

The workload of a task is often represented by the number of CPU 
clock cycles required to complete the task and is either given in 
advance for hard real-time operation or is predicted at run-time for 
soft-real time operation such as multimedia processing. In both 
cases, however, the question of workload composition in terms of 
the CPU-bound versus memory-bound instructions is often 
overlooked. Recall that the main memory is asynchronous with the 
processor and often has its own clock. Now if the execution time of 
a task is dominated by the memory access time, then the CPU speed 
can be slowed down with little impact on the total execution time of 
that task. However, this can result in significant CPU energy saving.  

The decomposition of CPU workload of a task can be done either 
statically using off-line profiling and compiler support or 
dynamically using a performance monitoring unit (PMU), which 
most modern processors such as XScale80200 [1] or PXA255 [3] 
come equipped with. In this paper, we present a Dynamic Voltage 
and Frequency Scaling based on Workload Decomposition (DVFS-
WD). The proposed technique has been implemented on an 
embedded system platform built around the PXA255 processor. 
Detailed energy savings results have been obtained by doing current 
measurements in actual hardware. On this platform, we achieved 
energy saving (CPU+memory) of 20-40% with 10-30% 
performance loss for CPU-bound applications, whereas 10-20% 
saving was achieved for memory-bound applications. Considering 
CPU energy saving only, about 80% saving can be possible for 
memory-bound programs. For both CPU and memory-bound 
programs, target performance degradation was finely controlled.  

The main contributions of our paper are as follows. 1) We propose a 
DVFS technique for saving energy consumption in which the 
workload of a task is dynamically decomposed into on-chip and off-
chip by using an embedded hardware unit in the processor. 2) We 
show how to accurately and efficiently calculate the ratio of on-chip 
computation time to off-chip access times by using information 
about the data cache misses and the CPU stall cycles due to data 
dependencies. 3) We present a simple timing model for calculating 
the off-chip access overhead in terms of internal bus and external 
memory access clock cycle times. 4) We implement the proposed 
DVFS-WD policy on a popular hardware platform and report 
hardware-based measurements of energy consumption savings for a 
number of common applications under different timing constraints.  

The remainder of this paper is organized as follows. Related work is 
described in Section 2. In Section 3 and 4, a new DVFS policy is 
presented. Details of the implementation, including both hardware 
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and software, are described in Section 5. Experimental results and 
conclusions are given in Sections 6 and 7, respectively. 

2. RELATED WORKS 
Previous DVFS works may be divided into two categories based on 
the scaling granularity: Inter-task and intra-task voltage scheduling. 
Inter-task voltage scheduling determines the supply voltage on task-
by-task basis, i.e., coarse-grained, while intra-task voltage 
scheduling adjusts the supply voltage within an individual task 
boundary, i.e., fine-grained. Many scheduling policies for hard real-
time applications are classified as inter-task scheduling and multi-
task scheduling in the operating system (OS) is the focus of 
[4][5][6][7][8]. More precisely, scheduling is performed at task 
level by the OS so as to reduce energy consumption while meeting 
hard timing constraints for each task. There are also a number of 
studies that implement intra-task DVFS as part of compile-time 
optimization or by modifying application program itself. In [9], an 
intra-task voltage scheduling technique was proposed in which the 
application code is divided into many segments and the worst-case 
execution time of each segment (which is obtained from a static 
timing analysis) is used to determine a suitable voltage for the next 
segment. In [10] a method based on a software feedback loop was 
proposed. In this method, a deadline for each time slot is provided.  

There are different DVFS approaches that make use of the 
asynchrony of memory access to the CPU clock during task 
execution. In [11] and [12], compiler-assisted DVFS techniques 
were proposed, in which frequency is lowered in memory-bound 
region of a program with little performance degradation. DVFS 
approaches that rely on micro-architecture or embedded hardware 
without any assistance from a compiler or a simulator have also 
been reported. In [13] a microarchitecture-driven DVFS technique 
was proposed in which cache miss drives the voltage scaling. In 
[14] IPC (instruction per cycle) rate of a program execution was 
used to guide the voltage scaling. Reference [15] presented a policy 
to choose the optimal CPU clock frequency under a fixed 
performance degradation constraint (of say 10%) based on dynamic 
program behavior such as the number of executed instructions and 
memory access counts during the whole execution time by using a 
performance monitoring unit (PMU). In [16], a DVFS technique 
which enables more precise energy-performance trade-off using 
PMU was presented in which the optimal CPU clock frequency and 
the corresponding minimum voltage level are chosen based on the 
ratio of the on-chip computation time to the off-chip access time.  

In this paper, we propose a DVFS policy for non real-time 
applications, which makes use of the same ratio of on-chip to off-
chip workload. However, our work is different from that of [16] in a 
number of key points. First, the platform used in [16] was the 
Apollo Testbed II which uses an Intel’s XScale processor, an Intel 
80312 memory controller with separate controllers (USB, PCMCIA, 
FireWire, etc.) connected to the CPU through a PCI bus interface. 
In contrast, our experimental platform - BitsyX designed and built 
by ADS Inc. [17] - is built around the Intel’s PXA255 processor 
with integrated controllers and no PCI bus. This platform is more 
representative of a typical low-power, embedded system. Second, in 
[16], the external bus clock frequency was fixed at 100 MHz (for 
SDRAM access) or 33 MHz (for frame buffer access through the 
PCI bus.) In contrast, in BitsyX platform, the memory bus clock 
frequency also is scaled in synchrony with the CPU frequency. As a 
result, the problem we must solve here is more complex than the 
one solved in [16]. More precisely, we must estimate the on-chip 
and off-chip execution times differently in order to account for the 
synchronized scaling effect of the memory bus frequency.  Third, 
the PMU in Xscale processor reports the number of off-chip 

accesses directly and so the task of estimating the off-chip 
execution time in [16] was rather straightforward. Unfortunately, 
the PXA255’s PMU does not provide this information. Instead it 
provides other statistics that can only indirectly capture the required 
off-chip event count. More precisely, we propose a novel technique 
whereby the off-chip execution time is calculated based on two 
separate events: the data cache miss count and the CPU stall cycle 
count. Finally, whereas in the XScale processor case two events 
were sufficient to differentiate between on-chip and off-chip 
workloads, in the PXA255 case, we ought to monitor three different 
events. However, the PXA255’s PMU only reports two events. So 
we present a scheme whereby the events of interests are read in a 
time-multiplexed fashion.  

3. WORKLOAD DECOMPOSITION 
3.1 Energy-performance trade-offs 
A software program consists of a stream of instructions to be 
executed. Execution time of the program can be represented in 
terms of the CPI, the number of instructions being executed, and the 
CPU frequency as follows [18]:   
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                                            (1) 

where n is the total number of instructions in the instruction stream, 
CPIi is the number of CPU clock cycles for the ith instruction, and 
fCPU is the CPU frequency. Note that as we will show later, eq. (1) is 
only valid for CPU-intensive application programs.  

Workload of a task is defined as the sum of the CPI’s of all 
instructions in the instruction stream of the task. It depends on 
various dynamic parameters such as the on-chip stall cycle count 
due to data/control dependency or branch misprediction, and the off-
chip stall cycle count due to instruction/data (I/D) cache miss or I/D 
TLB miss. Some of these events result in a small overhead (e.g., 
cache hit) while others give rise to a large penalty due to external 
memory access e.g., cache miss. Thus, the workload of a program, 
W, can be written as: 
               = ⋅
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where N is the number of instructions, CPI0 is the ideal CPI which 
is 1 for a single-issue general-purpose microprocessor, 
CPIavg

branch_miss denotes the number of CPU clock cycles due to 
branch misprediction overhead, and CPIavg

stall_onchip and 
CPIavg

stall_offchip denote the numbers of CPU clock cycles due to on-
chip stalls and off-chip stalls, respectively. 

During an off-chip access (which is asynchronous with respect to 
the CPU clock), the CPU stalls until the requested memory 
transactions are completed. Thus, N*CPIavg

stall_offchip CPU clock 
cycles are wasted without doing any useful work. Furthermore, the 
off-chip access time is solely determined by the external access 
clock cycle, not by the CPU clock cycle. Considering this fact, it is 
obvious that eq. (1) does not hold for memory-intensive 
applications in which frequent memory accesses occur. 

To illustrate the key point of the workload decomposition for the 
system energy reduction, we define two different types of workload: 
on-chip and off-chip workload. 

Definition 1: On-chip workload, WON, is the number of CPU clock 
cycles required to perform the set of on-chip instructions, which are 
executed inside the CPU only. The execution time required to finish 
WON, TON, varies depending on the CPU frequency, fCPU, and is 
calculated as TON = WON/fCPU.    

Definition 2: Off-chip workload, WOFF, is the number of external 
clock cycles needed to perform the set of off chip accesses. Note 



 

that the CPU stalls until the external memory transactions are 
completed (see discussion about out-of-order execution processors 
later in this section.)  

The execution time required to complete WOFF, TOFF, depends on 
the external memory clock frequency, fEXT, and is calculated as TOFF 
= WOFF/fEXT.   

Based on the def. 1 and 2 and eq. (2), WON and WOFF are written as: 
                 = ⋅ = ⋅ + +

= ⋅ = ⋅
0 _ _

_

( )ON avg avg avg
on branch miss stall onchip

OFF avg avg
stall offchip off

W N CPI N CPI CPI CPI

W N CPI M CPI

              (3) 

where CPIavg
on denotes the number of CPU clock cycles per on-chip 

instruction, M is the number of off-chip accesses, and CPIavg
off 

denotes the number of external clock cycles per an off-chip access. 
From these two definitions, the execution time, T, for a task is 
calculated as: 

                       ⋅ ⋅= + = +
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Notice that this breakdown of the total execution time is inexact 
when the target processor supports out-of-order execution whereby 
instructions after the instruction that has caused an off-chip access 
may be executed during the off-chip access. In such a case, TON and 
TOFF can overlap. However, in practice, the error introduced in this 
way tends to be quite small considering that the external memory 
access time is about two orders of magnitude greater than the 
instruction execution time. Therefore, out-of-order execution does 
not cause a large error in eq. (4). When the CPU frequency changes, 
the change in T is solely due to TON:                        

 ∆ ∆ ∆= ≈
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The increased execution time of a program due to lowered clock 
frequency represents the performance loss (PFloss), which is defined 
as follows:        
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where 
max
CPUf  is the maximum frequency of the CPU, 

CPUf
T  and 

max
CPUf

T  are 

the total task execution times at CPU frequencies of CPUf and 
max
CPUf , 

respectively. From eq. (4) and (6), the optimal frequency, 
arg
CPU
t etf , for 

a given PFloss value is calculated as follows: 
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Notice that 
arg
CPU
t etf  denotes the target frequency for the next time slot 

whereas CPUf  is the CPU frequency of the current time slot. From 

the above equation, 
arg
CPU
t etf is closely related to the ratio of TOFF and 

TON of a program. Consequently, accurate calculation of TOFF and 
TON, i.e., WOFF and WON, is quite important to the effectiveness of 
our proposed DVFS approach. We will show how this calculation 
can be done online for the BitsyX system with PXA255 as the main 
processor (cf. Section 4.) 

3.2 Scaling granularity 
The ideal DVFS can instantaneously change the voltage/frequency 
values. In reality, however, it takes time to change the CPU 
frequency/voltage due to factors such as the internal PLL (phase 
lock loop) locking time and capacitances that exist in the voltage 
path. For the PXA255 processor, the latency for switching the CPU 
voltage/frequency is 500 µsec [19]. The minimum quantum of time 
for scaling the CPU frequency/voltage must be at least two to three 
orders of magnitude larger than this switching latency. At the same 

time, we would like to minimize the overhead of the 
voltage/frequency scaling as far as the OS is concerned. Therefore, 
we use the start time of an (OS) quantum (approximately 60msec in 
Linux) used by the OS to schedule processes as DVFS decision 
points, that is, each time the OS invokes the scheduler to schedule 
processes in the next quantum, we also make to decision as to 
whether or not the CPU voltage/frequency is changed, and if so, we 
then scale the voltage/frequency of the CPU. 

4. SYSTEM DESCRIPTION 
4.1 BitsyX  
Our target system for DVFS is the BitsyX system from ADS Inc. 
[17]. BitsyX has a PXA255 microprocessor which is a 32-bit RISC 
processor core, with a 32KB instruction cache and a 32KB write-
back data cache, a 2KB mini-cache, a write buffer, and a memory 
management unit (MMU) combined in a single chip. It can operate 
from 100MHz to 400MHz, with a corresponding core supply 
voltage of 0.8V to 1.3V. Power supply for the PXA255 core is 
provided externally through an on-board variable voltage generator. 
There are nine different frequency combinations, F1 to F9. Each 
combination is given as a 3-tuple consisting of the processor clock 
frequency (fCPU), the internal bus clock frequency (fINT), and the 
external bus clock frequency (fEXT) . These frequency combinations 
are reported in Table 1. The internal bus connects the core and other 
functional blocks inside the CPU such as I/D-cache unit and the 
memory controller whereas the external bus in the target system is 
connected to SDRAM (64MB). It should be noted that when 
frequency scaling is performed, not only fCPU is changed but also 
fINT and fEXT are scaled. Therefore, the effect of fINT and fEXT on the 
total program execution time should also be considered. 

 Table 1: Frequency combinations in BitsyX system  

No CPU 
(MHz) 

Internal 
bus (MHz) 

External bus 
(MHz) 

F1 100 50 100 

F2 200 50 100 

F3 300 50 100 

F4 200 100 100 

F5 300 100 100 

F6 400 100 100 

F7 400 200 100 

F8 133 66 133 

F9 265 133 133 

4.2 Execution time model for BitsyX system 
To derive a suitable execution time model of our target system, 
three different applications were run over all frequency sets, F1 to F9, 
and the total execution time for each case was measured. Figure 1 
provides the execution time for each frequency setting normalized 
to the execution time with the maximum performance setting, i.e., 
setting F7. From this Figure, we can easily see that “djpeg” is more 
CPU-intensive (i.e., TON >> TOFF) than the “gzip” and “qsort” 
applications since lowering the CPU frequency for “djpeg” 
introduces significant execution time increase compared to “gzip” 
and “qsort”. Comparing execution times of settings F1, F2 and F3 
(where only the CPU frequency is different, while all other clocks 
are the same) also validates this observation. In fact, this 
comparison allows us to determine that “gzip” is more memory-
bound than “qsort” by looking at time variation according to CPU 
frequency only. The same observations can be made by examining 
settings F4, F5, and F6, which are again only different from each 
other in terms of the CPU clock frequency.  

Clearly, TOFF is strongly dependent on the external clock frequency. 
However, an important observation from the data reported in Figure 



 

1 is that the internal bus clock frequency also affects TOFF. The 
relation between the internal bus clock and TOFF can be understood 
from a closer examination of the operations performed during the 
external memory access. For example, a D-cache miss requires two 
operations: data fetch from the external memory and data transfer to 
the CPU core where the cache-line and destination register are 
updated. The time needed for the latter operation is obviously 
affected by the internal bus frequency. Due to lack of exact timing 
information about these two operations which are performed during 
a D-cache miss service, we have opted to model TOFF as a function 
of both the internal clock frequency and the external memory access 
clock as follows: 
                                   α α⋅ − ⋅= + (1 )OFF OFF

OFF
INT EXT

W W
T

f f
                      (8) 

where α is the ratio between the data transfer time and the data 
fetch time and f INT is internal bus clock frequency. 

Based on the experimental results on various application programs, 
an α value of ~0.35 was obtained for all applications. For this value, 
the error in predicting the execution time was less than 3% for all 
nine frequency settings with tested applications.  
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Figure 1. Execution time variation over different frequency 

combinations. 

4.3 Events monitored through PXA255’s PMU  
Static calculation of WON and WOFF of a program e.g., during the 
compilation time, is very difficult because on/off-chip latencies are 
greatly affected by dynamic behavior such as cache statistics and 
different access overheads for various external devices. So, these 
dynamic behaviors should be captured at run time. This task can be 
accomplished by using PXA255’s PMU. The PMU supports 
monitoring of 15 performance events including cache hit/miss, TLB 
hit/miss, and number of executed instructions. The overhead for 
accessing the PMU (for both read and write operations) is less than 
1usec [15] and can thus be ignored. However, there is a limitation in 
using these events in the sense that only two events can be 
monitored at the same time along with the number of clock counts 
in a quantum (CCNT).  

For our DVFS technique with workload decomposition, we need 
CPIavg

on to separate workload. We performed many experiments to 
figure out which events can give useful information about the 
workload decomposition. Based on our experimental results, the 
following three events proved to be most helpful: (i) number of 
instructions being executed (INSTR) and (ii) number of stall cycles 
due to data dependency (STALL) (iii) number of D-cache miss 
(DMISS). INSTR is required to get the CPI value, which indirectly 
represents the amount of off-chip workload. STALL captures the 
number of clock cycles when the CPU is stalled due to data 
dependency either because of on-chip stalls from internal register 
dependencies or off-chip stalls from external memory access. Note 
that DMISS is not exactly equivalent to the off-chip access count, 
because of the “miss-under-miss” capability using the “fill buffer” 
and “pending buffer” in PXA255-microarchitecture [3]. When a D-
cache miss requests data in the same cache line as a previous D-

cache miss event, then an external memory access does not occur 
for the current D-cache miss. In spite of this complication, the D-
cache miss event can be used as an approximate metric to determine 
whether a task is CPU or memory-bound. 

4.4 Calculating the average on-chip CPI  
Using INSTR and STALL event statistics along with CCNT, 
CPIavg

on can be extracted. At the start of each quantum, the PMU 
reports the CCNT, INSTR, and STALL. From these parameter 
values, we can calculate the average CPU cycles per instruction 
(CPIavg) for the instruction stream as the ratio of CCNT to INSTR. 
Similarly, we can calculate the average number of stall cycles per 
instruction (SPIavg). Here, SPIavg accounts for both on-chip 
(SPIavg

on) and off-chip access (SPIavg
off) stalls. In Figure 2, we plot 

CPIavg on the y-axis and SPIavg on the x-axis for (a) “gzip” and (b) 
“djpeg” applications under different frequency settings per Table 1. 
Each dot in the plot represents one PMU report. From this figure, 
we can easily see that CPIavg is linearly related to SPIavg: 
                                       = ⋅ +avg avgCPI k SPI c                        (9) 
k is the slope (~1). The intercept c is equal to the average on-chip 
CPI without any stall cycles, CPImin

on. Furthermore, CPImin
on is 

equal to CPI0+CPIavg
branch in eq. (3). Finally note that 

SPIavg=CPIavg
stall_onchip+CPIavg

stall_offchip. 
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Figure 2. Contour plots of CPIavg versus SPIavg for different 

clock frequencies combinations. 
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Figure 3. SPIavg

on extraction using DPI. 

To obtain CPIavg
on, which is obviously equal to CPImin

on+SPIavg
on, it 

is required to extract SPIavg
on from SPIavg. Figure 3 shows a method 

of obtaining SPIavg
on from the D-cache miss statistics. The range in 

which CPIavg
on can exist is CPImin

on to CPImax
on which is the CPI 

value at the minimum SPIavg (SPImin) reported. Based on the 
experimental results in Figure 2, it is found that CPIavg

on tends to be 
closer to CPImax

on in case of CPU-intensive (“djpeg”) and closer to 



 

CPImin
on in case of memory-bound program (“gzip”). Let DPI 

denotes D-cache miss count per instruction, defined as 
DMISS/INSTR. When there are many D-cache miss events, there is 
a higher probability of off-chip accesses (although a D-cache miss 
does not always result in an off-chip access as explained 
previously.)  So, we equally divided the region from CPImax

on to 
CPImin

on, into n sub-regions and each region is selected with the 
reported DPI value, which results in CPIavg

on = CPIavg
min + 

CPIavg
k(DPIk), where CPIavg

k(DPIk) is the CPIavg value for the 
corresponding DPIk value. 

4.5 Determining the optimal frequency setting  
After obtaining the average on-chip CPI value for the current 
quantum i, CPIavg

on,i, we calculate the on-chip and off-chip 
execution times for this quantum, TON

i and TOFF
i, as follows: 

                                ⋅
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where Ni is the number of executed instructions in this quantum, 
and Ti and fCPU

i are the execution time and the CPU frequency 
during quantum i, respectively. 

WON
i and WOFF

i are derived from the calculated values of TON
i and 

TOFF
i based on def. 1 and eq. (8). It is assumed that WON

i+1 and 
WOFF

i+1 are equal to WON
i and WOFF

i, respectively. Next, a 
frequency setting for the quantum i+1, Fopt

i+1, which satisfies the 
following equation is chosen as the optimal frequency setting: 
                                       

+
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where 
+
+

1
1

i
opt

i
F

T  is the expected execution time of quantum i+1 at Fopt
i+1 

and 
max

i
FT is the execution time of quantum i at Fmax. If there are 

more than one frequency settings that satisfy the above condition, 
then the setting that gives the expected execution time, which is 
closest to the target execution time, will be chosen. 

5. IMPLEMENTATION 
We implemented the proposed policy on the BitsyX platform, 
which runs Linux (v2.4.17). In particular, we wrote a software 
module implementing the proposed policy. This module is tied to 
the linux OS scheduler in order to allow voltage scaling to occur at 
every context switch. Figure 4 shows the software architecture for 
our DVFS implementation.  
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Figure 4. Software architecture of our DVFS implementation. 

Our DVFS approach requires three events: INSTR, STALL and 
DMISS. Since PXA255’s PMU can only provide two event 
statistics at a time, the PMU must be read twice in every quantum: 
(INSTR, STALL) pair is read during the first half whereas (INSTR, 
DMISS) pair is read during the second half of every quantum. 
During the context switch, the PMU values for the previous process 
are read and the ideal frequency calculation for the next quantum is 
performed as described in section 4. A regression equation is 
maintained for each process, which consists of no more than five 
long-type variables, resulting in little space overhead for 
implementing our DVFS policy.  

To measure the power consumption of the system, we inserted a 
0.125 ohm precision resistor between the external power source 
(~12V) and the system power line, and the actual power 
consumption at run time was measured by using a data acquisition 
system which operates up to 100 KHz sampling frequency by 
reading voltage drop across the precision resistor [22].   

6. EXPERIMENTAL RESULTS 
Our experiments are performed on a number of applications 
including a common UNIX utility program, “gzip”, and four 
representative benchmark programs available on the web [20].   

Figure 6 represents the measured performance degradation with 
target performance loss ranging from 10% to 30% at steps of 10%. 
As seen in this figure, we obtained actual performance loss values 
very close to the target values for all programs (i.e., actual average 
within 2.5% of the target.) Figure 7 depicts the power consumption 
waveform of the BitsyX system when running “djpeg” for two 
cases: (a) without DVFS and (b) with DVFS In case (a), the 
program is run with the maximum performance frequency setting, 
i.e., F7, and a 20% target PFloss. As mentioned previously, power 
consumptions of the CPU core and the main memory could not be 
separately measured. We went about calculating the power 
consumption of the CPU core and main memory in BitsyX as Pactive 
– Pidle, where Pactive and Pidle denote the total system power 
consumptions when the BitsyX is active (performing some task) 
and when it is idle. Based on this experimental setup, for this 
benchmark, we were able to achieve a 25% energy saving in the 
CPU and main memory at the cost of a 22% increase in the total 
execution time. The measured energy savings (in CPU and main 
memory) for all benchmarks are shown in Figure 8. From these 
measurements, we conclude that our proposed DVFS technique 
results in energy savings of 20-40% for CPU-bound applications 
(“crc”, “djpeg”, and “math”), and 10-20% energy savings for 
memory-bound applications (“qsort” and “gzip”) under 10-30% 
performance loss bounds. The lower energy saving results for 
memory-bound applications should be understood in light of the 
fact that in these applications most of the energy is consumed in 
accessing the main memory, and of course, the memory energy 
consumption is fixed (since operating voltage of memory is fixed 
although memory clock frequency varies.) It would be interesting to 
report the actual energy saving values for the CPU only as in [16]. 
Unfortunately, we cannot do this because of the current limitation 
of the BitsyX platform (no separate power planes for the CPU and 
main memory are provided.) So we go about reporting this data in 
an approximate manner as explained below.  

When we consider energy savings of the proposed DVFS approach 
for the PXA255 processor only, higher energy savings can be 
obtained for memory-bound applications. For example, in case of 
“gzip”, the total execution time without DVFS is 3.463sec and 
1.6016sec is spent for data fetch from memory. Power consumption 
of memory chips can be calculated using the specified value 
(130mA in active mode) in the memory manufacturer’s data sheet 
[21]. Since two memory chips, each of size 32MB, are used in the 
BitsyX platform, power consumption of the main memory in 
BitsyX board is 3.3V * (130mA + 130mA) = 858mW. CPU power 
is calculated as 400mW/(0.85*0.85) = 553.6mW by considering 
that two DC-DC converters, one for 12V to 3.3V conversion and 
the other for 3.3V to CPU operating voltage conversion with a 
conversion efficiency of 0.85 are used in the variable voltage 
generator. From these approximate calculations, we conclude that 
the ratio of the energy consumptions in the CPU and the main 
memory is about 0.75. Now, with this ratio, we can go ahead and 
estimate the CPU energy saving from the actual power consumption 



 

data for the CPU plus main memory. Doing this calculation, we 
obtain a CPU energy saving of 80% for the memory-bound 
applications and 20% for the CPU-bound applications under a 20% 
performance loss bound. 
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Figure 6. Actual performance loss values as a function of the 

corresponding target values. 
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(a) without DVFS - at maximum frequency setting 
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(b) with DVFS under a 20% performance loss constraint 

Figure 7. CPU power consumption of with/without DVFS. 
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Figure 8. Energy saving  (CPU+memory) for various 

applications. 

7. CONCLUSION 
In this paper, a regression-based DVFS policy for finely-tunable 
energy-performance trade-off was proposed and implemented on an 
PXA255-based platform. In the proposed DVFS approach, a 
program execution time is decomposed into two parts: on-chip 
computation and off-chip access latencies. The CPU 
voltage/frequency is scaled based on the ratio of the on-chip and 
off-chip latencies for each process under a given performance 

degradation factor. This ratio is given by a regression equation, 
which is dynamically updated based on runtime event monitoring 
data provided by an embedded performance monitoring unit.  
Through actual current measurements in hardware, we 
demonstrated that energy saving of 20-40% with 10-30% 
performance loss for CPU-bound applications, whereas 10-20% 
saving was achieved for memory-bound applications. For both CPU 
and memory-bound programs, target performance degradation was 
finely controlled. 
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