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ABSTRACT 
This paper presents a dynamic voltage and frequency scaling (DVFS) *technique that minimizes the total system energy 
consumption for performing a task while satisfying a given execution time constraint. We first show that in order to 
guarantee minimum energy for task execution by using DVFS it is essential to divide the system power into active and 
standby power components. Next, we present a new DVFS technique, which considers not only the active power, but also 
the standby component of the system power. This is in sharp contrast with previous DVFS techniques, which only 
consider the active power component. We have implemented the proposed DVFS technique on the BitsyX platform - an 
Intel PXA255-based platform manufactured by ADS Inc., and report detailed power measurements on this platform. 
These measurements show that, compared to conventional DVFS techniques, an additional system energy saving of up to 
18% can be achieved while satisfying the user-specified timing constraints.    

1. Introduction 
Demand for low power consumption in battery-powered computer systems has risen sharply. This is due to the fact that 
extending the service lifetime of these systems by reducing their power dissipation requirements is a key requirement. 
Low power design is a critical design consideration even in high-end computer systems where expensive cooling and 
packaging costs and lower reliability often associated with high levels of on-chip power dissipation are the important 
concerns. 
Dynamic voltage and frequency scaling (DVFS) technique has proven to be a highly effective method of achieving low 
power consumption for the CPU while meeting the performance requirements due to the quadratic relation between the 
energy consumption and operating voltage of a CMOS circuit. A number of modern microprocessors such as Intel’s 
XScale [1] and Transmeta’s Crusoe [2] are equipped with the DVFS functionality. 
There have been extensive studies of low power system designs using DVFS techniques [3]-[8]. All of these works have 
focused only on the reduction of the CPU power. However, in reality, the battery lifetime of a computer system is also 
affected by the fixed power consumed in other components of the system, which have their own operating frequency and 
voltage levels. The heterogeneity in performance and power dissipation of these components make it difficult to apply 
DVFS techniques. 
To guarantee minimum energy for task execution while satisfying a given time constraint, it is important to divide the 
system power into two parts: fixed and variable power. Fixed power represents the component of power that remains 
unchanged during the task execution. Examples include DC-DC converter power and PLL power as well as leakage 
power dissipation. Variable power captures the component of system power consumption that changes with time. 
Examples include the CPU and memory power dissipations as well as I/O controller power. The variable power 
component is, in turn, decomposed into two subcomponents: idle and active power. As the name implies, active (idle) 
power is the portion of variable power that is consumed when the system is executing some (no) useful task. We also 
define standby power as the summation of fixed plus idle power components of the system. 
There have been many studies on DVFS for both real-time and non real-time operations. These works can roughly be 
divided into inter-task [4][5] and intra-task [6][7] depending on the scaling granularity. Alternatively, they may be 
divided into application-specific [6][7] and general-purpose [3][5][8] depending on whether or not the application 
program must be modified. However, all these approaches focus only on the CPU energy saving and are based on two key 
assumptions: 1) an inverse relationship between the task execution time and the operating frequency and 2) a cubic 
relationship between the system power and the operating frequency. More recently, a number of DVFS approaches have 
attempted to exploit the asynchrony of memory access to the CPU clock during a task execution. For example, in [9] and 
[10], compiler-assisted DVFS techniques were proposed, in which CPU frequency is lowered in the memory-bound 
region of a program with little performance degradation. Other DVFS approaches have made use of embedded hardware, 
i.e., a performance monitoring unit (PMU). For example, in [11], IPC (instruction per cycle) rate of a program execution 
is used to guide the voltage scaling. Reference [12] proposes to choose the optimal CPU clock frequency under a fixed 
performance degradation constraint based on dynamic program behavior such as the number of executed instructions and 
memory access counts during the whole execution time by using the PMU. In [13] a DVFS technique which enables more 
precise energy-performance trade-off by using the PMU is presented in which the optimal CPU clock frequency and the 
corresponding minimum voltage level are chosen based on the ratio of the on-chip computation time to the off-chip 



access time. A similar DVFS approach exploiting the ratio of the on-chip and off-chip access times has been proposed for 
the MPEG decoding application [14].  
DVFS can reduce only the active component of system power dissipation. If this component is large compared to the 
standby component of system power, then lowering the CPU clock frequency and the supply voltage will result in lower 
system energy consumption due to the quadratic relation between the CPU power consumption and voltage. On the other 
hand, if the active component of system power is small compared to the standby component, then slowing down the CPU 
speed may in fact increase the system energy consumption due to an increase in the task execution time and the 
dominance of the standby power dissipation component. 
In this paper, we present a new DVFS technique, which considers not only active power, but also standing power 
components of the system. The standing components of the system power are measured by monitoring the system power 
when it is idle. The active component of the system power is estimated at run time by a technique known as workload 
decomposition whereby the workload of a task is decomposed into on-chip and off-chip, based on statistics reported by a 
performance monitoring unit (PMU), which most modern processors such as XScale80200 [1] or PXA255 [18] come 
equipped with. The proposed technique has been implemented on an embedded system platform built around the 
PXA255 processor. By detailed current measurements, we performed a task with up to 12% less system energy compared 
to the case with normal DVFS techniques, which consider only variable power.  
The remainder of this paper is organized as follows. In Section 2, models for both execution time and power dissipation 
estimation are described. Details of the target platform and the proposed DVFS policy are presented in Sections 3 and 4, 
respectively. Experimental results and conclusions are given in Sections 5 and 6, respectively.  

2. Workload Decomposition 
2.1 Estimating the Execution Time of a Task 
Workload of a task is defined as the sum of the CPI’s of all instructions in the instruction stream of the task. The task 
workload depends on various dynamic parameters such as the on-chip stall cycle count due to data/control dependency or 
the branch misprediction, and the off-chip stall cycle count due to I/D cache miss or I/D TLB miss. During an off-chip 
access, the CPU stalls until the requested memory transaction is completed. Thus, CPU clock cycles during an off-chip 
access are wasted. To explain the workload decomposition technique, we must provide some definitions first.  
Definition 1: On-chip workload, Won, is the number of CPU clock cycles required to perform the set of on-chip 
instructions, which are executed inside the CPU only.  
The execution time required to finish Won, Ton, varies depending on the CPU frequency, fcpu, and is calculated as Ton = 
Won/fcpu.   

Definition 2: Off-chip workload, Woff, is the number of external clock cycles needed to perform the set of off-chip 
accesses. Note that the CPU stalls until the external memory transactions are completed.  
The execution time required to finish Woff, Toff, depends on the external memory clock frequency, fext, and is calculated as 
Toff = Woff/fext. 
Based on definitions 1 and 2, Won and Woff are written as: 

= ⋅ = ⋅,    on avg off avg
on offW N CPI W M CPI  (1)  

where CPIavg
on denotes the number of CPU clock cycles per on-chip instruction, M is the number of off-chip accesses, 

and CPIavg
off denotes the number of external clock cycles per an off-chip access. From these two definitions, the execution 
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2.2 Modeling the System Power Consumption  
We consider a computing system consisting of a CPU with a variable operating frequency, nf , where ≤ ≤min n maxf f f . The 

system also includes N system modules. Let ncpu,fP  and mod,iP denote the power dissipation of the CPU at nf and the ith 

module. Then, the required system energy to complete a task in time T with nf  is given by: 
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where , ( )
nsys fP t is the time-varying system power at nf  and is calculated as: 
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, n

act
cpu fP  is the active portion of , ncpu fP . , n
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cpu fP  is the standing portion of , ncpu fP , which is in turn the summation of the idle portion 
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denotes the standing portion of mod,iP  when the ith module is not accessed, which is equal to the idle component of the ith 

module, ,
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(a) without decomposition (b) with decomposition 

Figure 1:  System power consumption during task 
execution 

Generally speaking, it is difficult to accurately calculate , ( )
n

act
sys fP t  because the power dissipation caused by executing 

various instructions can be quite different. Only the CPU is needed to execute the on-chip workload whereas, for the 
off-chip workload, the memory is also required. During the execution of a program, instructions causing on-chip and 

off-chip works are arbitrarily interleaved. Consequently, , ( )
n

act
sys fP t  can severely fluctuate as shown in Figure 1 (a). However, 

once the workload of a task is decomposed into two contiguous components: on-chip and off-chip, then , ( )
nsys fP t can easily 

be calculated as: 
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Figure 1 (b) shows , ( )
nsys fP t  after workload decomposition. 

Hence, , nsys fE after workload decomposition is given as: 
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In eq.(7), , n
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cpu fP and , n

std
sys fP  can easily be obtained from simple measurements on the target system by running the benchmark 

programs with different CPU frequencies. However, it is difficult to get =
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how the various system components are used by the target program is not available. In practice, for the software programs 

used in this paper, =
∑ ,

1

( )
N

act
mod i

i

P t
 is approximated by the memory power dissipation because memory is the most 

frequently-used system component and the power consumed in the memory takes up more than half of the system power 

in our target system. So, we include the power consumptions of all other system components in , n

std
sys fP . 

2.3 System Energy vs. CPU Frequency 
As shown in eq. (7), , nsys fE is a function of various parameters of the system configuration ( , n

act
cpu fP , , n

std
sys fP , and ,

act
mod iP ) and the 

application program ( n

on
fT  and 

offT ). Depending on these parameters, an optimal CPU frequency that results in task 
execution with minimum system energy consumption is determined as explained next.  
The system energy equation (7) is rewritten as: 

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+
= ⋅ ⋅ + + ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

, ,
, ,

, ,

1 n n

n n n

n n n

std act std off
sys f mem sys fact on

sys f cpu f f act act on
cpu f cpu f f

P P P T
E P T

P P T
 

(8)  

where 
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memP  denotes the memory power and is used in place of =
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 in eq. (7) as mentioned before. The case in which 
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act
memP  are all zero is equal to the situation assumed in the previous DVFS works, where purely CPU-intensive task 

is executed on the system consisting of only one CPU with no standby power. In that case, lowering CPU frequency 
always results in system energy saving. Assuming a linear relationship between the operating voltage and frequency 
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where a, b, and c are constant coefficients. In particular, b and c represent the amounts of standby power in the total 

system power dissipations. Subsequently, an optimal CPU frequency which gives the minimum system energy, optf , is 



calculated as ⋅3 0.5 /b a  by taking the derivative of eq. (8). If b is zero, then optf is minf , but optf increases as b increases.  

3. Description of the Target System  
3.1 BitsyX Platform 
Our target system for DVFS is the BitsyX system from ADS Inc. [15]. BitsyX has a PXA255 microprocessor which can 
operate from 100MHz to 400MHz, with a corresponding core supply voltage of 0.85V to 1.3V. Power supply for the 
PXA255 core is provided externally through an on-board variable voltage generator. There are nine different frequency 
combinations, F1 to F9. Each combination is given as a 3-tuple consisting of the processor clock frequency (fcpu), the 
internal bus clock frequency (fint), and the external bus clock frequency (fext). These frequency combinations and 
appropriate CPU voltage levels are reported in Table 1. The internal bus connects the core and other functional blocks 
inside the CPU such as I/D-cache unit and the memory controller whereas the external bus in the target system is 
connected to SDRAM (64MB).  

1 Frequency combinations in BitsyX system 

No fcpu  
(MHz) 

CPU 
Volt. (V) 

fint  
(MHz) 

fext 
(MHz) 

F1 100 0.85 50 100 
F2 200 1.0 50 100 
F3 300 1.1 50 100 
F4 200 1.0 100 100 
F5 300 1.1 100 100 
F6 400 1.3 100 100 
F7 400 1.3 200 100 
F8 133 0.85 66 133 
F9 265 1.0 133 133 

3.2 Execution Time Model in BitsyX 
To derive a suitable execution timing model for BitsyX, five different applications were run over all frequency sets, F1 to 
F9, and the total execution time for each case was measured and shown in Figure 2.  
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Figure 2:  Execution time variation over different 

frequency combinations 

Figure 2 provides the execution time of all applications for each frequency setting normalized to the execution time with 
the maximum performance setting, i.e., setting F7. From Figure 2, we can easily see that “math”, “crc”, and “djpeg” are 
more CPU-intensive than the “gzip” and “qsort” applications since lowering the CPU frequency for these applications 
introduce significant execution time increase compared to “gzip” and “qsort” cases. Comparing execution times of 
settings F1, F2 and F3 (where only the CPU frequency is different, while all other clocks are the same) also validates this 
observation. In fact, this comparison allows us to determine that “gzip” is more memory-bound than “qsort” by looking at 
the execution time variation according to CPU frequency only.  
Execution time T is sum of Ton and Toff as in eq.(2). Clearly Toff is strongly dependent on the external clock frequency. 
However, an important observation from data reported in Figure 2 is that the internal bus clock frequency also affects Toff. 
The relation between the internal bus clock and Toff can be understood from a closer examination of the operations 
performed during the external memory access. For example, a D-cache miss requires two operations: data fetch from the 
external memory and data transfer to the CPU core where the cache-line and destination register are updated. The time 
needed for the latter operation is obviously affected by the internal bus frequency. Due to the lack of exact timing 
information about these two operations that are performed during a D-cache miss service, we have opted to model Toff as 
a function of both the internal clock frequency and the external memory access clock as follows: 

α α⋅ − ⋅= + = + (1 )off off
off off1 off 2

int ext

W W
T T T

f f  
(10)  

where α is the ratio between the data transfer time (Toff1) and the data fetch time (Toff2) and f int is internal bus clock 



frequency. 
Based on the experimental results on various application programs, the average error in predicting the execution time for 
all applications and over all frequency combinations was less than 2% with α value of 0.35. 

3.3 Energy Consumption Model for BitsyX 
Measured energy consumptions for each application are presented in Figure 3. Notice that the frequency combination at 
which the minimum energy is consumed is not F1. On the contrary, F1 causes the largest energy dissipation among all 
frequency combinations. Furthermore, the energy dissipation results of Figure 3 closely follow the execution time results 
of Figure 2, i.e., lower execution time causes lower system energy dissipation and vise versa. In other words, because of 
the rather large standby power in the target platform, it is desirable to finish the application program as soon as possible in 
order to minimize the system energy consumption. Another important observation is that the frequency set that yields the 
minimal system energy changes depending on the type of the application program. For example, setting F6 (CPU 
frequency of 400MHz) produces the minimum energy for “math” which is the most CPU-intensive application program 
in our suite, whereas setting F9 (CPU frequency of 265MHz) does the same for “gzip” which is the most 
memory-intensive program in our suite. Note that the reason that F9 is the best setting for “gzip” is that F9 has the fastest 
condition for memory access operation, i.e., both memory clock and internal bus clock are 133MHz. 
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Figure 3:  Energy consumption over different 

frequency combinations 
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Figure 4:  Total system power consumption during 

execution 

Energy consumption model in BitsyX is shown in Figure 4. Terms used in this figure are explained next. 

nF            : the nth  frequency setting, ( , , )cpu int ext
n n n nF f f f  

n

on
FT            : on-chip computation time at nF  

n

off1
FT            : data update time after fetch from memory at nF  

n

off 2
FT            : data fetch time from memory at nF  

, ( )
nsys FP t     : time-varying system power at nF  

, n

std
sys FP         : standing power in , ( )

nsys FP t  

n

on
FP           : active power in , nsys FP  during n

on
FT  

n

off1
FP           : active power in , nsys FP  during n
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FT  

n

off 2
FP           : active power in , nsys FP  during n

off 2
FT  

nFV           : CPU operating voltage at nF  

1k           : fitting coefficient for n

off1
FP , [nF] 

2k           : fitting coefficient for n

off1
FP , [V2⋅nF]  

Here, n

off1
FP is represented as ⋅ ⋅ + ⋅

n

2 cpu int
1 F n 2 nk V f k f  since power consumption during n

off1
FT  is a function of the CPU 

voltage/frequency for data update into the destination register or I/D-Cache as well as the voltage level of the internal bus 

clock generator for data transfer to the CPU (assumed to be 3.3V). k1 and k2 are coefficients which relate n

off1
FP  to the CPU 



frequency/voltage and the internal bus clock frequency/voltage, respectively. , n

std
sys FP is obtained by measuring the system 

power dissipation in every frequency setting for the case that the system is in the standby mode. n

on
FP , which is the active 

component of the CPU power, is the difference between , n

std
sys FP and the measured power when a CPU-intensive task is 

running. n

off 2
FP  is the power consumption of accessing the memory. The main memory has a total size of 64MB, 

comprising of two 32MB SDRAMs. For each 32MB SDRAM, we used data sheet values [16] of 446mW when the 

SDRAM is being accessed and 132mW when it is in the idle mode. Therefore, n

off 2
FP  can be calculated as 

2*(446mW-132mW)/0.8 = 785mW, where factor of 0.8 represents the energy conversion efficiency of the DC-DC 
converter (12V to 3.3V conversion.) We tried a curve fitting procedure with measured power values to get k1 and k2, and 
found them to be 0.73 and 6.2, respectively. Extracted parameters are summarized in Table 2.  

1 Extracted parameters for system energy estimation 
 , n

std
sys FP  (mW) n

on
FP  (mW) n

off 2
FP  (mW) 

F1 1665 86.786 785 

F2 1699 218.156 785 

F3 1732 344.091 785 

F4 1728 216.97 785 

F5 1778 377.869 785 

F6 1869 672.885 785 

F7 1963 674.912 785 

F8 1757 147.858 785*1.33 

F9 1836 335.682 785*1.33 

The system energy for a task at nF , , nsys FE , is given as: 

= ⋅ + ⋅ + ⋅ + ⋅, ,n n n n n n n n

std on on off1 off1 off 2 off 2
sys F sys F F F F F F FE P T P T P T P T  (11)  

The estimated energy consumption for all tested benchmarks using eq (11) and extracted parameters over all frequency 
combinations were compared with the actually measured ones. The average error rate was about 3%. 

4. Proposed DVFS Policy 
4.1 Scaling granularity 
In reality, it takes time to change the CPU frequency/voltage due to factors such as the internal PLL locking time and 
capacitances that exist in the voltage path. For the PXA255 processor, the latency for switching the CPU 
voltage/frequency is 500usec [17]. In order to safely ignore this overhead, the minimum quantum of time for scaling the 
CPU frequency/voltage must be at least two to three orders of magnitude larger than this switching latency. At the same 
time, we would like to minimize the overhead of the voltage/frequency scaling as far as the OS is concerned. 
Correspondingly, we use the start time of an (OS) quantum (approximately 60msec in Linux) used by the OS to schedule 
processes as DVFS decision points, that is, each time the OS invokes the scheduler to schedule processes in the next 
quantum, we also make a decision so as to whether or not the CPU voltage/frequency is changed, and if so, we then scale 
the voltage/frequency of the CPU. 

4.2 Calculating the Average On-chip CPI  
We calculated the Won and Woff of a program at run time, by using the processor’s PMU. The PMU unit consists of a clock 
counter and two other counters, each of which can monitor one of 15 different events such as cache hit/miss, TLB 
hit/miss, and number of executed instructions. The overhead for accessing the PMU (for both read and write operations) 
is less than 1usec [12] and can thus be ignored. Our approach is similar to [13], where number of memory bus transactions 
and executed instruction count were used to accurately estimate the on-chip CPU. Since the PMU in PXA255 does not 
provide the number of memory bus transactions, we have used the following three events based on extensive 
experiments: (i) number of instructions being executed (INSTR) and (ii) number of stall cycles due to data dependency 
(STALL) (iii) number of D-cache miss (DMISS).  
At the end of every quantum, INSTR and STALL event statistics are read from the PMU. In addition, the number of clock 
cycles in a quantum (CCNT) is given by the clock counter. From these values, we calculate the average CPU clock cycles 
per instruction (CPIavg) as CCNT/INSTR. Similarly, average number of stalls per instruction (SPIavg

 ) is calculated. SPIavg
 

accounts for both the on-chip stalls (SPIavg
on) and the off-chip stalls (SPIavg

off).  
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Figure 5:  Contour plots of CPIavg versus SPIavg for 

different clock frequency combinations 

Figure 5 shows the plot with SPIavg
 of each quantum on the x-axis and the CPIavg

 on the y-axis for “gzip” application. 
From this figure, we can easily see that CPIavg is linearly related to SPIavg as follows: 

= ⋅ +avg avgCPI k SPI c  (12)  

where k  is the slope (~1). Notice that the y-intercept c is equal to the average on-chip CPI without any stall cycle, 
CPImin

on. 
To obtain CPIavg

on, we need to extract SPIavg
on from SPIavg. To do this, we consider the y-intercept of the above line, the 

CPIavg when no data-stalls occur, as the lower bound for the on-chip CPI (CPImin
on). The CPIavg at the lowest SPIavg value 

(SPImin) is considered as the upper bound (CPImax
on). The CPIavg

on is estimated from both CPImin
on and CPImax

on along with 
the values of DMISS of the quantum. The intuition for using DMISS to calculate CPIavg

on is that if the number of data 
cache misses is high, most of the stalls are off-chip stalls. Therefore, if the value of DMISS is high (low) then a CPIavg 
value close to CPImin

on (CPImax
on) is chosen. Let DPI denotes D-cache miss count per instruction, defined as 

DMISS/INSTR. We equally divided the region from CPImax
on to CPImin

on, into n sub-regions and each region is selected 
with the reported DPI value, which results in CPIavg

on = CPIavg
min + CPIavg(DPI), where CPIavg(DPI) is CPIavg value for 

the corresponding DPI and increases (decreases) as the DPI value decreases (increases).  
Our DVFS approach requires three events: INSTR, STALL and DMISS. Since PXA255’s PMU can only provide two 
event statistics at a time, the PMU must be read twice in every quantum: (INSTR, STALL) pair is read during the first 
half whereas (INSTR, DMISS) pair is read during the second half of every quantum. 

4.3 Determining the Optimal Frequency Setting  
In the proposed DVFS policy, an optimal frequency set is determined considering both timing constraints and minimum 
system energy consumption. As a timing constraint for non real-time applications, we use a performance loss (PFloss) 
factor, which is defined as the increased execution time of a program due to lowered clock frequency and given as 
[12][13]:  

−
=

( )
n max

max

F F
loss

F

T T
PF

T  
(13)  

where Fmax is the best performance frequency combination, i.e., F7, TFn and TFmax are the total task execution time at 
frequency combination of Fn and Fmax, respectively. After obtaining the CPIavg value for the current quantum i, CPIavg

on,i, 
we calculate on-chip and off-chip execution times for this quantum, Ton

i and Toff
i, as follows: 

⋅= = −
,

,     
avg

on off oni on
i i i icpu

i n

N CPI
T T T T

f  
(14)  

where Ni is the number of executed instructions, Ti and fcpu
i,n are the execution time and the CPU frequency in Fn during 

the quantum i, respectively.  
Won

i and Woff
i are derived from the calculated values of Ton

i and Toff
i based on definition 1, 2, eq.(2), and eq.(10). It is 

assumed that Won
i+1 and Woff

i+1 are equal to Won
i and Woff

i, respectively.  
An optimal frequency set for the quantum i+1, Fopt

i+1, is determined as following: 
      1.     Ψ = { F1 , …, F9 }, Γ = {φ }, and Emin =  ∞   
      2.     for every frequency setting Fn in Ψ 

      3.         if (
≤ + ⋅(1 )

7n

i
loss FF

T PF Ti+1

) 
      4.                  Γ = Γ ∪ Fn ; 
      5.       for every frequency setting  Fn  in Γ 

      6.                 calculate , nsys FE from eq.(12) 
      7.                 if (Esys,Fn ≤  Emin ) 
      8.                        Emin = Esys,Fn; F

opt
i+1  = Fn ; 

where nF
T i+1

 is the expected execution time of quantum i+1 at Fn and 7

i
FT is the execution time of quantum i at F7. ) 



5. Experimental Results 
We implemented the proposed policy on the BitsyX platform, which runs Linux (v2.4.17). More precisely, we wrote a 
software module implementing the proposed policy. This module was tied to the Linux OS scheduler in order to allow 
voltage scaling to occur at every context switch. To show the effectiveness of the proposed DVFS method considering 
system energy (SE-DVFS), we also implemented the DVFS method used in [13], which considers CPU energy only 
(CE-DVFS), and compared the results with each other.  
To measure the power consumption of the system, we inserted a 0.125 ohm precision resistor between the external power 
source (~12V) and the system power line. The actual power consumption at run time was measured by using a data 
acquisition system which operates up to 100 KHz sampling frequency by reading voltage drop across the precision 
resistor [19]. Our experiments are performed on a number of applications including a common UNIX utility program, 
“gzip”, and four representative benchmark programs available on the web [20]. 
Figure 6 represents the measured performance degradation with target performance loss ranging from 10% to 50% at 
steps of 10% for SE-DVFS. As seen in this figure, performance loss values for all programs are upper bounded by 2% and 
12% for CPU-intensive and memory-intensive applications, respectively. This is true even with 50% loss target. This is 
because the fixed power in the target system is rather large, and therefore, to minimize the overall energy consumption, it 
is better to complete the tasks as soon as possible regardless of the allowed performance loss factor. 
Figure 7 depicts the power consumption waveform of the BitsyX system when running “gzip” with a 30% target 
performance degradation factor using: (a) CE-DVFS and (b) SE-DVFS. Notice that the average power dissipation for 
CE-DVFS is less than that for SE-DVFS because the active power dissipation is lower for the CE-DVFS. However, the 
overall system energy is lower for SE-DVFS because the execution time for SE-DVFS is much shorter. In fact, for this 
application, SE-DVFS results in 11.4% lower energy consumption compared to CE-DVFS. Similar results for other 
application programs are shown in Figure 8. Notice that SE-DVFS results in an additional energy saving from 2% to 18% 
when compared to CE-DVFS.  
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Figure 6:  Actual performance: SE-DVFS 
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(a) CE- DVFS 
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(b) SE- DVFS 



Figure 7:  Actual power consumption of two DVFS 
methods 
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Figure 8:  System energy difference: SE-DVFS vs. 

CE-DVFS  

6. Conclusion 
In this paper, a DVFS policy for the actual system energy reduction was proposed and implemented on a PXA255-based 
platform. In the proposed DVFS approach, a program execution time and system energy required for the program are 
quite accurately estimated using workload decomposition in which execution time of the program is decomposed into 
on-chip computation and off-chip access latencies. System power is also decomposed into variable and fixed power and 
very accurately estimated using decomposed execution time. The CPU voltage/frequency is scaled based on the ratio of 
the on-chip and off-chip latencies for each process such that both a given performance degradation factor and minimal 
energy consumption are satisfied. This ratio is given by a regression equation, which is dynamically updated based on 
runtime event monitoring data provided by an embedded performance monitoring unit.  Through actual current 
measurements in hardware, we demonstrated that up to 18% less energy saving was achieved with the proposed DVFS 
compared to conventional DVFS techniques.  
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