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Abstract—Demand response is a key element of the smart grid 
technologies. This is a particularly interesting problem with 
the use of dynamic energy pricing schemes which incentivize 
electricity consumers to consume electricity more prudently in 
order to minimize their electric bill. On the other hand 
optimizing the number and production time of power 
generation facilities is a key challenge. In this paper, three 
models are presented for consumers, utility companies, and a 
third-part arbiter to optimize the cost to the parties 
individually and in combination. Our models have high 
quality and exhibit superior performance, by realistic 
consideration of non-cooperative energy buyers and sellers 
and getting real-time feedback from their interactions. 
Simulation results show that the energy consumption 
distribution becomes very stable during the day utilizing our 
models, while consumers and utility companies pay lower cost. 

I. INTRODUCTION 

There is no substitute for the status of electrical energy, 
which dramatically fuels both the development of economy 
and the improvement of people’s living standard. 
Availability of affordable and sustainable electrical energy 
has been the key to prosperity and continued socio-
economic growth of nations and the world  [1]. Two key 
characteristics of electrical energy are that it is easy to 
distribute but hard to store. More precisely, electrical 
energy can be transmitted to a faraway place with only a 
tiny loss, but unlike other common forms of energy such as 
chemical or kinetic, electricity must be used as it is being 
generated. If storage is needed, it must typically be 
converted immediately into another form of energy such as 
potential, kinetic, or electrochemical. 

The huge difference between energy consumption levels 
at peak usage time and off-peak times has resulted in not 
only cost inefficiencies and potential brownouts and 
blackouts, but also environmental pollution due to over 
provisioning of the Power Grid and the resulting energy 
waste  [7]. Utility companies are interested in reducing the 
peak demand of energy consumers so that their cost can be 
reduced. However, the power demand depends on 

exogenous factors and varies dramatically as a function of 
time of day and seasonal factors  [10].   

An ideal method to solve this problem is dynamic 
energy pricing  [2]- [10]. Dynamic changes in energy prices 
provide an incentive for the customers to shift their energy 
consumption from peak-energy-use hours to off-peak hours, 
thus save money on their monthly electrical bill. At the 
same time, by proper use of energy, utility companies save 
capital expenditure by not having to add new power plants 
to the Grid in order to meet the customers’ peak-hour 
demands. So, dynamic energy pricing can benefit both the 
consumer and the producer in an economical way. 

Implementing dynamic energy pricing faces many 
challenges. The most difficult step is how to predict 
people’s reaction to various dynamic energy pricing 
schemes, which calls for accurate models and practical 
algorithms. In addition, the price of electrical energy can 
have a significant effect on the national and local 
economies. Improper dynamic energy pricing can result in a 
decrease of economic activities or even economic 
dislocation. That is why governments impose restrictions on 
electrical energy prices.  

Existing research on dynamic energy pricing can be 
classified into two categories: profit maximization for 
utility companies  [10] or cost minimization for 
customers  [7] and  [8]. In reality, each of utility companies 
and customers tend to make their decisions based on the 
reaction of the other. Works such as the ones in  [7],  [8] 
and  [10] fail to consider the feedback effects between the 
two, and cannot give a “closed loop” solution. 

In the classical economics problems between sellers and 
buyers, economists always give suggestions to the sellers 
based on the reaction of the buyers or vice versa because 
although the government would like to maximize the total 
social welfare, we still need to consider sellers and buyers 
as non-cooperative and always making decisions based on 
their own best solution. This is also the case for energy 
users and utility companies. Considering this fact, three 
models of dynamic energy pricing are presented in this 
paper to solve the cost minimization problem for either the 



energy consumers or the utility companies. In addition, 
another contribution of this paper is to present a third model 
which is a combination of the first two where a feedback 
system is created and managers can make their decisions 
based on the reaction of customers and power 
generations  [11]- [12]. 

The remainder of this paper is organized as follows. In 
the next section, we present our models for optimizing the 
cost of both costumers and power generations. Section  III 
reports the simulation results. The paper is concluded in 
Section  IV. 

II. MODELS AND COST OPTIMIZATION METHODS 

As stated above, three types of optimization problems are 
presented in this paper. For each problem, a related model 
is created and an optimal solution is discussed. A unified 
electricity bill is used in all the models. 

The first model deals with task scheduling problems. 
Under the given daily price function, we act as a house 
owner to decide when to start each task in order to 
minimize the total electrical energy bill. The second model 
is for engineers in the utility company. The energy demand 
at each time is given and the problem is to decide whether 
to turn on or turn off power generation facilities to meet the 
energy requirements while minimizing the cost to the utility 
company. In the third model, we analyze the problem from 
a global manager’s perspective to decide the price 
distribution in order to maximize the total social welfare. 
This time we assume that both customers and utility 
companies are making their own optimal choices and find a 
good solution based on repeatedly calling for the first two 
models. 

A. Model for Homeowners 

Figure 1shows an example of a task scheduling solution 
based on the given electricity price function. The height of 
the task box in this figure signifies the amount of power 
each household task consumes while running. 

Figure 1. An example of the task scheduling problem. 

In this paper, a slotted time model is assumed for all 
models, i.e., all system cost parameters and constraints as 
well as scheduling decisions are provided for discrete time 
intervals of constant length. The scheduling epoch is thus 
divided into a fixed number of equal-sized time slots (in the 
experiment, a day is divided into 24 time slots, each of 
duration 1 hour). Tasks can be launched only at the 
beginning of one of these time slots and will be completed 
at the end of the slots. 

We define Price function, P(i), as the price of one unit 
of energy (kWh) at time slot i. In the first model, we 
assume that P(i) is fixed and pre-announced by the utility 
company before the start of the day, which means house 
owners can make their decisions about the whole day but 
their decisions does not affect the energy price function.  

In this model, we also assume that there are a number of 
tasks in each house that should be executed daily. These 
tasks are identified by index j. The set of task indexes is 
denoted by K={1, …,N}. For each task j, the earliest start 
time, es(j), the latest end time, le(j), energy consumption 
per time slot, C(j), and the duration of task, Time(j), are 
specified. 

To solve the task assigning problem, two additional 
definitions are needed: start time, S(j), which represents the 
time slot when a task starts and task operation matrix, 
M(i,j),which represents the operating condition of each task 
j at time slot i. We set M(i,j)=1 when at time slot i, task j is 
operating. Otherwise M(i,j)=0. 

Using the above definition, the homeowner’s cost 
minimization problem can be modeled as follows. Given 
P(i), C(j), and Time(j), es(j), le(j), we are to assign S(j) for 
each j. The problem is to minimize the total cost 
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subject to: 
S(j)  ≥  es(j) 
S(j)+Time(j)<le(j) 

where M(i,j) can be found by the following method: 
Initialize M(i,j)=0 for all i and j; 
for each j { 

for (i=S(j), i<S(j)+T(j), i++) 
M(i,j)=1; 

} 
In this model, for simplicity, we assume that each task is 

independent of other tasks. We use a greedy algorithm to 
find the minimal cost: for Time(j)=k, from the earliest start 
time to the latest possible start time, we calculate all the 
values of P(i)+P(i+1)+….+P(i+k-1) and find the minimal 
sum. Then we put this task into these timeslots. Repeat the 
above steps until all the tasks are arranged. It can simply be 
proven that the proposed greedy algorithm obtains the 
global optimum solution.  



B. Model for Utility Companies 

As stated earlier, utility companies have been willing to 
reduce the peak demand from energy consumers. But when 
the demand is given, the engineers in the utility company 
should decide whether to turn on or turn off the power 
generation facilities. Many times a utility company prefers 
to waste some amount of energy in order to avoid 
repeatedly turning its power generation on and off, and 
thus, avoid the resulting large amount of startup operating 
costs. For example, in Los Angeles, some buildings in the 
downtown area may turn on their lights all night and waste 
energy although there is no body inside. This will be done 
to reduce the power generation startup cost. 

In this model, we act as an engineer to consider how 
many power generation facilities will operate at each time, 
T(i), when the energy demand for each time, Con(i), is 
given. For a utility company, we assume that the operating 
price of one power generation facility per time, Pc, the price 
of turning on one power generation facility, Pon, the price of 
turning off one power generation facility, Poff, and the 
amount of energy one power generation facility can offer, 
i.e., the load it can service are specified.  

To solve this problem, we assign each power generation 
facility an integer number from 1 to Max-number. We can 
then create a power generation operation matrix L(i,j), 
which represents the operating condition of each power 
generation j at time slot i. We set L(i,j)=1 if power 
generation facility j is operating at time slot i, Otherwise 
L(i,j)=0. For simplicity, we assume that we can turn on a 
power generation facility with the smallest number and turn 
off an operating power generation facility with the largest 
number. This means we will never have L(i, j)=0 but 
L(i,j+1)=1. L(i,j) and T(i) can be translated from each other. 

Our goal is to minimize the total cost of the utility 
company (namely costg), which consists of the total 
operating cost and the total turning on and off cost. The 
problem formulation is as follows: 
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where the last constraint forces the amount of energy 
provided by the power generations in each time to be 
greater  than amount of energy needed at that time.   

For this model, we use an algorithm that we refer to as 
the filling method. This method can be proven to find the 
optimal solution. The steps of this algorithm are following. 

1. Calculate the minimal T(i) based on the constraints and 
calculate the corresponding L(i,j): 
For each i {  
 T[i] = Con[i]/load + 1; 
 for(j=1; j<T[ i]+1; j++) 
 L[i][ j] = 1; 
 for(j=T[i]+1; j<number of time slots; j++) 
 L[i][ j] = 0; 
 } 

2. Calculate the number of time slots needed to be filled: 
expense = (Pon + Poff)/Pc 

3. Fill L(i,j) by change several 0 to 1: 
for(k=0; k<expense; k++){ 
for each i,j{ 
if(L[ i][ j] == 1) 
{ 
 if(L[i+2+k][ j] == 1) 
 { 

 for(l=0; l<k+1; l++) 
 L[i+1+l][ j] = 1; 
 } 
 } 
     } 
} 

4. Translate L(i,j) to T(i): ��	
 � 	∑ )�	, �)�  

C. Model for Global Controller 

A solution for each of the above problems is proposed to 
reach a minimized cost for homeowners or power 
generations. But these models are far from complete 
because our goal is to maximize the social welfare. Also 
note that there exists a connection between homeowners 
and utility companies so that one’s action exerts an impact 
to the other. Considering this, a feedback system is 
required. 

Homeowners and utility companies are generally non-
cooperative and always make their own optimal decision. 
Based on this, what we should be acting like a global 
controller that manages the whole system where everyone 
inside the system is making its own choice. 

Unlike our first model, this model does not assume a 
fixed price function, P(i). Instead, the price is what the 
third-part arbiter should decide, although still pre-
announced to homeowners. However, since energy price is 
very sensitive to the national and local economies, almost 
every national or local government will impose price 
constraints on utility companies. In this model, we consider 
two price constraints explained below. 

First, Average price P is a price that government gives 
in order to regulate the profit of a utility company. For the 
company to arrange the price as a function of time slot, it 
should have: 
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In addition, Pmax and Pmin are given to regulate the upper 
and the lower bounds of price at each time. 

�-�� ≤ ��	) ≤ �-*. 
Differently from the second model in this paper, the 

energy consumption of each time Con(i) is not fixed. 
Instead, we should calculate this value after all the 
homeowners have made their decisions i.e.,  
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where Fix(i) represents the fixed energy consumption at 
each time. 

The objective function will then be to maximize the 
social welfare, which means minimizing the total cost. 
Considering that the cost for homeowners will be the 
income of power generations, we take the cost function of 
the second model as our final cost, except for an additional 
consideration: the maximal number of power generation 
facilities, Tmax), is needed. For a relatively long time 
consideration, saving one power generation means saving 
space, human and repair cost. As a result, we take the cost 
function as: 

����	 = 	����� + 	&��&0 
where a is a factor that represents the total fixed cost for 
having one power generation. So the problem of 
maximizing the social welfare is as follows: 
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����	) ≥ 0 

����	) ≤ ��	) − ��	 − 1) 
����	) ≥ 0 

����	) ≤ ��	 − 1) − ��	) 

��	)%�&� ≥ 	/	0�	) +����)��	, �)
�

∀	 

��	) ≤ �-*. 
1
	 ���	)

�
≤ �*+, 

��	) ≤ �-*. 
��	) ≥ �-�� 

In this problem, P(i) changes the behavior of the 
customers and affects the electricity demand in each time, 
and �-*.. 

The problem of minimizing the Cost is an NP complete 
problem and we use simulated annealing to find a nearly-
optimal solution. Details of this method are as follows. 

1. Set all P(i)=P_ave 

2. Based on given P(i), call the homeowner model, 
assign all tasks and calculate total energy consumption of 
each time Con(i) 

3. Based on the calculated Con(i), all the engineer 
model, assign each power generation, calculate the total 
cost 

4. Randomly change the price distribution P(i) within 
the constraints, repeat step 2 and 3 and calculate cost_new 

5. If cost_new<cost, accept the new solution, if not 
accept in a certain probability based on the temperature T 

6. Cool down and repeat from step 2 until T reaches a 
certain value. 
III.  SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed 
algorithms, cases corresponding to the aforesaid pricing 
models are examined. 

In these simulations, duration of a time slot is set to one 
hour. For this reason, the minimum duration of a task is 
also set to one hour, and the durations of tasks are integer 
multiples of one hour. Moreover, power consumption of the 
tasks is determined with a granularity of one hour. 

The proposed algorithms have been implemented in 
C++ code and tested for random cases. 

In Table I, we act as a house owner and we assume that 
there are in total 10 tasks for us to assign. By using the 
algorithm provided above, the cost has been reduced by 
about 13.3% in average. Figure 1 shows the initial solution 
and the final solution. 

Table I. Cost Minimization for House Owners 

 Initial cost Final cost 
Cost 

reduction 

Expr. 1 1838 1594 13.3% 

 

 

Figure 2.Task assignment process 
 



Figure 2 shows the task assignment process. Initially, all 
the tasks are assigned randomly. But after using our task 
assigning method, all the tasks are assigned at the lowest-
cost time slots based on meeting the earliest start time and 
latest end time constraints. Remember that the proposed 
greedy algorithm is optimal and its run time on a normal 
machine for more than 100 tasks is less than a second. 

In Table II, we tested the model under three different 
values for expense. The results show that as the value of 
expense increases, the cost minimization effectiveness is 
enhanced from 5.2% to 26.3%. 

Table II. Cost Minimization for Utility Companies  

 
Initial cost Final cost Cost 

reduction 

expense = 1 2223 2107 5.2% 

expense =2 2748 2303 16.2% 

expense =3 3713 2738 26.3% 

 

Figure 3 shows how our algorithm helps to assign the fill-up 
power generations for different value of expense. 

 
(a) 
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Figure 3.Power generation working conditions for different 
expense profiles 

In Table III, we use simulated annealing for cost 
minimization. We assume that 1 power generation serves 
10 houses and each house has 10 tasks so that there are 100 
tasks in total. We can see from the tables that both 
homeowners and power generations have significantly 
reduced their cost. 

Table III. Cost Minimization for Combined Model 

 
Base-line cost Final cost Cost 

reduction 
Utility 

companies 
6939 4256 38.7% 

Homeowners 350200 293750 16.1% 

 
In this table, base-line cost refers to the cost in a case 

with initial scheduling for tasks in the homeowners and 
initial state for power generations.  

 
Figure 4. Price Distribution 

Figure 4 shows the change of price distribution. 
Initially, we set average price to all the time slots. After 
simulated annealing, the price distribution varies up to 
±75%. 

 



  
Figure 5.Energy consumption distribution 

Figure 5 shows the change of energy consumption 
distribution. Initially, the energy consumption exhibits peak 
and off-peak time behavior. But finally, the energy 
consumption distribution turns out to be relatively flat 
during the day. The energy consumption at the peak time is 
reduced about 50%. 

 

 
Figure 6. Power generation distribution 

Figure 6 shows the change of power generation 
distribution. Initially, we have to turn on a lot of power 
generation facilities in the peak time and turn off at the off-
peak time. But finally, as the energy consumption turns out 
to be relatively flat, the number of power generation 
facilities needed to be turned on or turned off becomes 
small. The maximum number of power generation facilities 
is reduced by about 50%. 

 
Figure 7. Simulated Annealing Steps 

Figure 7shows the change of total cost as a function of 
the simulated annealing steps. The cost reduces 
significantly in the first steps and comes relatively stable in 
the rest. The cost reduces down to about 40% of the base-
line solution. 

Runtime of the proposed heuristic for the third model is 
less than 10 seconds for 100 aggregated task in house 
owners for a machine with a dual core processor with 
frequency of 2.80 GHz. This run time is acceptable for 
using this algorithm real-time. 

IV. CONCLUSION 

Three different models of cost minimization including their 
problem formulation and solution were presented. All three 
models were implemented and tested for some random test 
schemes. More specifically in our key model, customers 
and power generation facilities are simultaneously 
considered as non-cooperative, always making decisions 
based on their own best solutions. A feedback system is 
utilized such that a manager can make the best decision 
according to the action and reaction of utility companies 
and customers. The results were compared to a base-line 
solution with significant improvements. 
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