
Codex-dp: Co-design of Communicating Systems Using Dynamic
Programming�

Jui-Ming Chang
Cadence Design Systems, Inc.

555 River Oaks Parkway, M/S 2B1
San Jose, CA 95134

Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract
In this paper, we present a novel algorithm based on

dynamic programming with binning to find, subject to
a given deadline, the minimum-cost coarse-grain hard-
ware/software partitioning and mapping of communicating
processes in a generalized task graph. The task graph in-
cludes computational processes which communicate with
each other by means of blocking/nonblocking communica-
tion mechanisms at times including, but also other than, the
beginning or end of their lifetime. The proposed algorithm
has been implemented. Experimental results are reported
and discussed.

1 Introduction
Previous work on system level synthesis has focused mainly
on fine-grain hardware/software partitioning. Examples in-
clude Vulcan II [1] and Cosyma [2]. These programs auto-
matically partition the input specification into basic blocks
(or fine-grain operations) and move the basic blocks to hard-
ware or software components while satisfying the given
constraints. The resulting fine-grain partitioning may, how-
ever, move logically coherent blocks across different parts
or put logically unrelated blocks in the same part. Further-
more, the resulting partitioning creates an implementation
which is very different from the initial specification, and
hence, is not convenient for human designers to debug or
improve upon.

In contrast, coarse-grain partitioning does not decom-
pose the initial specification into basic blocks and does not
assign a process in the initial specification to several pro-
cessors. It is therefore able to preserve the granularity and
modularity of the initial specification. In addition, coarse-
grain partitioning can exploit the designers’ expertise more
easily and can achieve a desired partitioning which satisfies
some macroscopic choices more readily [3]. Finally, the
resulting solution has more logical coherence which facili-
tates the top-down design process and allows for debugging
of the hardware/software.

Many of the coarse-grain partitioning algorithms start
from a task graph which consists of a set of communicat-
ing processes. In the published literature, task graphs that
describe the set of communicating processes (or tasks) are
directed acyclic graphs (DAGs) which use nodes to repre-
sent processes and arcs to represent precedence relations or

�This research was supported in part by SRC under contract no. 98-DJ-606.

communication among the processes. In these task graphs,
the communication is assumed to take place from the end
of one process (node) to the beginning of another process.
We refer to this type of communication as end/begin com-
munication. The coarse-grain processes may however com-
municate with each other at times other than the end or the
beginning of their lifetimes. We refer to this type of com-
munication as midway communication and to the task graph
with midway communication as a generalized task graph.
The problem we attempt to solve is then stated as follows:

Problem 1.1 Given a generalized task graph consisting of
processes which communicate with each other by arbitrary
blocking/nonblocking communication mechanisms and a li-
brary containing several possible mappings (or implemen-
tations) for each process, simultaneously schedule and map
the computational and communication processes to HW/SW
resources so as to minimize the total area cost while satis-
fying a given deadline.

The cost of mapping a process to a library unit (im-
plementation) cannot be determined exactly because of the
possibility of sharing the same unit between different pro-
cesses (e.g., using time-division multiplexing or TDM for
short). The cost should account for this possibility and in-
clude the area and delay overhead associated with the con-
text switching. We assume in this paper that TDM will be
used whenever possible, and that the overhead of the con-
text switching is accounted for in the area/delay cost of pro-
cesses which share the same unit.

A task graph with midway communication becomes a
directed multi-graph, i.e., there may exist multiple arcs from
one node to another node. The task graph may be periodic.
We can handle the case where the period is no less than the
deadline by performing the same schedule on every period.

The hardware components which are available in the
library can be classified into computational or commu-
nication units. Both classes can be further divided into
programmable or non-programmable. Examples of pro-
grammable computational units are CPUs, DSPs and exam-
ples of non-programmable computational units are ASICs
and custom ICs. Examples of programmable communica-
tion units are FIFOs with controllers, bidirectional hand-
shake controllers, DMA controllers, bus arbiters, or shared
memory access and examples of non-programmable com-
munication units are special purpose, customized commu-
nication units. All computational and communication units



in our library are assumed to be compatible with industry in-
terface standards such as the evolving Virtual Socket Inter-
face. As a result, we can mix and match various IP blocks.

We allow the resource sharing of programmable compo-
nents by different processes according to TDM, even if the
process lifetimes overlap. For nonprogrammable resources,
the sharing can only happen if the process lifetimes do not
overlap or the processes are mutually exclusive.

Our algorithm consists of three major phases. First,
processes are decomposed into subprocesses which per-
form parts of the required computation. The correct prece-
dence relationships implied by the specified communication
mechanism are then added in by a systematic transforma-
tion process. Second, the decomposed subprocesses are
scheduled so as to ensure that the subprocesses which be-
long to the same original process are mapped to the same
hardware type (for example, the same CPU with the same
utilization factor). We refer to the condition that all of
the subprocesses which are obtained from the same origi-
nal process are mapped to the same hardware type with the
same utilization factor as type consistency constraint. This
constraint is necessary because we assume that the origi-
nal coarse-grain process has strong internal communication
(variable reference, etc.). As a result, we do not want the
subprocesses which are decomposed from the same orig-
inal coarse grain process to be mapped to different hard-
ware units in the final solution. The scheduling is done us-
ing a dynamic programming based algorithm which finds
the cost-optimal process mapping, while satisfying a given
task deadline. The third phase is a hardware allocation and
binding (sharing) phase which ensures that the decomposed
subprocesses will be mapped not only to the same hardware
type, but also to the same hardware instance. The allocation
and binding determines the sharing of hardware among all
coarse-grain processes in the system.

The paper is organized as follows. In Section 2, we sum-
marize related work for coarse-grain HW/SW partitioning.
Section 3 introduces our transformation rules for process
decomposition. In Section 4, we present our dynamic pro-
gramming algorithm for solving Problem 1.1. In Section 5,
we describe the allocation and binding algorithm to be used
after the scheduling step. Experimental results and conclu-
sions are provided in Sections 6 and 7, respectively.

2 Related work
There are two published works [4] [5] on fine-grain hard-
ware/software partitioning which use dynamic program-
ming. In both of these works, the target architecture
contains a single microprocessor and a single hardware
chip. The authors try to find the best combination of
non-overlapping sequences of fine-grain “basic scheduling
blocks” which fit the available hardware (ASIC or FPGA)
and result in maximum speedup by moving the scheduling
blocks from software to hardware). The problem is simi-
lar to the knapsack problem, and the dynamic programming
formulation is used only to avoid repeated computations in
their iterative procedure.

There have been a number of research publications on
coarse-grain HW/SW partitioning which handle task graphs
with only end/begin type communication [6] [7] [8] [9]. In
these task graphs, the total time used by a process is sim-

ply the summation of the time used to do the computation
and time used to do the communication. These works use
greedy heuristics [6], branch and bound search [7], or MILP
solvers [10] [8] as their optimization techniques. In [11]
and [1], the authors allow midway communication in a fine-
grain HW/SW environment. The form of communication
allowed is however not as general as the ones proposed in
the present paper and not at the coarse-level.

The work reported in [12] for coarse-grain system syn-
thesis, separates the synthesis of computational and com-
munication processes into two distinct stages. In this case,
it is very difficult to apply a timing constraint (deadline) on
the system because part of the time in the critical path is
used to do the computation whereas another part is used to
do the communication. In [6], the gradient search method
on the solution space is used. In each iteration, the authors
perform a generate and test operation commonly used in
AI . That is, in each iteration, they try to relocate one pro-
cess from a CPU to another, relocate a message (communi-
cation process) from one bus to another, do the reschedul-
ing on the CPUs and buses, and calculate the change on
the cost. If the timing constraints on CPUs or buses are
violated, they add one more CPU or bus to fix the prob-
lem. The synthesis of computational and communication
processes can thus be considered to be performed simulta-
neously during each iteration of the search on the solution
space. The algorithm is, however, greedy and non-optimal.
In our work, the timing constraint is applied to all of the
computation and communication subprocesses in all critical
paths and thus the synthesis of the two kinds of processes is
performed simultaneously. Since our algorithm is based on
dynamic programming it produces the optimal solution.

In summary, previous works do not address the problem
of coarse-grain mapping of communicating processes. This
problem is the subject of the present paper.

3 Process Decomposition in a Task Graph
This phase decomposes the communicating processes into
some smaller computational subprocesses and communica-
tion processes. The decomposition step ensures that all of
the precedence relationships imposed by the required block-
ing/nonblocking communication mechanisms are added.
Transformation of the communicating processes into com-
putational subprocesses and communication processes for
blocking send/blocking receive, nonblocking send/blocking
receive, blocking send/nonblocking receive and nonblock-
ing send/nonblocking receive are shown in Fig. 1(a), (b),
(c) and (d), respectively. In Fig. 1, process S represents the
actual process which sends the data from the sending pro-
cess and R represents the process which sends the reply or
acknowledgment from the receiving process. The arcs with
single tail denote the precedence relationships between the
nodes connected by that arc. The arcs with double tails de-
notes the precedence relationship between the two subpro-
cesses that are decomposed from the same original coarse-
grain process. Note that there is strong internal communica-
tion (variable accesses) and logical coherence between two
such subprocesses and thus they should be finally mapped
to the same hardware/software instance.

For a task graph with complex communications among
processes, we follow the transformation rules shown in Fig.



A B(a)

BS/BR

PO PO

BS/BR

PO PO

A1

A2

B1

B2

B3

A1

A2

B1

B2

B3

S

R

PO
PO

A B(b)

NBS/BR

PO PO

NBS/BR

PO PO

A1

A2

B1

B2

A1

A2

B1

B2

S

PO PO

A B

BS/NBR

PO PO

BS/NBR

PO PO

A1

A2

B1

B2

A1

A2

B1

B2

R

PO PO

(c)

A B(d)

 NBS/NBR

PO PO PO

A1

A2

A1

A2

S

PO

B

PO

B

PO

A

B

NBS/BR

A

B

S

A

B

NBS/BR

A

C

S2

C B

S1NBS/BR(e)

Figure 1: Decomposition of communicating processes.

1 to create to the decomposed task graph. When there is
more than one midway communication for a given process
(cf. process A in Fig. 2(a)), the decomposition of this
process depends on whether it is single threaded or multi-
threaded. For a single threaded process, the midway com-
munication is referenced to the same time line as that of the
thread. In this case, the appropriate transformation rules are
applied to all midway communications at different points
of the time line (cf. Fig. 2(b)). For a process with multi-
threads, the midway communications may be referenced to
different time lines for different threads. In this case, we add
two dummy nodes Y� and Y� (with zero cost and zero delay)
at the beginning and the end of that process to synchronize
the multiple threads. The appropriate transformation rule is
then applied on each thread that serves the time line for the
corresponding midway communication (cf. Fig. 2(c)).

4 Scheduling Using Dynamic Programming
The scheduling algorithm is based on dynamic program-
ming as is described next.

4.1 Area vs. delay curves
Before the scheduling, all processes are assigned an area
vs. delay curve which represents the area cost and delay for
mapping the process to different types of processors. The
corner points on those curves are non-inferior points. A
point is inferior to another point if both its cost and delay
are equal or higher. The area cost of a process mapped to
a processor type X is the chip area of the hardware real-
ization of processor X . In case the utilization factor is less

AC D

BS/BR

NBS/BR

PO

PO

S1

B

NBS/BR

NBS/BR

NBS/BR

(a)

A1

A2

D1

D2

D3

C1

C2

S3

S2

R2

S1

B1

B2

root

A3

(b)

A1

A2

D1

D2

D3

A3

A4

C1

C2

Y1

Y2

S3

S2

R2

S1

B1

B2

root

(c)

Figure 2: Example for decomposition of single and multi-
threaded processes.

than 100%, then the area cost is multiplied by the utiliza-
tion factor. Similarly, the delay cost of a process mapped
to this processor is the total computation time for the pro-
cess running on that type of hardware. In case the processor
is shared among multiple processes, the delay cost of each
process accounts for the overhead of context switching.

In this paper, we only consider a task graph which is
composed of computational and communication processes
with deterministic characteristics. The data size for each
communication process is known (a priori) as part of the in-
put specification, and the corresponding delay for mapping
to different communication units is estimated by behavioral
simulation and profiling. For communication processes, the
area estimate does include the area used by communica-
tion controller, buses, and local buffers for both the sender
and the receiver. The area of a communication process that
uses programmable communication controller with some
utilization factor� 100% is estimated as the total cost times
the utilization factor. For communication units, which are
shared by several communication processes, the cost and
delay includes the overhead of context switching.

4.2 Simple task graphs
For a task graph without re-convergent fanout and with only
end/begin type communications, the algorithm used in [13]
can be directly used without going through the process de-
composition phase. This algorithm would then produce the
optimal hardware/software mapping for a tree-structured
task graph (and a good solution for a DAG-structured task
graph) under a given timing constraint (deadline) in pseudo-
polynomial time. The only modification is to replace the
end/begin type communication with a sending process S
and to add the required arcs to the task graph as shown in
Fig. 1(e).

The algorithm assumes that we are given the area vs. de-
lay curves for different module alternatives (implementa-
tions) which match each node of the task graph. Then the
algorithm performs a post-order traversal which adds the
area vs. delay curves of the children of a node and the mod-
ule alternatives for the node to build the area vs. delay curve
of this node. This step will also use the lower bound merge
to delete all inferior points. The post-order traversal will
continue until the graph roots are reached. Then a pre-order
traversal will commence at the roots using user specified ar-
rival time constraint. The minimum area point on the area
vs. delay curve of the root which satisfies the arrival time



B5 B4 B3 B2 B1

A5
A4 A3 A2

A1

R9 S8

C

root

D2 D1

Y (A)(A)(A)(A, B, S8)(A, B, S8)

(A, B, C, S8)

(B)(B)(B)(B, C)(A, B, C, S8)(A, B, C, S8)

(C)(D)

(C, D)

(B, S8)

(A, B, S8)

Figure 3: Example for computing the binning strings
(shown in parantheses).

constraint will determine the module alternative to be used
at the root. The pre-order then traverses the children of the
root with the new arrival time constraint calculated as the ar-
rival time at the root minus the delay of the module used at
root. The recursive procedure will continue until all leaves
have been visited.

4.3 Complex task graphs
Handling task graphs with processes that have re-
convergent fanout and use midway communication during
their lifetime is more difficult. This is because processes
in the task graph have to be decomposed into subprocesses,
and the communication processes which reflect the block-
ing/nonblocking communication mechanism have to be in-
serted. Furthermore, after the decomposition phase, the dy-
namic programming paradigm must be modified to ensure
that the subprocesses which belong to the same original pro-
cess are mapped to the same hardware or software compo-
nent instance to maintain the logical coherence and perfor-
mance. This is achieved in two steps; during scheduling,
we ensure that the decomposed subprocesses which corre-
spond to the same original process are mapped to the same
HW or SW type with the same utilization factor. During the
allocation and binding, we ensure that these subprocesses
are further mapped to the same HW or SW component in-
stance.

Theorem 4.3.1 Problem 1.1 is NP-complete.�

In practice, the midway communication among coarse-
grain processes occurs frequently. The dynamic program-
ming approach of [13], may generate a point on the area
vs. delay curve of a reconvergent fanout node x which re-
quires inconsistent type assignments for some of the nodes
in the transitive fanin cone of x. This is obviously wrong.
In addition, using the original algorithm in [13], during the
post-order graph traversal, we may drop some points which
are actually required to generate the optimal solution.

4.3.1 Creating the binning strings
To satisfy the type consistency constraint, we modify the
dynamic programming algorithm as follows. First, we add
binning strings to each node. The purpose of the bin-
ning strings is to ensure that the dynamic programming al-
gorithm uses type consistent mapping solutions for nodes

�All proofs can be found in [14]; they are omitted here to save space.

along different paths to any reconvergent fanout node (see
Fig. 3). The computation of the binning strings relies on
the notion of primary and secondary reconvergent nodes of
a given node in the graph and uses the Floyd-Warshall al-
gorithm [15] to compute the transitive closure of a graph.
Details are omitted due to lack of space. Second, in the
solution of [13], the post-order and pre-order traversals are
performed on the individual PO’s sequentially. This ap-
proach may however lead to a type inconsistent solution.
We thus add some dummy nodes and a root with zero cost
and zero delay to merge different PO �s into a single root.

As a result of the binning string computation, each node
(subprocess) will have several bins, and each bin will have
an associated tag which describes the implementations used
for each process in the binning string of the node. For exam-
ple if the binning string of nodeX is �A�B� and if there are
3 types of mapping for process A and 4 types of mapping
for processB, then there will be a total 12 bins for node X .
The first bin will be tagged as (A = T1, B = T1), the second
bin will be tagged as (A = T1, B = T2), and so on.

4.3.2 Post-order traversal
Suppose we are processing node X with two children Y
and Z (which have already been processed during the post-
order traversal). We check the binning strings of Y and Z
against that of X . If the binning strings of any child and
its parent are different, we have to normalize the dimen-
sion of the bins of the child to that of the parent. For a
child node with binning string shorter than that of its par-
ent node, we expand the dimension of the bins of the child
node by duplicating the corresponding curve for the bins
which are added. For example, if child node Y has binning
string �B� and its parent X has binning string �A�B�, and
assuming that there are two types of mappings for both A
and B, say types E and F . We duplicate the original curve
of node Y for (B � E) tag and create two identical curves
for tags (A � E�B � E) and (A � F�B � E). Similar
duplication step is applied to the curve of node Y for the
(B � F ) tag. For a child node with longer binning string
than that of its parent node, we reduce the dimension of the
bins of that child node by merging the curves which belong
to bins that differ only in the ID missing from the binning
string of the parent. For example, if child node Z has bin-
ning string �A�B�C� and its parent X has binning string
�A�B�, then we will do a superimpose followed by lower
bound operation on the curves of bins corresponding to tags
�A � E�B � E�C � E� and �A � E�B � E�C � F � to
obtain the unified curve for the new tag �A � E�B � E�.
Similar operations are needed for all other combinations of
A and B implementations.

After we normalize the dimension of each child node,
the curve representing the accumulated cost vs. delay on
the parent can be constructed by adding the curves of each
child and including the contribution of the module alterna-
tive matched at the parent. This must be done for every
bin, one at a time. Addition must occur in the common re-
gion among all curves to ensure that the resulting merged
function reflects feasible matches at the children of n. The
curve for successive matchings at the same node n are then
merged by applying a lower-bound merge operation on the
corresponding curves. Because our decomposed task graph



is a DAG instead of a tree, we face the problem of how to
pass up the cost of a multiple fanout node to its parents dur-
ing the post-order traversal. We use a heuristic whereby the
cost value of a multiple fanout node is divided by its fanout
count when propagated upward in the DAG. This heuristic
produces the exact total cost at the root as long as multiple
primary outputs are merged into a single root (cf. 4.3.1).
The proof is straight forward (similar to flow conservation
in network flow problem).

The curve addition and merging are performed recur-
sively until the root of the root is reached. The resulting
curve is saved in the corresponding bin of the graph at its
corresponding node. The set of �t� c� pairs corresponding
to the composite curve for the tag at the root node gives the
set of all possible arrival time-cost trade-offs for the user to
choose from.

4.3.3 Pre-order traversal
Pre-order traversal begins at the root of the decomposed task
graph and proceeds toward the leaves. Consider a nodeX of
the graph. The (output) arrival time and the type constraint
for the node are known. Our task is to determine the arrival
times and the type constraints for each of its child nodes.

Consider a child Z of node X . We are assured that
at least one of the tagged curves of X is consistent with
the type constraint passed down to X . If there is exactly
one such curve stored at X , we pick the minimum-cost
point of the curve which satisfies the arrival time constraint
of X . Otherwise, there are more than one tagged curves
that are consistent with the type constraints passed down
to node X . In this case, we find the corresponding best
cost point on each curve (which satisfies the timing con-
straint) and among them pick the solution which has the
overall minimum-cost. Next, we update the type constraint
for node Z as the Union of type constraint passed down to
node X and the constraint implied by the tag of the chosen
point on the tagged curve (or bin) and set the timing con-
straint of Z as the timing constraint atX minus the delay of
the match at X .

A multiple-fanout node is visited multiple times during
the pre-order traversal. During each visit, the arrival time
and possibly type constraint of the node may change to
guarantee that arrival time and type consistency constraints
for all paths emanating from that node toward the root of
the graph are satisfied. Due to the introduction of a sin-
gle root during the binning string computation, we do not
encounter conflicting type consistency constraints from dif-
ferent fanout branches of such a node.

Theorem 4.3.2 Dynamic programming with binning solves
Problem 1.1 optimally while satisfying the type consistency
constraints.

4.4 Complexity Analysis
Let us scale delay values for all nodes (subprocesses) un-
der different process mapping to become integers. Further-
more, we denote the maximum computation time for a tree-
structured decomposed task graph (using the worst-case in-
teger delay values on any path) by Tmax and assume that
Tmax is bounded from above by an integer Q. Let j I j = n

wheren is the total number of nodes (decomposed computa-
tion and communication (sub)processes) in the decomposed
task graph .

Suppose that the maximum number of possible pro-
cess mappings for each subprocess (node) is K and the
maximum length among all binning strings is m. Us-
ing our process decomposition method, all communication
(sub)processes have fanout count � �. In a decomposed
task graph with n nodes, � � m � n. There can be at most
Km bins in each node in the decomposed task graph. Then
the maximum possible number of points in each node of the
decomposed task graph is Q �Km.

The number of area-delay points on each node in the de-
composed task graph is bounded from above by Q � Km.
The algorithm thus has a time complexity of n � Q � Km.
Delay function merging and addition are done in linear time
in the number of points on the curves involved in the oper-
ations. Therefore, our algorithm runs in n �Q �Km time.

Note that the value of m is, in general, dependent on the
structure of the decomposed task graph. In the worst case,
m can be as large as n. In practice, m is, however, much
smaller than n. For example, for the frequently encountered
simple task graphs defined in Section 4.2, m is zero. In this
case, the algorithm has pseudo-polynomial time complexity
on the decomposed task graph.

5 Allocation and Binding
As a result of the scheduling phase, the computational sub-
processes decomposed from the same original coarse-grain
process are mapped to the same type of processor imple-
mentation or custom ICs. They have not however been
mapped to the same instance of the processor or custom IC.

Our first step is to regroup these subprocesses back into
their coarse-grain process and assign them to the same pro-
cessor instance. From then on, the allocation and binding
procedure will treat the regrouped subprocesses as a single
process.

Processes are generally separated into different classes if
they are mapped to different types of hardware units. Within
each class, the allocation and binding (sharing) is then per-
formed.

Processes which are mapped to programmable units can
share the same instance of the unit through TDM even if
their lifetimes overlap. In addition to the programmable
communication units, part of the buses or the shared mem-
ory and/or local buffers needed for communication may be
shared in a TDM fashion by the the corresponding commu-
nication processes. The requirements for sharing one pro-
grammable unit instance are that the processes are mapped
to the same type of unit, and the sum of the utilization fac-
tors of those processes is less than 100%. We perform the
allocation and binding by using a modified bin packing al-
gorithm which ensures that every regrouped coarse-grain
process is bound to the same hardware instance through-
out its lifetime. Note that the TDM sharing does not change
the global timing obtained in the scheduling phase. Details
are omitted to save space.

For non-programmable units such as custom ICs or other
communication units, sharing is possible only if the process
lifetimes do not overlap or the processes are mutually ex-
clusive.



6 Experimental Results
Our dynamic programming with binning, named Codex-dp
(for Co-design of Communicating Systems Using Dynamic
Programming), is implemented in C and tested on a num-
ber of circuits. Experimental results are presented in Table
1. Prakash1 and Prakash2 are taken from [10]; Yen is taken
from [6], and Bender is an example from [8]. In every ex-
ample, we do the process decomposition and insert appro-
priate communication processes in the original task graphs.
Our module library consists of a number of processors and
communication units (Intel Pentium II and Motorola 68030
processors, TI 302C25 DSP, Intel DMA controller, 10Mb/s
Ethernet controller, etc.) We allow the sharing of these re-
source through TDM. A pre-processing step determines the
area/delay cost of each process when it is mapped to various
hardware units in the library.

We also report results on 4 more examples from vari-
ous sources. The task graph for example 1 with deadline
= 80.0(ms) is taken from the CPM system [16]. The task
graph for example 2 with deadline = 100.0(ms) contains
end.begin type communication only, but has reconvergent
fanout structure. The task graph for example 3 is shown in
Fig. 2(a); its decomposed task graph is shown in Fig. 2(c)
and has deadline = 50.0(ms). The task graph for example
4 is a large task graph taken from [16] which performs the
voice activity detection in a GSM phone. For this example,
we used three different deadlines and report the results in
row ex4-1, ex4-2, ex4-3. The corresponding deadlines were
set to 170, 300, 510 (ms), respectively.

In Table 1, column 2 shows the values of m and n seen
by Codex-dp (cf. 4.4). Column 3 gives the total number
of processor and communication units needed after the al-
location and binding. Columns 4 and 5 give the CPU time
used by Codex-dp (in seconds on a 200 MHz Pentium Pro)
and the estimated area cost (in cm�) required to implement
each circuit. Column 6 gives the numbers of variables, in-
equalities and equations if the scheduling is formulated as
a mixed integer linear program, MILP assuming that each
process has four possible implementations (not presented
here due to lack of space). In column 7, we show the com-
plexity of using exhaustive search after regrouping all of the
computational subprocesses back into their original coarse-
grain processes and still assuming that each process has four
possible implementations.

It can be seen that Codex-dp produces the optimal
scheduling results in a very short time compared to the ex-
pected time for MILP or exhaustive search. For example, in
ex4, the MILP solution cannot be obtained due to the large
number of variables in the MILP (195 variables, 123 equa-
tions, 51 inequalities). The row entries for ex4-1, ex4-2,
ex4-3 show the trade-off between area cost and total com-
putation time. Decreasing the deadline constraint increases
the area cost of the optimal solution.

7 Conclusion
We have presented an algorithm based on dynamic
programming with binning to solve a min-cost, time-
constrained simultaneous scheduling and mapping problem
for a set of computational processes which communicated
by means of blocking/nonblocking communication mecha-

Ckt m�n pu,cu Codex-dp MILP Exh.
cnt c-time cost form. srch

Prak1 2,11 1,1 0.036 63.7 55,13,11 �
��

Prak2 6,22 2,1 0.507 122.5 110,26,22 �
��

Yen 1,12 1,1 0.043 63.7 60,13,12 �
��

Bend. 7,13 2,2 1.143 137.2 60,17,12 �
��

ex1 0,13 1,1 0.086 79.7 65,12,13 �
��

ex2 1,14 2,1 0.114 148.5 70,15,0 �
��

ex3 4,18 3,1 0.107 171.5 63,21,7 �
�

ex4-1 9,39 3,3 6.329 200.9 195,51,123 �
��

ex4-2 9,39 2,3 6.412 151.9 195,51,123 �
��

ex4-3 9,39 2,2 6.356 127.4 195,51,123 �
��

Table 1: Experimental results.

nism at times other than the beginning or end of their life-
time. The proposed algorithm produces optimal results, and
is much faster to solve than the MILP formulation. A final
resource allocation and sharing step will follow the dynamic
programming step and produce the actual instantiation of
the processor types to hardware instances. This last step is
done using a modified bin packing heuristics.

References
[1] R. Gupta and G. D. Micheli. System-level Synthesis using Re-programmable

Components. In Proceedings European Design Automation Conference, 1992.

[2] R. Ernst, J. Henkel, and Th. Benner. Hardware/Software Co-Synthesis for Mi-
crocontrollers. IEEE Design and Test Magazine, 10(4), December 1993.

[3] G. De Micheli and editor M. Sami. Hardware/Software Co-Design, pages 22,
84, 85, 96, 217. Kluwer Academic Publishers, 1995.

[4] A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, and H. Tenhunen. Hard-
ware/Software Partitioning and Minimizing Memory Interface Traffic. In Pro-
ceedings European Design Automation Conference, 1994.

[5] P. Knudsen and J. Madsen. PACE: A Dynamic Programming Algorithm for
Hardware/Software Partitioning. In Proceedings IEEE International Workshop
on Hardware/Software Codesign, 1996.

[6] T.-Y. Yen W. Wolf. Communication Synthesis for Distributed Embedded Sys-
tems. In Proceedings IEEE International Conference on Computer-Aided De-
sign, 1995.

[7] J. D’Ambrosio and X. Hu. Configuration-Level Hardware/Software Partition-
ing for Real-Time Embedded Systems. In Proceedings IEEE International
Workshop on Hardware/Software Codesign, 1994.

[8] A. Bender. MILP Based Task Mapping for Heterogenous Multiprocessor Sys-
tems. In Proceedings European Design Automation Conference, 1996.

[9] S. Narayan and D.D Gajski. Synthesis of System-Level Bus Interface. In Pro-
ceedings European Design Automation Conference, 1994.

[10] S. Prakash and A. Parker. SOS: Synthesis of Application-Specific Heteroge-
neous Multiprocessor Systems. Journal of Parallel and Distributed Computing,
16, December 1992.

[11] T. Benner, R. Ernst, and A. Ősterling. Scalable Performance Scheduling for
Hardware-software Co-synthesis. In Proceedings European Design Automation
Conference, 1995.

[12] J.-M. Davaeu, T. Ismail, and A.A. Jerraya. Synthesis of System-Level Commu-
nication by Allocation-Based Approach. In Proceedings IEEE International
Symposium on System Synthesis, 1995.

[13] J.-M. Chang and M. Pedram. Energy Minimization Using Multiple Supply
Voltages. In Proceedings International Symposium for Low Power Electronic
and Design, August 1996.

[14] J.-M. Chang and M. Pedram. Codex-dp: Co-design of Communicating Systems
Using Dynamic Programming. Technical Report CENG 98-04, University of
Southern California, 1998.

[15] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, McGraw-Hill, 1990.

[16] R. Steele. Mobile Radio Communications. Pentech Press, London, 1995.


