
Low Power Techniques for Address Encoding and Memory Allocation
Wei-Chung Cheng and Massoud Pedram

Dept. of EE-Systems, University of Southern California
Los Angeles, CA 90089, USA

{wccheng, massoud}@zugros.usc.edu

Abstract - This paper presents encoding techniques to optimize
the switching activity on a multiplexed DRAM address bus.
The DRAM switching activity can be classified either as
external (between two consecutive addresses) or internal
(between the row and column addresses of the same address).
To eliminate the external switching activity for sequential
access, we propose an optimal encoding, Pyramid code, for
conventional DRAM mode as well as Burst Pyramid code for
burst mode DRAM. To minimize the internal switching
activity, we propose Scattered Paging for both random and
sequential access patterns by exploiting the built-in virtual
memory mechanism, which is commonly present on modern
processors.

I. Introduction
Modern electronic systems have a dichotomy of

simultaneously needing to be low power and high
performance. This arises largely from their use in
battery-operated portable (wearable) platforms. Even in
fixed, power-rich platforms, the packaging and reliability
costs associated with very high power and high performance
systems are forcing designers to look for ways to reduce
power consumption. Power-efficient designing requires
reducing power dissipation in all parts of the design and
during all stages of the design process subject to constraints
on the system performance and quality of service (QoS).
Power-aware software compilers, dynamic power
management policies, memory management and bus
encoding techniques, as well as hardware design tools are
needed to meet these often conflicting design requirements
[8][12]. This paper focuses on the low power bus-encoding
problem.

A. Address Bus Encoding

In [15], Su et al. proposed the technique of using Gray
code to implement the program counter of a microprocessor
to minimize the switching activity of sequential memory
accesses. They showed that the Gray code is asymptotically
optimal among all irredundant codes. The Bus-Invert code
[14] toggles the polarity of the signals according to the
Hamming distance between two consecutive data values by
using an additional line on the bus. The T0 code [2] uses a
redundant signal to indicate if the bus is in normal mode or
increasing address. In the latter case, only one signal needs
to be switched. Both Bus-Invert and T0 codes are redundant
because they need one extra bit. The Working Zone code
[10] addresses the problem that the address bus does not
behave completely sequentially because the accesses to
different zones are usually interleaved. The Beach code [1]

exploits the temporal correlations for a given application.
Table I lists some example codes and their total switching
activities in the last row for sequential access pattern of a
16-byte memory space.

The key idea behind all of these techniques is to reduce
the Hamming distance between consecutive addresses on a
non-multiplexed bus. However, these schemes cannot be
applied to DRAM address bus encoding because of the
time-multiplexed addressing scheme used therein.

B. DRAM Technology

Dynamic RAM (DRAM) is usually laid out in a
2-dimensional array. To identify a memory cell in the array,
two addresses are needed: row address and column address.
The row address is sent over the bus and is latched in the
DRAM decoder. Subsequently, the column address is sent to
complete the address. We refer to this kind of DRAM as
conventional DRAM. As a result, the conventional DRAM
bus is time-multiplexed between the row and column
addresses, so that the pin count for addresses is reduced by a
factor of two. Because the switching activity on a DRAM
bus is totally different from that of a non-multiplexed bus,
we need another Gray code like encoding scheme to
minimize the switching activity for sequential memory
access on a DRAM bus. As seen in Table I, the binary code
results in very high bus switching activity.

In addition to the conventional DRAM, almost every
modern DRAM device supports page mode. In the page
mode, after the first data transaction, the row address is
latched and then different memory locations in the same row
are read/written by sending only their column addresses.
Hyper page mode or extended data out mode (EDO) is the
same as page mode, except that the Column Address Strobe
signal is overloaded with both the CAS and Data-Out
signals.

Synchronous DRAM (SDRAM), named so because it
avoids the asynchronous handshaking used in conventional
and page mode DRAMs, uses the system clock to strobe
data. No Data-Out signal is needed. To boost the throughput,
in burst mode DRAM, several bytes (2, 4, or more) can be
read/written continuously without any handshaking signal.
Columns 6 and 7 of Table I provide examples of accessing
blocks of size two in page mode and burst mode,
respectively. Rambus DRAM (RDRAM) targets high
performance computer systems and has evolved three
generations: Base, Concurrent and Direct Rambus.
RDRAMs are variable-length packet-switched. Because
their signals are quite different from the previously
mentioned DRAM devices, we exclude them from further

C

(a) G1

(b) G2

(c) G3

(d) G4

10 11

00 01

10 11

00 01

0010

00 01
0100

0001

10 111110

1011

1101

0111

1000
1001

0110

1100

0011

1111

0101

1010

0000

10

00

10 11

00 01

0010

0100

1110

1000

0110

1100

1010

0000

00 01

10 11

C’ R’

R C’

consideration in this paper. Column 8 in Table I shows the
proposed Pyramid code, which reduces up to 50% of the
bit-level switching activity in conventional DRAM bus.

The remainder of this paper is organized as follows. We
provide the problem formulation for external switching
activity minimization on conventional mode and burst mode
DRAM address bus in Section II. Scattered Paging, a
scheme for reducing the internal switching activity on
DRAM address bus, is presented in Section III.
Experimental results are given in Section IV. Section V
concludes our work.

TABLE I
Comparison of Different Encoding Schemes

Bin Gray Bus-Inv T0
Conv.

DRAM
Page
Mode

Burst
Mode

Pyra-
mid

Burst
Pyra-
Mid

0000 0000 0000-0 0000-0
00
00

00
00

00
00

00
00

00
00

0001 0001 0001-0 0000-1
00
01 01

00
01

0010 0011 0010-0 0000-1
00
10

00
10

00
10

01
01

01
00

0011 0010 0011-0 0000-1
00
11 11

01
00

0100 0110 1011-1 0000-1
01
00

01
00

01
00

00
10

01
10

0101 0111 1010-1 0000-1
01
01 01

10
01

0110 0101 0110-0 0000-1
01
10

01
10

01
10

01
10

11
00

0111 0100 0111-0 0000-1
01
11 11

10
10

1000 1100 0111-1 0000-1
10
00

10
00

10
00

10
00

00
10

1001 1101 0110-1 0000-1
10
01 01

00
11

1010 1111 1010-0 0000-1
10
10

10
10

10
10

11
01

10
10

1011 1110 1011-0 0000-1
10
11 11

01
11

1100 1010 0011-1 0000-1
11
00

11
00

11
00

11
10

11
10

1101 1011 0010-1 0000-1
11
01 01

10
11

1110 1001 1110-0 0000-1
11
10

11
10

11
10

11
11

10
00

1111 1000 1111-0 0000-1
11
11 11

11
00

=20 =16 =28 =2 =32 =24 =16 =16 =12

II. Pyramid Code
We focus on minimizing the external switching activity on

the DRAM bus for a sequential access pattern. The basic
concept of Pyramid code [4] and Burst Pyramid code will be
presented.

A. Graph Representation

Without loss of generality, consider a DRAM memory
space consisting of 16 (24) locations. Each location is
identified by 4 bits, which are multiplexed on a 2-bit wide
address bus. Our goal is to find a sequence of these 16
addresses (e.g. permutation) such that the switching activity
is minimum. We represent these addresses by a
Row/Column graph (which will be referred as RC graph
thereafter) G1 in Fig. 1(a). The four solid circled nodes
consist of the row address set R, and the four dotted circled
nodes consist of the column address set C. For each pair of

u∈ R and v∈ C, there is a weighted forward-edge (u,v)
representing one of the 16 different addresses. Thus, each
edge can be labeled by an address <uv> with the weight
equal to the Hamming distance H(u,v), which reflects the
internal switching activity. Consider two consecutive
addresses <u1v1> and <u2v2>, their external switching
activity is calculated as H(v1, u2). We define the
corresponding edge (v1, u2) as a back-edge; these edges are
not shown on G1. Our goal is to construct a shortest cycle
that includes all the 16 forward edges.

Fig. 1. (a)(c) RC Graphs. (b)(d) Merged RC Graphs.

Since R and C have the same labels, we can superimpose
these two sets and obtain a Merged RC graph G2 in Fig. 1(b),
which is a directed complete graph K4. By the merging, we
implicitly embed a zero-weighted back-edge (v,v) in each
node v. Therefore, solving the shortest cycle problem on G1

becomes very simple on G2. Any Eulerian cycle is an
optimal solution because along this cycle all the
forward-edges are connected by the zero-weighted self-loop
back-edges only. Hence the external switching activity is
zero. We can prove the following result.

Theorem 1. Any Eulerian cycle on the merged RC graph
G(V,E) with ordered vertex set V={0, 1, ... , 2N-1} gives an
optimal multiplexed code of the ordered set V.
Proofs are omitted due to shortage of space.

Sufficient and necessary conditions for an Eulerian cycle
to exist on a graph is that (1) the graph is connected and (2)
for every vertex the in-degree is the same as the out-degree
[7]. Clearly, there are a large number of such solutions in a
complete graph Ki. One can apply algorithms such as
depth-first search or breadth-first search to get an arbitrary
solution. However, the encoding and decoding functions will
have to be realized in hardware. Simple, yet efficient
functions are necessary for practical implementation. The
functions should not be too complex so as to offset the
power saving from reduced switching activity.

00 01

10

00 0100

2

1

0

3

4

5

6

8

7

00 01

10 11

9

10
11

12

13
14

15

W2 W3W1

W4

0 1 4 9

3 2 6 11

8 5 7 13

15 10 12 14

0 1 2 3

0

4

8

12

R
C

B. Pyramid Code

Let’s denote the Eulerian Cycle Problem on KN as ECPN.
Fig. 2 shows examples of ECP1 through ECP4 with edges
labeled by the traversal order. The solution to ECP1 is
trivially [0], which means a cycle of only one edge (0,0) (W1

in Fig. 2). To solve ECPk, consider ECPk as a bipartition
Kk-1,1. For example, W3 can be partitioned into two sets W2

and v2. Assuming ECPk-1 has been solved (i.e. ECP for Wk-1

exists in the sense that nodes v0 through vk-2 are already
covered by the Eulerian cycle). Introducing the new node
vk-1 creates 2(k-1) cut edges plus the singular self-edge (vk-1,
vk-1). Starting from v0, these edges can be traversed in the
order [0, vk-1, 1, vk-1, 2, vk-1, 3, …, vk-1, vk-2, vk-1, vk-1]. The
formal description of this process is stated as follows:

]0[1 =W

]1,1,2,1,...,2,1,1,1,0[&

)1(

1221

1

!!!!!!! "!!!!!!! #$
!"!#$!"!#$"#$"#$

pairsk

kk

kk kkkkkkWW

−

−−
− −−−−−−=

where ‘&’ denotes concatenate of two strings. Note that
Wi represents a cycle by listing the vertices in the traversal
order. For example:

]01,01,00,00[]01,01,00[&]00[2 ==W

]10,10,01,10,00,01,01,00,00[3 =W

]11,11,10,11,01,11,00,10,10,01,10,00,01,01,00,00[4 =W

Fig. 2. Example Pyramids.

The corresponding Pyramid Code generated from the
Eulerian cycle W4 is:

{0000, 0001, 0101, 0100, 0010, 1001, 0110, 1010,
1000, 0011, 1101, 0111, 1110, 1011, 1111, 1100}

We name it this way because of its topology, which looks
like an i-dimensional pyramid -- W1 is a dot, W2 is a line, W3

is a triangle and W4 is a tetrahedron. Because of our DRAM
model, only W2j results in the Pyramid code.

C. Encoding Function

In Fig. 3, we use a different representation to explain the
Pyramid encoding function. The 16 addresses are
represented by a four-by-four (row and column,
respectively) matrix. The number inside a cell is the reverse
function P -1 of the Pyramid encoding function P. For
example, P(3)=0100, so the cell in row 01 and column 00 is
3. If we rotate the matrix M4,4 by 45 degrees in clockwise
direction and go through the numbers in increasing order, we
observe the following pattern: (1) jump back and forth on
both sides of the diagonal (2) move on the same V-shaped
band and (3) traverse in a top-down manner. For the instance
of 4, 5, 6, 7, and 8, the pattern goes alternatively on the left
stripe [m2,0 m2,1] and on the right stripe [m2,0 m2,1], and m2,2.
After finishing these five cells, the next V-band would be the
band of row 3 and column 3, which consists of 7 cells.

Based on the above regular “seesaw” pattern, the
encoding and decoding functions can be implemented. The
whole matrix MN,N contains N2 elements m0..N-1, 0..N-1. A
proper sub-matrix Mk,k includes the left upper portion of
MN,N (e.g. the boxed squares M1,1, M2,2 , and M3,3). Mk,k has k2

elements. Define the V-shaped band of row k and column k
as Bandk = Mk,k – Mk-1,k-1. Obviously, Bandk has 2k-1
elements labeled from (k-1)2 to k2-1 (e.g. 4 to 8 for Band3).
To encode any number x (say 6), there are three steps: (a)
decide whether it is on Bandk by calculating the square root
of x plus one (316 =+); (b) because the numbers on the

same band are alternating on both sides, they can be
separated by the oddness (e.g. 5 and 7) or evenness (e.g. 4, 6
and 8) of their cardinality; (c) determine the offset on the
band by subtracting (k-1)2 from x (6-4=2). For the left
odd-numbered side (5 and 7), we need to “right shift” them
one cell (from m2,0 and m2,1 to m2,1 and m2,2). For the last
element on the Bandk (8), because its default cell is
occupied by the second last element (7), we have to put it in
the only available cell (m2,0).

Fig. 3. M4,4 and Seesaw Pattern

The Pyramid encoding function is:

1: edge (k,j,dir) {
2: if (dir==1)
3: return <k,j>;
4: else
5: if (k==j)
6: return <k,0>;
7: else

8: return <j,k>;
9: }
10:
11: PyramidCode_Encoder (x) {
12: xp = ;

13: 2pxq −= ;

14: return edge(p,q/2+q%2,q%2);
15: }

Lines 11-15 describe the main function, which decides the
band index p. Lines 1-9 calculate the exact offset on the
band. Lines 2-3 decide if it is in the row (dir=0) or the
column (dir=1) of the band. If it is in the column, Line 3
returns k and j as row and column addresses, respectively.
Otherwise, Line 8 swaps the row and column addresses.
Line 6 handles the special case: the last cell on the band has
to be “wrapped” to the first column.

Theorem 2. The Pyramid encoding function generates an
optimal multiplexed code for a conventional mode DRAM
address bus.

Unlike Gray code, Pyramid code is only optimal for
sequential access with increasing addresses. If the sequential
access pattern is decreasing, then the row and column
addresses have to be swapped to preserve the code
optimality.

D. Implementation

In the implementation, we need a flooring square root
function unit, an add/subtract unit and multiplexers. Unlike
the square root function, the flooring square root function
can be calculated in constant time by parallel N-entry table
lookup. The oddness condition and shift operations can be
carried out by the adder and the least significant bit of the
difference of x and (k-1)2. This encoder is integrated in the
memory controller, so a variety of low power techniques can
be applied to reduce its power dissipation overheard [12].
The Pyramid decoding function can be found by a similar
method. However, because Pyramid code is irredundant, the
decoder is not needed in our proposed memory organization.
It is also possible to implement a highly efficient Pyramid
code incrementor and decrementor. Details are omitted here
due to space limitation.

If the memory space is not too large, the encoding
function can be synthesized by two or multi-level logic
optimization techniques. Take 24 as an example, the original
4-bit address

0123 bbbb will be encoded into Pyramid

address
0123 aaaa . The Boolean functions describing the

encoded bits are given below.

03023 bbbba +=

02302301132 bbbbbbbbbba +++=

023123123021 bbbbbbbbbbba +++=

012013123230 bbbbbbbbbbba +++=

E. Analytical Results

For binary code, the internal switching activity can be
calculated as

12

0

12 2)2(22)2(−

=

− === ∑ N
N

i

NNN
i

NN
I NNCSA .

The total switching activity of binary code is NN 22 , so the
external switching activity is

12222 2)2(2)2(−=−= NN
I

NN
E NSANSA .

Pyramid code virtually eliminates all the external
switching activity, if the access pattern exhibits a pure
sequential pattern. As a result, Pyramid code applied to a
conventional DRAM bus can cut in half the switching
activity. In Table I, it is even 33% better than the page mode
DRAM.

F. Burst Pyramid Code

Pyramid code can be extended to the burst mode DRAM.
We assume that all the read/write accesses are of fixed
length L, i.e., the addresses must be aligned at L-byte
boundaries. In Fig. 1(c), assuming L=2, the column set C is
reduced to C’ as the redrawn merged RC graph G4 in Fig.
1(d). Our goal is to find the shortest cycle including every
forward-edge, but it appears that there is no Eulerian cycle
for G4.

To find the shortest cycle, we have to insert back-edges.
Notice that C’ is a proper subset of V. Therefore, in the
merged RC graph G4, there is a complete graph embedded
on C’. Consider G5 in Fig. 4 as a bipartite graph – with
disjoint sets R’ and C’ and the cut edge set E’. E’ contains
all of the forward-edges from R’ to C’. To construct an
Eulerian cycle, according to the sufficient and necessary
conditions for the existence of an Eulerian cycle, we need
 R’× C’ back-edges, or for each node v in C’, we need
 R’ back-edges. To minimize the weighted sum of the
back-edges, we choose the shortest edge (v,u) and duplicate
it R’ times. Finally, the multigraph G5 is created as
depicted in Fig. 4. Again any Eulerian cycle on G5 generates
an optimal multiplexed code. We construct the Eulerian
cycle by modifying the Pyramid code sequence for C’ to
include all the back-edges between C’ and R’. Take Fig. 4 as
an example, we get the following Burst Pyramid code:

{0000, 0100, 0110, 1100, 0010, 1010, 1110, 1000}

Fig. 4. The Merged RC Graph G5 for Burst Mode.

00 01

10

C’ R’

11

G5

The four underlined numbers are added to the original
Pyramid code and cause external switching activity
represented by the back-edges (00,01), (00,01), (10,11) and
(10,11). The encoding function can be synthesized as:

1223133 bbbbbba ++=

12232 bbbba +=

12231 bbbba +=

00 ba =

Theorem 3. The Burst Pyramid encoding function
generates an optimal multiplexed code for a burst mode
DRAM address bus.

In Table I, the Burst Pyramid code results in 25%
reduction in the switching activity for the Burst Mode
DRAM.

III. Scattered Paging
Pyramid code eliminates all external activity on a

time-multiplexed bus; the internal activity is however
unchanged. We next describe a technique to reduce internal
switching activity by using the built-in paged virtual
memory management unit.

A. Motivation

Many modern commodity microprocessors support
powerful virtual memory management unit and a wide
physical address bus. However, the actually installed
memory is much less than the maximum memory space.
This is especially true for power-sensitive portable systems.
For example, popular PDAs using Motorola’s
DragonBall-EZ [9] with 24-bit maximum physical
addressing capability usually have only 2 or 8 Mbyte
installed memory [11]. We will refer to the maximum
address space as MA, and the installed address space as IA
in this section.

So far, our discussion uses the minimum number of
signals to represent multiplexed addresses. Row and column
addresses are completely overlapped (cf. Fig. 5a). On the
other hand, if we double the bus width, the address overlap
can be completely avoided, and thus no internal switching
activity occurs (cf. Fig. 5b). If there are r overlapped bits,
the internal switching activity of the overlapped portion for
the complete sequential access pattern is r22r-1. If we reduce
r by one, the internal switching activity can be reduced by
75%. The motivation is to use a larger MA to represent a
smaller IA.

B. Implementation

We consider a simplified virtual memory address
translation. Assume the MA is 32-bit with a page size of 4K

(212) bytes. The IA is 16M (224) bytes. There are 8 bits in
MA, which are unused, i.e., we can assign them arbitrarily.
For example in Fig. 5(c), the 32-bit MA is multiplexed into
R[15:0] and C[15:0]. We need to allocate 24-bit IA to
represent the 224 bytes of installed memory. The 12 least
significant bits C[11:0] form the offset within the page, so
they are not handled by the address translation. However
because of the 8-byte block alignment requirement, C[2:0] is
always 0 (assuming byte addressable; otherwise the IA
would be 21-bit and we have more unused bits to
manipulate), we can assign 000 to R[2:0] and eliminate the
switching activities on these three bus signals. Besides the
12-bit offset C[11:0], for the other 12 bits of the IA (which
actually consist of the page frame number), we need to
assign them into R[15:3] and C[15:12]. We make R[15:12]
and C[15:12] identical and let them represent the 4 most
significant IA. The rest of the 8 (=24-12-4) IA bits go to
R[11:4]. Therefore, for each address on the 16-bit
multiplexed bus, we assure that there are at least 7 signals
with no internal switching activity.

Fig. 5. Overlapped Multiplexing.

According to the above design, the physical memory space
is somehow fragmented, so we need special DRAM devices
with fragmented address space. Real DRAM devices, which
usually have the minimum number of address signals, do not
meet this requirement. Therefore, we need to implement an
address decoder if we want to use real DRAM devices. The
decoder is actually a multiplexer. It selects R[15:4] in the
row strobe cycle, and then C[11:0] in the column strobe
cycle. It turns out that the switching activity saved on the
address bus is again present inside the multiplexer.
However, the decoder is not part of a standard memory bus
and thus can be customized with low power techniques [12].

C. Discussion

At the first glance, seven bits is not an appreciable number
in comparison with the 16-bit wide multiplexed bus.
However, R[15:12] are the most significant bits, which are
unlikely to change in sequential access pattern. Therefore,
the external switching activity can be reduced compared to
the original completely overlapped bus. Furthermore, in a

R

C

R

C

Page Frame Number Offset

0111231

Physical Address:

Multiplexed Address:

015 11112

C

R

23

4

(c) Partially Overlapped

(a) Overlapped (b) Non-overlapped

virtual memory system, whenever a page fault occurs, the
whole page will be paged in or out by the processor or the
direct memory access (DMA) controller. Thus, the internal
and external switching activities are reduced for every entry
on the page even in the page mode or burst mode. Because
the only difference of Scattered Paging is the layout of the
physical page frames, there is no side effect on the page
table organization, regardless of whether it is top-down,
bottom-up or inverted. There is no impact on the
performance of Translation-Lookaside Buffer (TLB) either,
because the number of active pages remains the same. Nor is
there any adverse effect on the cache system, either physical
or virtual cache.

The switching activity saving comes from the wasted
memory space and extra bus signals. The physical memory
layout would be scattered because we use only those
memory locations with low internal switching activity.
However, application programmers and compilers usually
regard the memory as a linear continuous space. If we break
the memory into fragmented segments, the software
environment has to be completely changed to reflect the
memory fragmentation. Our approach is to use virtual
memory mechanism to encapsulate this translation: the
programmers or compilers still work on continuous memory
space, but the physical address will be fragmented. Besides,
the address encoding can be done by the built-in MMU. The
only major task is to setup the virtual memory system, i.e.,
arrange the page table.

IV. Simulation Results
We use SimpleScalar [3] to simulate the Scattered Paging

system. We use ijpeg, a graphic compression and
decompression program, compress, a file compression and
decompression program, and li, a LISP interpreter from
SPEC95 benchmark suite, as our application testbench. For
our input image, because its BSS segment is almost 24
Mbytes, we ignore the other segments (i.e. text, heap, and
stack). We use the sim-fast module to perform functional
simulation, and modify the mem_access() to capture all
the memory accesses. Assuming that the installed memory is
24 Mbytes, we implement the example scattered paging
system described in Section III. Table II lists the
experimental results for these benchmarks. Scattered paging
reduces the switching activity by 17% to 36%. In our
simulation, we did not consider the paging activities
between the memory and the secondary storage, which
would have resulted in even higher switching activity
savings.

TABLE II
Simulation Results

Switching Activity Scattered Conventional Ratio

ijpeg 4,455k 6,901k 0.64

compress 393k 513k 0.76

li 425k 510k 0.83

V. Conclusion
In this paper, we addressed the switching activity

minimization problem for conventional and burst mode
DRAM address busses. We formulated the problem as that
of finding an Eulerian cycle on a complete or partial RC
graph. In order to make the implementation practical, we
proposed efficient encoding algorithms Pyramid code and
Burst Pyramid code. Experimental results show that the
Pyramid code can reduce the switching activity on the bus
by as much as 50% if the access pattern exhibits sequential
behavior. We also proposed Scattered Paging to reduce
internal and external switching activities for both sequential
and random access patterns. Future work includes
development of more efficient circuit realizations for the
Pyramid encoder/decoder and finding other applications of
the Pyramid code.

Rerferences

[1] L. Benini, G. DeMicheli, E. Macii, M. Poncino, and S. Quer.
“System-level power optimization of special purpose applications:
The beach solution,” ISLPED-97: ACM/IEEE International
Symposium on Low Power Electronics and Design. Monterey, CA,
August 1997, pages 24-29.
[2] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano.
“Address bus encoding techniques for system-level power
optimization,” DATE-98: IEEE Design Automation and Test in
Europe. Paris, France, February 1998, pages 861-866.
[3] D. Burger and T. M. Austin. “The SimpleScalar Tool Set,
Version 2.0,” Tech. Rep. CS-1342, University of
Wisconsin-Madison, June 1997.
[4] W. C. Cheng and Massoud Pedram. “Power-optimal encoding
for DRAM address bus,” ISLPED-00: ACM/IEEE International
Symposium on Low Power Electronics and Design, pages 250-252.
[5] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “A performance
comparison of contemporary DRAM architectures,” International
Symposium on Computer Architecture. (1999): 222-233.
[6] B. Jacob and T. Mudge. “Virtual Memory: Issues of
Implementation,” IEEE Computer. June 1998.
[7] D. E. Knuth. Fundamental Algorithms. vol. 1 of “The Art of
Computer Programming.” Addison-Wesley, 1973.
[8] E. Macii, M. Pedram and F. Somenzi. “High level power
modeling, estimation and optimization,” IEEE Trans. on Computer
Aided Design, Vol. 17. No. 11 (November 1998): 1061-1079.
[9] Motorola. MC68EZ328 DragonBall-EZ Integrated Processor
User’s Manual.
[10] E. Musoll, T. Lang, and J. Cortadella. “Exploiting he Locality
of Memory References to Reduce the Address Bus Energy,”
ISLPED-97: ACM/IEEE International Symposium on Low Power
Electronics and Design, pp. 202-207, Monterey, CA, August 1997.
[11] PalmPilot. http://www.palm.com
[12] M. Pedram. “Power minimization in IC design: principles
and applications,'' ACM Trans. on Design Automation of Electronic
Systems. Vol. 1, No. 1 (1996): 3-56.
[13] J. Rabaey and M. Pedram ed. Low power design
methodologies, Kluwer Academic Publishers, 1996.
[14] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for
Low-Power I/O,” IEEE Transactions on VLSI Systems, Vol. 3, No.
1 (1995), pages 49-58.
[15] C. L. Su, C. Y. Tsui, and A. M. Despain. “Saving power in the
control path of embedded processors,” IEEE Design and Test of
Computers. Vol. 11, No. 4 (1994): 24-30.

