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Abstract - The objective of this paper is to provide an
effective technique for accurate modeling of the external
input sequences that affect the behavior of Finite State
Machines (FSMs). Based on the block entropy concept, we
present a technique for identifying the order of variable-
order Markov sources of information. Furthermore, using
dynamic Markov modeling, we propose an effective
approach to compact an initial sequence into a much shorter,
equivalent one. The compacted sequence, can be
subsequently used with any available simulator to derive the
steady-state and transition probabilities, and the total power
consumption in the target circuit. As the results demonstrate,
large compaction ratios of orders of magnitude can be
obtained without significant loss (less than 5% on average)
in the accuracy of estimated values.

I. INTRODUCTION

In the last decade, probabilistic approaches have received a
lot of attention as a viable alternative to deterministic
techniques for analyzing complex digital systems. In
particular, the behavior of FSMs has been investigated using
concepts from the Markov chain theory. Studying then the
behavior of the Markov chain provides us with different
variables of interest of the original FSM. In this direction
[1][2] are excellent references where steady-state and
transition probabilities (as variables of interest) are
successfully estimated in large FSMs. Both techniques are
analytical in nature and, in order to manage complexity,
have made some simplifying assumptions (temporal
independence on the primary inputs being the most notable
one). These assumptions, however, limit the applicability
and usefulness of their results. As a consequence, only
logic- or circuit-level simulation (under user-specified input
vectors) produce the most accurate results. The downside is
however the excessive simulation time needed. From this
perspective, a short/compact sequence of stimuli - which is
representative of the typical application data - would be
desirable to speed-up the simulation.

Calculation of steady-state and transition probabilities is a
very important topic by itself, because these probabilities
completely characterize the behavior of a FSM. However, a
particular domain where this calculation has an immediate
application is the power estimation area. Without loss of
generality, we will consequently emphasize the applicability
of the new results to sequence compaction for simulation-
based power evaluation. The problem of producing a shorter
sequence (compared to a given one) which can preserve the
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set of steady-state and transition probabilities can be now
cast in terms of power as follows: can we transform a given
input sequence into a shorter one, such that the new body of
data captures statistics which completely determine the
power dissipation in a circuit?

Generating a minimal-length sequence of input vectors
that satisfies a prescribed set of statistics in not a trivial task.
The reason is the elaborate set of input statistics that must
be preserved or reproduced during sequence generation for
use by power simulators. Elaborate and effective techniques
were recently presented in [3] [4] where the authors succeed
in compacting large sequences with very small loss in
accuracy. However, these approaches are suited only for
combinational circuits; this is because both of them
consider only first-order temporal effects, that is they
analyze only pairs of consecutive vectors to perform
sequence compaction. As it can be proven, in the case of
FSMs, this is not enough for accurate estimation of
transition probabilities. Temporal correlations longer than
one time step can affect the overall behavior of the FSM and
therefore, result in very different power consumptions. Let
us illustrate this point using a simple example.
Example 1: Let S1 and S2 be two 2-bit sequences, of length
48, as shown in Fig.1a. These two sequences, have exactly
the same set of first-order temporal statistics, that is, they
cannot be distinguished as far as wordwise one-step
transition probabilities are concerned. In fact, in Fig.1b we
provide the wordwise transition graph for these two
sequences. Each node in this graph is associated to a distinct
pattern that occurs in S1 and S2 (the upmost bit is the most
significant one, e.g. in S1, v1 = ‘1’, v2 = ‘2’). Each edge
represents a valid transition between any two valid patterns
and has a nonzero probability associated with it.

Fig.1
Starting with different initial states and using a random
number generator we may, of course, generate other
sequences equivalent with S1 and S2 as far as the one-step
transition probabilities are concerned. We can then see the
graph in Fig.1b as a compact, canonical, characterization of
sequences S1 and S2. Suppose now that S1 and S2 are fed
into the benchmark circuit dk17. Looking at different
internal nodes of the circuit, we observe that the total
number of transitions made by each node is very different
when the circuit is simulated with S1 or S2. Moreover, the
total power consumption at 20 MHz is 1298.18 μW and
1429.85 μW, respectively, showing a difference of about
10% even for this small set of inputs.

A natural question is then, why does this difference
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appear, despite the fact that S1 and S2 have the same
characteristic graph shown in Fig.1b? The reason resides in
the fact that S1 and S2 have a different set of second-order
statistics that is, the sets of triplets (three consecutive
patterns) are different for these sequences. For instance, the
triplet (0, 1, 2) in S1 does not occur in S2; the same
observation applies to the triplet (0, 1, 0) in S1. For now, two
observations can be made:
- knowing the order of the temporal correlations is
important because, having the same set of one-step
transition probabilities does not mean that the sets of
second-(or higher) order statistics are identical;
- for FSMs, second- (or higher) order statistics can make a
significant difference in total power consumption.

Addressing these issues, the present paper improves the
state-of-the-art in three ways: first, it shows the effect of
high-order temporal statistics of the input sequence on the
FSM behavior; second, based on the block entropy concept,
it introduces a technique for identifying the order for
composite sources of information (that is, sequences that
can be piecewise modeled by Markov chains of different
orders); finally, based on the vector compaction paradigm, it
provides an original solution to the power estimation
problem for FSMs.

To conclude, this research is beneficial to not only
simulation-based and probabilistic approaches for power
estimation, but also the general FSM analysis techniques
relying on probabilistic premises.

The paper is organized as follows: in Section II we
present the main results about the effect of finite-order
statistics on FSM behavior and, based on the block entropy
concept, we introduce a technique for identifying the actual
order of a Markov source. Section III discusses the issue of
data compaction for solving the power estimation problem.
Section IV gives a practical procedure for sequence
compaction and experimental results for common
sequential benchmarks. Finally, we conclude by
summarizing our main contribution.

II. HIGH-ORDER MARKOV SOURCES OF INFORMATION
In what follows, we model the input sequences as binary
information sources of discrete Markov type that emit
symbols at each time step, according to some probabilistic
rule. We also restrict our investigation to the case of
stationary and ergodic sources of information and analyze
the effects of input statistics on FSM behavior.

A. Finite-order Markov chains
First, we focus on the input sequence that feeds a target
circuit and we model it as an information source.Without
loss of generality, we restrict ourselves to the set S of all
finite binary sequences on b bits. A particular sequence S1 in
S consists of vectors v1, v2,..., vn (which may be distinct or
not), each having a positive occurrence probability. Indices
1, 2,..., n represent the discrete time steps when a particular
vector that occurs in the sequence is applied to the target
circuit.

An important class of information sources is the class of
Markov sources which can be conveniently modeled as
Markov chains of finite-order.
Definition 1. (lag-k Markov chain). A discrete stochastic
process {vn}n ≥1 is said to be a lag-k Markov chain if at any
time step n ≥ k+1:

                  (1)

In particular, any lag-one Markov source, is characterized
by the set of internal states (nodes in the corresponding
graph representation) and the set of one-step conditional
probabilities qij that give the transition probability from
state vi to the next state vj. It should be noted that any lag-k
Markov chain can be reduced to a lag-one Markov chain
based on the following result.
Proposition 1. [5] If {un}n ≥1 is a lag-k Markov chain then
{vn}n ≥1 where vn = (un, un+1,..., un+k-1) is a multivariate
first-order Markov chain.

B. The effect of finite-order statistics of the input sequence
on FSM behavior
Now we turn our attention from the input sequence to the
circuit and investigate the effect of input statistics on the
transition probabilities (for primary inputs and present state
lines) in the target circuit. As shown in Fig.2, xn, sn will
denote the inputs and states of the target sequential
machine; p(xnsn) is the probability that the input is xn and
the state is sn at time step n. As usual, ‘next’ denotes the
next state function of the FSM and ‘out’ represents the
output function.

We are interested in defining the joint probabilities p(xnsn)
and p(xnsnxn-1sn-1) because, as we can see in Fig.2, they
completely capture the characteristics of the primary inputs
and present state lines that feeds the next state and the
output logic of the target circuit.

Fig.2
Under the general assumption of stationarity and ergodicity
we can prove the following result.
Theorem 1.1 If the sequence feeding a target sequential
circuit has order k, then a lag-k Markov chain which
correctly models the input sequence, also correctly models
the k-step conditional probabilities of the primary inputs
and internal states in the target circuit, that is p(xnsn|xn-1sn-

1xn-2sn-2...xn-ksn-k) = p(xn|xn-1xn-2...xn-k).
We note therefore that preserving the order-k statistics for

the primary inputs implies that order-k statistics will also be
captured for inputs and states. However, modeling an order-
k source by a lower order source may introduce large
inaccuracies as shown in the next example.
Example 2: We consider once again the sequences S1 and S2
that feed the benchmark dk17 and illustrate that indeed, if
the input sequence has order two, then modeling it as a lag-
one Markov Chain will not preserve the first-order joint
transition probabilities (primary inputs and internal states)
in the target circuit. We simulated the benchmark dk17
(starting with the same initial state ‘19’) for both sequences
and we present in Fig.3 (Fig.3a is for S1 and Fig.3b is for
S2) the wordwise transition graphs obtained for the signal
lines (xnsn).

1All proofs can be found in [9].
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Fig.3
The benchmark dk17 has 2 primary inputs and 3 FFs
therefore in Fig.3, any node is decimally encoded using 5
bits. For instance, the initial state ‘19’ corresponds to the
binary code ‘10011’ that is, ‘10’ for primary inputs and
‘011’ for state lines. Applying ‘11’ on the primary inputs,
the present state becomes ‘011’, therefore we enter the node
‘11011’ = 27 in Fig.3. As we can see, because S1 can be
modeled as a first order Markov source, while S2 must be
modeled as a second order Markov source, the
corresponding transition graphs in Fig.3 are quite different.
From a practical point of view, this means that if one
underestimates a high-order source (for instance, assuming
that second- or higher-order temporal correlations are not
important), then one may end up not preserving even the
first-order transition probabilities in the target circuit. In
terms of power consumption, this adversely affects the
quality of the results as shown in Example 1.

C. The order of a Markov source
Now, we try to determine the order of a Markov source,
because, as proved in Theorem 2, the knowledge of the
correct value of k, is essential in FSM analysis. To this end,
based on the probability of finding a ‘block’ of vectors
<vn,vn-1,...,v1>1 in any sequence in S (denoted by

), we introduce the following entropy-like
quantities.
Definition 2. (block entropy) The block entropy of length n
is defined as:

           (2)

where n ≥ 1.
Definition 3. (conditional entropy) The conditional entropy
associated with the addition of a new vector vn+1 to the left
of an existing block <vn,vn-1,...,v1> is defined as:

                                                                      (3)
for n ≥ 1 and h0 = H1.
Definition 4. (source entropy) The entropy of a source, or
the uncertainty per step, is defined as:

                                                            (4)

and often referred to as metric entropy or entropy rate [5].
For stationary and ergodic processes, Khinchin and

McMillan [6] have shown that Hn in (2) is monotonically
increasing, Hn/n is monotonically decreasing and the limit
in (4) exists. It can also be shown that the conditional
entropy hn is a measure of the predictability for the whole
process.
1Because the process is stationary and ergodic, the lower indices 1, 2,... n
do not designate the absolute time instances, but the sequencing among the
vectors that occur within a block of length n.

Lemma 1. For any lag-k Markov chain, it holds that
.

Due to statistical correlations extending over a range of
only k iterations, for Markov sources of order k, the
conditional uncertainty hn is decreasing [5] until it
eventually reaches its limit value h for n = k. The memory
effects of the source are reflected by the saturation point
that is, that value of n when the limit h is reached exactly or
with a good approximation.
Example 3: In Fig.4 we have the typical behavior for a lag-
one and a lag-two Markov sequences, which have been
generated by using a first and a second order recursive
relations, respectively. The two sources have the same order
0 and 1 statistics, but different order-2 statistics. In both
cases, the n-step conditional entropy hn of the source
reaches its limit h after few tens of vectors; in the first case,
the limit is h = h1, whereas in the case of the lag-two
Markov source, the limit is given by h2 as it was expected
according to the above result.

In practice, lag-k Markov chains with fixed k may not be a
good approximation for a given source. For example, the
sequence can be a mixture of subsequences, each generated
from a different order Markov source. We call such a
sequence a composite sequence to emphasize its non-
homogeneous characteristics. When the sequence changes
its behavior due to the change in order, the stationarity and
convergence hypotheses from (4) do not hold anymore. For
instance, if we consider two mixed sequences, the first
containing a lag-one followed by a lag-two Markov
sequence, and the second a lag-two followed by a lag-one
Markov sequence, the behavior of conditional entropies is
the one depicted in Fig.5.

In the first case, after a sufficiently large number of steps,
h1 and h2 are no longer the same. Actually, in the long run,
the limit in (4) becomes h2, thus detecting an order 2 for the
source. In this case, the convergence to h1 is violated and
thus the sequence changes its order from 1 to 2. In the
second case, after having already stabilized to the stationary
values, the conditional entropies h2, h3, h4,..., tend to
increase so that the order of the second half of the sequence
can no longer be considered 2.

This discussion provides a starting point for determining
the order of subsequences in a dynamic fashion. The only
requirement that has to be satisfied is the stationarity of each
subsequence and in this case, the entire sequence is called
piecewise stationary. This is the basic hypothesis for all our
experiments.

III. DATA COMPACTION FOR POWER ESTIMATION
So far, we have characterized the family of high-order
Markov sources and, under stationarity and ergodicity
hypothesis, we have presented an alternative to identify their
order using the block entropy concept. In the present
section, we investigate the issue of data compaction for
power estimation in sequential machines and analyze
conditions in which the statistics of the original sequence
can be preserved throughout the compaction process.

A. Problem formulation
Assuming that a gate level implementation is available, to
estimate the total power dissipation, one can sum over all
the gates in the circuit the average power dissipation due to
the capacitive switching currents, that is:
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where fclk is the clock

frequency, VDD is the supply voltage, Cn and swn are the
capacitance and the average switching activity of gate n,
respectively. From here, it becomes clear that the average
switching activity per node (gate) is the key parameter that
needs to be correctly determined, if we are interested in a
node-by-node power estimation. However, this parameter is
highly sensitive to the input statistics, namely it greatly
depends on transition probabilities among different signal
lines. As shown in the previous section, high-order
information sources make a significant difference in power
consumption for sequential machines.

Having these issues in mind, the vector compaction
problem for FSMs can be formulated as follows: for any
sequence of length L0, find another sequence of length L «
L0 (consisting of a subset of vectors from the original
sequence), such that the average joint transition probability
on the primary inputs and present state lines is preserved
wordwise, for k consecutive time steps. More formally, the
following holds:

(5)

where p and p’ are the probabilities in the original and
compacted sequences, respectively. This condition simply
requires that the joint transition probability for inputs and
states (xisi) is preserved within a given level of error for k
consecutive time steps.

B. Statistics of the original and compacted sequences
Without loss of generality, we will refer subsequently only
to first-order Markov chains. However, by virtue of
Proposition 1, all results easily translate to lag-k Markov
chains. We also assume cardinalities l and m for the input
and reachable state spaces, respectively, and introduce a
new formulation based on matrices because this is a
convenient notation for our purpose.

The first-order Markov chain at the primary inputs xn of
the FSM in Fig.2, can be characterized by the matrix of
conditional probabilities , where

 and {v1, v2,..., vl} represents the

whole set of possible vectors at the primary inputs. On the
other hand, the Markov chain defined jointly for the primary
inputs and state lines (xn,sn) can be characterized by the
matrix , where

 and {u1, u2,..., um}
represents the set of reachable states.
Proposition 2. The matrix QXS can be written in the
following form:

                                             (6)

where {Bi}1≤i≤l is a set of m×m degenerate1 stochastic

1 That is, the elements of the matrices Bi are only 0 or 1.
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matrices defining the next state function for input vi;

specifically, if  then

.

Lemma 2. If matrix QX is preserved (during the compaction
process) up to an ε > 0, then matrix QXS is also preserved up
to the same ε.
Theorem 2. If matrix QX is preserved up to an ε > 0, then
steady-state probabilities for the primary inputs and state
lines are also preserved up to a polynomial function of ε
having the form 0(ε) = k1ε + k2ε2 +… .
Corollary 1. If matrix QX is preserved up to an ε > 0, then
transition probabilities for the primary inputs and state lines
for two consecutive time steps are asymptotically close to
the original ones, that is

.

IV. PRACTICAL CONSIDERATIONS AND EXPERIMENTAL
RESULTS

As a conclusion from sections II and III, what we need is an
efficient way to model lag-k Markov chains that might
characterize the input sequences that feed the target circuit.
For this purpose, we choose the Dynamic Markov Chain
(DMC) technique used recently to adaptively compact data
for power simulators [7].

The structure DMT1 used by authors in [7] is general
enough to capture completely the correlations among all bits
of the same input vector and also between successive input
patterns. However, it has conceptually no inherent limitation
to be further extended to capture temporal dependencies of
higher orders. For instance, if we continue to define
recursively DMT2 (as a function of DMT1), we can basically
capture second-order temporal correlations. For any
sequence where vi, vj, vk are three consecutive vectors (that
is, vi → vj → vk), the tree DMT2 looks like in Fig.6.

Fig.6
The following result, gives the theoretical basis for using the
DMC technique to capture high-order temporal correlations.
Theorem 3. The general structure DMTk and its parameters
completely capture spatial and temporal correlations of
order k.

The DMC modeling approach offers the significant
advantage of being a one-pass adaptive technique. As a one-
pass technique, there is no requirement to save the whole
sequence in the on-line computer memory. Starting with an
initial empty tree DMTk, while the input sequence is
scanned incrementally, both the set of states and the
transition probabilities change dynamically making this
technique highly adaptive. Also, using this data structure,
we can easily account for conditional entropies and detect
the order of the Markov source. Under stationarity

conditions, the order is detected as the minimum k such that
|hk - hn| < ε, for some ε > 0 and any n = k + 1,..., K where K
is the maximum order of the source to be detected. After
that, if either this condition becomes violated or the
stationarity hypothesis doesn’t hold, the model is flushed
and restarted. For each grown tree, the generation phase is
driven by the user-specified compaction parameter ratio,
that is, we generate a total of m = n/ratio vectors. We also
note that this strategy does note allow ‘forbidden’ vectors,
i.e., those combinations that did not occur in the original
sequence, will not appear in the final compacted sequence
either. This is an essential capability needed to avoid ‘hang-
up’ states of the sequential circuit during simulation process
for power estimation.

Starting with a k-bit input sequence of length n, we
perform a one-pass traversal of the original sequence and
simultaneously build the basic tree DMTk; during this
process, the frequency counts on DMTk’s edges are
dynamically updated.

The overall strategy is depicted in Fig.7.

Fig.7
The next step in Fig.7 does the actual generation of the

output sequence (of length m). To generate the new
sequence we use a modified version of the dynamic
weighted selection algorithm presented in [8]. If the initial
sequence has length n and the new generated sequence has
length m < n, then the outcome of this process is a
compacted sequence; we say that a compaction ratio of r =
n/m was achieved.

Finally, a validation step is included in the strategy; we
have used an in-house gate-level logic simulator developed
under SIS. The total power consumption of some sequential
benchmarks has been measured for the initial and the
compacted sequences, making it possible to assess the
effectiveness of the compaction procedure.

In Table 1, we provide the gate-level power simulation
results for different initial sequences having the total length
of 10,000 vectors; these sequences were produced using a
second order information source based on Fibbonacci series.
As shown in Table 1, the sequences were compacted with
two different compaction ratios (r = 10 and 20) using three
Markov models: one of order zero (that is, assuming
temporal independence on the primary inputs), one of order
one (that is, based on DMT1) and another one matching the
characteristics of the sequence (that is, based on DMT2). We
give in this table the total power dissipation measured for
the initial sequence (column 3) and for the compacted
sequence using all models (columns 4-9). On a Sparc 20
workstation with 64 Mbytes of memory, the time necessary
to read and compress data was less than 10 seconds for all
models. Since the compaction with DMC modeling is linear
in the number of nodes in the DMTk structure, these time
values are far less than the actual time needed to simulate
the whole sequence. During these experiments, the
maximum number of nodes allowed in the Markov model
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was 200,000.

As we can see, for the model of order 2, the quality of
results is very good even when the length of the initial
sequence is reduced by more than one order of magnitude.
Thus, for s1196 in Table 1, instead of simulating 10,000
vectors with an exact power of 7025.31 μW, one can use
only 1,000 vectors (r = 10) with an estimate of 7027.88 μW
or just 500 vectors (r = 20) with power consumption
estimated as 7006.11 μW. This reduction in the sequence
length has a significant impact on speeding-up the
simulative approaches where the run time is proportional to
the length of the sequence which must be simulated. On the
other hand, using a zeroth- or first-order model, the quality
of the results can be seriously impaired. For instance, in the
case of benchmark planet, for r = 20, we can erroneously
predict a total power of 6505.96 and, for r = 10, a value of
6565.24 for a first-order model (more than 23% error). The
value of the error can be even worse for a zero-order model
(e.g. benchmark donfile, where the error is more than 25%).
This is because for a sequence generated with a second-
order source, a model that ignores temporal correlations or
considers only pairs of consecutive vectors cannot preserve
correctly even the first-order transition probabilities for the
primary inputs and state lines.

Finally, we give in Table 2 the results obtained for
composite sequences of length 10,000. These sequences
have been generated using different generators and exhibit
temporal correlation of various orders (order 2, followed
by order 1 and finally, once again order 2). This hybrid
character of the sequences makes a significant difference in
terms of total power consumption for the analyzed
benchmarks. As we can see, compared to Table 1, the most
dramatic increase in the level of error occurs for the zeroth-
order model which shows that the temporal independence
assumption is impairing the accuracy of the estimates. The
error for the first-order model is on average around 10%,
while the adaptive modeling technique provide accurate
results, even for a compaction ratio of r = 20. Looking at
the results, we can therefore conclude that only the
adaptive technique is appropriate for correctly modeling
the input sequence.

V. CONCLUSION
In this paper we investigated from a probabilistic point of
view the effect of finite-order statistics of the input sequence
on FSMs behavior. Based on the block entropy concept, we
presented a technique for identifying the order of variable-
order Markov sources of information. Finally, using
dynamic Markov modeling, we proposed an effective
approach to compress an initial sequence into a much
shorter one such that the steady state and transition
probabilities (and therefore the total power consumption) in
the target circuit are preserved.

For the first time to our knowledge, the effect of temporal
correlations longer that one clock-cycle on the power
dissipation in FSMs was studied. The results presented in
this paper represent an important step towards
understanding the FSM behavior from a probabilistic point
of view.
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Table 1: Total Power (μW@20MHz) for input sequences of order 2

  Power for r = 10 Power for r = 20

Circuit PIs/FFs
Power for
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