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ABSTRACT 

Abstract - In this paper, a wavelet-based dynamic power management policy (WBDPM) is 

proposed. In this approach, the workload source (service requester) is modeled by a non-

stationary time series, which is in turn represented by a non-decimated Haar wavelet as its 

basis. The proposed approach is robust and has the ability to minimize the energy dissipation 

under different performance constraints. To assess the accuracy of the model, the algorithm 

was implemented for the data extracted from the hard disks of computers. Prediction results 

of this approach for the case of a non-stationary service requester exhibit accuracies of more 

than 95%. 

Categories and Subject Descriptors: D.4.8 Performance, (Modeling and prediction 

Stochastic analysis) 

General Terms:  Design 

Additional Key Words and Phrases: Dynamic Power Management, Wavelet based 

prediction, non-stationary service request. Low Power system design 

I. INTRODUCTION 

Battery life times in portable systems can be prolonged in two ways: increasing the battery 

capacity (energy per unit weight) and reducing the power consumption of microelectronic 

circuits and systems [1]. Between these two alternatives, the latter has been the preferred 

method because the battery’s gravimetric energy density (Watt-hours/lb) has improved only 

by a factor of two to four over the last 30 years, while the computational power of digital IC’s 

has increased by more than four orders of magnitude [2][3]. Portable electronic systems are 

far more complex than a single very large scale integrated (VLSI) chip. They contain tens or 

even hundreds of components, ranging from digital and analog to electromechanical and 
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optical components. Much of the power dissipation in a portable electronic device comes 

from non-digital components [5]. For example, the power breakdown for a typical laptop 

computer shows that, on average, 36% of the total power is consumed by the display, 18% by 

the hard drive, 18% by the wireless LAN interface, 7% by non-critical components (such as 

keyboard and mouse) and only 21% by digital VLSI circuitry (mainly memory and CPU) [3]. 

Reducing the power in the digital logic portion of this laptop by a factor of 15 would reduce 

the overall power consumption by less than 20% while reducing the power consumption of 

the non VLSI components (such as the LCD and the HDD) by a factor of 2 leads to more than 

25% reduction in the total power dissipation [3]. 

The power reduction techniques can be classified as static and dynamic. The static 

techniques, such as low power logic synthesis and physical design, clock gating, and power-

aware algorithm selection and software compilation, are applied at the design time while the 

dynamic techniques, such as dynamic voltage and frequency scaling (DVFS) and dynamic 

power management (DPM), use runtime behavior of the system to reduce the power when the 

system is idle or is serving light workloads. DPM for the system components may be 

considered as the policy and realization of the selective shutdown, slowdown, or the power 

state transition of the idle or underutilized system components. The DPM policy should often 

be determined so as to minimize the overall system power consumption subject to a 

performance constraint.  

This paper describes an adaptive and application-independent, wavelet-based predictive 

method for utilization by the system-level power management solutions under non-stationary 

workload. The remainder of this paper is organized as follow. A brief review of the 

background and the related works are presented in Section  II while the wavelet based 

prediction is discussed in Section  III. The policy implementation is explained in Section  IV 
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and the experimental results are discussed in Section  V. Finally, the summary and the 

conclusion of the work are presented in Section  VI. 

II. REVIEW OF BACKGROUND AND RELATED WORKS 

A. Modeling the Service Requester and the Service Provider 

One of the key components of the DPM is the modeling of the workload source (e.g., the user, 

also called service requester, SR.) The workload source, in general, has a non-stationary 

behavior and, hence, should be modeled as a non-stationary time series whose statistical 

properties such as auto-covariance would vary in time.  

Another important component of the DPM is the device that provides services to the 

SR. For the sake of simplicity, let us consider a service provider (SP) device with three main 

states of active (A), idle (I) and sleep (S) as shown in Figure 1(a.) The definition of the active 

state is that the SP is in its fully functional state and that it is providing service to some SR. In 

the idle state, the SP is still fully up and operational, but there are no service requests to deal 

with, and hence, the SP is in its idle state. The transition between the active and idle states is 

autonomous, i.e., as soon as the SP completes servicing all of the waiting requests, it enters 

the idle state. Similarly, the SP goes from idle to active as soon as any service request arrives.   

In a DPM framework, the SP is transitioned to the sleep state only from an idle state. 

The duration of the time that the SP is kept in the idle state before it is moved to a sleep state 

determines the tradeoff between the service latency and power dissipation of the SP. The 

typical difficulty is that if the power manager adopts an aggressive DPM policy whereby the 

SP is transitioned into the sleep mode immediately or only after a short period of time, and if 

the next service request comes early, then the system has to pay for the extra energy and 

latency of waking up the SP and bringing it to the active state. This is an undesirable 

degenerate situation where the SP is put to sleep too fast, only to be awakened immediately. 
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The SP thus uses increasing resources to do a decreasing amount of work (similar to thrashing 

in the case of multiple processors accessing the same shared resource). On the other hand, if 

the power manager sets the minimum duration of idle time before entering into the sleep 

mode to be long and yet no service requests arrives in that period, then the SP has 

unnecessarily wasted power by not going to sleep. 

 
Figure 1. (a) Device states, (b) equivalent time series, (c) to-idle and to-active events, (d) to-

idle events. I: idle, A: active. 

In Figure 1(a), no sleep state is shown for the SP. This is because, in this example, there 

is no power manager to issue a command to the SP to enter its sleep state. In Figure 1(b), the 

corresponding time series comprising of the idle and active periods of the SP is illustrated. 

Figure 1(c) is an equivalent pictorial representation where the events have been denoted by up 

or down arrows. The up (down) arrows indicate the events whereby the SP state changes from 

active to idle (to-idle arrow) and idle to active (to-active arrow), respectively. In Figure 1(d), 

each one of the upward arrows only shows an occurrence of a to-idle event. Here, the arrow 

height does not correspond to the idle time length. If there are n to-idle events, we need n 
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memory locations for saving the event lengths. By concatenating the values of the events we 

will obtain a trace of the length of the to-idle events. We have utilized this trace for predicting 

the next value of the to-idle events.   

As explained earlier, to have a successful DPM policy, it is essential to correctly predict 

the length of the idle time as soon as a to-idle event occurs. In fact, it is well-known that the 

minimum length of the idle time should be larger than a break-even time for any energy 

savings to take place. The break-even time is a function of the power dissipations in the idle 

and sleep states and the energy and latency overheads of transitions between the idle and 

sleep states [4]. 

In summary, since taking a device to the sleep state and bringing it back to the active 

state consumes some energy and has performance overhead, the DPM policy must determine 

if it is worth changing the state to sleep at all. The more accurate the prediction is, the higher 

the power saving that may be achieved. The discussion presented here can be easily extended 

to SP’s with more than three states (leading to multiple break-even times depending on the 

transition.) 

B. System Modeling 

First, we show how to construct a model for the entire system and then explain how the model 

can minimize the energy dissipation under different performance constraints. We have 

utilized a simple power management system, which includes four components: a Service 

Provider (SP), a Service Requester (SR), a Service Queue (SQ), and a Power Manager (PM) 

(see Figure 2.) The SR generates service requests for the SP while the SQ buffers the service 

requests. The SP services the requests while the PM monitors the states of SR, SQ, and SP 

and issues state-transition commands to the SP. 
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C. Previous DPM Works 

There have been many research efforts focused on proposing DPM methods which may be 

categorized into three major groups of timeout-based policy, stochastic policy, and predictive 

policy [7]. The main shortcoming of the timeout policies is that they waste power waiting for 

the timeout to expire which has motivated researchers to search for more effective techniques 

[7][8]. The stochastic policies model the arrival of the requests and the device power-state 

changes by a stochastic process such as Markov process (see, e.g., [9].) Several policies based 

on this method have been proposed to solve the policy optimization problem (see, e.g., [2] 

[10][11][12].) These methods may be divided to five major models which are discrete-time 

Markov decision model (see, e.g., [10]), continuous-time Markov model (see, e.g., [11]), 

continuous-time semi-Markov model (see, e.g., [12]), time-index semi-Markov model (see, 

e.g., [12]), and a method based on Markov decision process which has been proposed for non-

stationary service requests [3][11]. Since Markov model is stationary and known, the distance 

of the Markov-based policies from the Oracle policy would be large for non-stationary 

workloads. In order to overcome this shortcoming, a heuristic method has been proposed in 

[3] which also cannot guarantee the global optimality in a non-stationary environment [3].  

 
Figure 2.  The model utilized for the entire system modeling. 
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In [13], the authors have modeled the non-stationary request process as a Markov-

modulated process with a collection of modes which each mode corresponds to a particular 

stationary request process [13]. Optimal DPM policies are precalculated off-line for the 

modes using standard algorithms available for the stationary Markov decision processes 

(MDPs). The power manager then switches online among these policies to accommodate the 

stochastic mode-switching request dynamics using an adaptive algorithm to determine the 

optimal switching rule based on the observed sample path [13]. Since in the Hierarchical 

adaptive DPM they have modeled the service request behavior by concatenating some 

stationary process (for example 50 process), if the service requester induces a trace that has 

not been modeled in their precalculated policies and it could not be obtained by interpolating 

the policies, the system may not be able to make the correct decision. Using a wider range of 

modes, to model more types of input traces, needs larger state space and computation 

time/power to obtain the optimal policy. In addition, the stationary Poisson distribution has 

been assumed for the service requests. This may not be true for all the input traces. As will be 

described in this paper, the proposed wavelet based method, has the ability to model non-

stationary workloads without assuming stationarity or any specific distribution. The method 

has the ability to automatically extract useful information from the input traces to find the 

active scales. It adapts itself to any changes in the behavior of the service requester by 

changing the active scales. It also should be noted that in the hierarchical adaptive DPM when 

a small (large) state space is used, the computational overhead will be smaller (larger) than 

that of the wavelet based method. 

In the predictive policy, DPM will shut down the system as soon as the predicted length 

for the idle period is long enough to amortize the cost of shutting down and later reactivating 

the system [3]. Some of the predictive techniques are based on extensive off-line analyses of 

the usage traces which again would not be suitable for non-stationary request streams whose 
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statistical properties are not known as a priori [14]. To overcome this limitation some 

adaptive prediction policies have been proposed. As an example, the work proposed in [14] 

adopts an exponential average prediction scheme which has been only applied to the systems 

with a single sleep state and does not deal with resources with multiple sleep states [1]. 

Another predictive method which handles components with multiple sleep states has been 

proposed in [6]. This method, which is based on the decision learning tree [15], has the ability 

to adapt itself to the workload but it may not guarantee the globally optimum solution for the 

non-stationary input workloads [15]. To remedy these limitations for presenting a globally 

optimum solution for the non-stationary input workloads, the workload source (e.g., the user, 

also called SR) should be modeled as a non-stationary time series. In this work, we propose to 

use the wavelet transform for modeling and predicting the time series. 

III. WAVELET BASED DPM (WBDPM) POLICY 

The final goal in DPM is to reduce the power dissipation of the system under different 

performance constraints by predicting the behavior of the service requester (SR). In DPM 

systems, when the service provider (SP) enters into the idle state, based on the arrival time of 

the next event (service request), the SP may change its state to lower power states. Since the 

power state change of the SP is based on the predicted idle time, the amount of the power 

saving is strongly depends on the accuracy of the prediction. In this model, the time series 

consist of the idle times. The prediction methods, including the approach presented in this 

paper which is based on the wavelet transform, aim at predicting the duration of the next idle 

time as accurately as possible. In the wavelet based DPM method, the next idle time is 

predicted based previous idle times. It should be noted that the proposed data driven method 

is adaptive and hence has the ability to adapt itself to any changes in the behavior of the 

system. 
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Since the devices in the system may face different workloads with non-stationary 

behaviors, a model which has the ability to accurately predict non-stationary time series is 

required. The Wavelet Transform has a two-dimensional representation (time/scale) of signals 

and, hence, can model both localized time and frequency behaviors of time series. In addition, 

in [18], it has been proven theoretically that the wavelet transform can model and forecast 

non-stationary time-series accurately. This makes the wavelet transform as a very suitable 

framework for DPM systems. 

The wavelet transform presents a two dimensional representation of the time series [18]. 

The use of wavelet has proved successful in capturing local features of the observed data. The 

wavelet based forecasting method is a decomposition of the signal into a range of frequency 

scales to capture low and high frequency features of the signal. The prediction is based on a 

small number of coefficients on each of these scales. Although the wavelet based prediction 

uses a sparse modeling, but since it can be based on coefficients that are summaries or 

characteristics of large parts of the signal, it can predict the behavior with very good 

accuracies. The lower scales of the decomposition can capture the long-range dependencies 

with only a few coefficients, while the higher levels capture the usual short-term 

dependencies. Using the redundant or non-decimated wavelet transform has the advantage of 

being shift invariant. This means that by adding new samples to the data only a few 

calculations are needed to obtain the new value of the prediction. In addition, since the 

method is completely dynamic and data driven method, after each prediction, it will be 

updated by the actual value of the new event. Therefore, if the new data has come from a new 

situation, the prediction model can adapt itself to this new condition. In addition, since the 

forecasting value is obtained from a linear combination of the last p events, it has the property 

of making the decision for the next event based on local behavior of the service request 

model. The main reason for these two characteristics (adapting to new conditions and 
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modeling based on local features of the model) by the wavelet transform is the fact that this 

transform is well-localized both in time and frequency domains while having the potential for 

naturally handling phenomena whose spectral characteristics change over time. This has 

enabled us in successfully predicting time series of the service provider (SP) idle times in a 

DPM system. 

The idea of this work is to present an optimum forecasting method for the idle time 

duration based on a wavelet transform which in turn provides a two dimensional 

representation (time/scale) of the time series [18][26]. It has been shown that an optimum 

forecasting for a non-stationary time series which satisfies the local stationary constraint is 

guaranteed when the wavelet transform with the Mean Square Error (MSE) criterion is used. 

The MSE or Mean Square Prediction Error (MSPE)) is defined by 

2
,,,, )ˆ(),ˆ( TtTtTtTt XXEXXMSPE −=  where TtX ,

ˆ  are the predicted and Xt,T the actual values, 

respectively. In the next section will show that the predictions coefficients, )(
,1

t
Tstb −− , are 

obtained such that to minimize the Mean Square Prediction Error (MSPE) (for more 

information about MSPE, see [16][17][18][26].) In [18], the time-varying auto-covariance 

structure (non-stationary time series) was modeled rigorously by using the wavelet transform 

and the concept of “local stationary” random processes [17][18] (see Subsection  III.F for the 

definition of local stationary.) The method was then extended in [20] to model the series 

whose auto-covariance changes very suddenly in time. Based on this model, it is possible to 

forecast the general non-stationary process [20] as it is needed in an accurate DPM policy. 

Before describing the proposed method in detail, we briefly describe the framework of 

the DPM policy proposed in this work. First, we note that the time series associated with the 

events, in general, is a non-stationary process, which most of the times may be locally 

modeled by a class of stationary processes defined below. Second, for the local stationary 

process, one may use a linear predictor which optimally predicts the next member of the 
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series as a linear combination of the previous members. The coefficients for this predictor 

may be obtained from the wavelet theory [16]. Third, the coefficients are obtained by solving 

a linear system of equations containing the auto-covariance of the time series.  The auto-

covariance can be calculated using the wavelet spectrum and the auto-correlated wavelet [16]. 

The wavelet spectrum is carried out through the wavelet coefficients of the time series while 

the auto-correlated wavelet is determined using the wavelet basis [16]. 

A. Wavelet Framework 

A wavelet system is a set of building blocks to construct or represent a signal or function. In 

the wavelet expansion, a time-dependent function f (t) may be expressed as a two-parameter 

system by [21]  

∑∑=
k j

jkjk tatf )()( ψ  (1) 

where both j (scale index) and k (translation index) are integers and ψjk(t) are the wavelet 

expansion functions that usually form an orthogonal basis. Each function ψjk (t) is constructed 

from a mother function ψ(t) using  

)2(2)( 2/ ktt jj
jk −= ψψ  (2) 

where j and k ∈ Z and j < 0. Based on the definition, for a given j, the function shift is 2 – j as k 

is increased by one. As an example of the mother function, one can mention the Harr function 

which is depicted in Figure 3 [21]. The set of expansion coefficients ajk are called the discrete 

wavelet transform (DWT) of f(t) and (1) is the inverse transform. The transform is a two-

dimensional expansion set for some class of one-(or higher) dimensional signals. The wavelet 

expansion gives a time-frequency localization of the signals (through j and k indices) which 

means that most of the signal energy is well represented by a few expansion coefficients, 

aj,k’s. Fourier analysis is appropriate for periodic signals or for signals whose statistical 

characteristics do not change with time [21]. It is the localizing property of wavelets that 
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allow a wavelet expansion of a transient event to be modeled with a sparse representation 

with a small number of coefficients [21]. This turns out to be very useful in our applications. 

The standard wavelet transform discussed above can be categorized into two classes of 

decimated wavelets and non-decimated wavelets [21]. The decimated wavelets have exactly 

the same number of wavelet coefficients as the number of the samples in the input time series 

while in the non-decimated wavelet transform there are more wavelet coefficients in the input 

time series than the number of the samples in the input time series [21]. In this work, we make 

use of the theory presented in [18], which is developed for the discrete non-decimated 

wavelets to decompose local stationary processes. 

 
Figure 3. Haar basis function (m = j, n = k) [21]. 

 

B. Class of Local Stationary Processes and the Wavelet Spectrum 

The materials presented from here to the end of the section are mainly from [18] whose 

developed theory is used in this work and, therefore, only are other references mentioned. 

More details of the discussion may be found in this reference. First, let us present the 

definitions which are used in this work: 

Definition 1: For T observations of a series at points from 0 up to T – 1, it is possible to 

rescale the time in the interval [0,1) as is shown in Figure 4. This rescaling will help us to 

deal with defining, estimating, and predicting a function as a standard statistical problem. 

Definition 2: The discrete auto-correlation wavelet function is defined as 
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∑
∞=

−∞=

−=Ψ
t

t
jjj tt )()()( 00 τψψτ  (3) 

where τ ∈ Z and j < 0. The function Ψj is called the discrete AutoCorrelation Wavelet (ACW) 

function at scale j which inherits the localization properties from the wavelets. They are 

however symmetric about τ = 0, that is Ψj (τ) = Ψj (–τ), for all scales of j and for all τ’s.  

Definition 3: A time series Xt,T (where t = 0, …, T – 1 and T > 0) with a zero-mean is in the 

class of Local Stationary Wavelet (LSW) processes, if it can be expressed as  

∑ ∑
−

−=

∞

−∞=

=
1

,, )(
Jj k

jkjkTjkTt twX ξψ  (4) 

where, T is the number of samples in time series, J is log2T, t is the time variable, j and k are 

the scale and the location parameters, respectively, wjk,T’s are real coefficients, ψjk(t)’s form a 

set of non-decimated family of discrete wavelets, and ξjk are random orthonormal increment 

sequence. For the sequence, the expected value (E(ξjk)) is 0 and the covariance for all j, l, k, 

and m (Cov(ξjk, ξlm)) is δjlδkm where δpq = 1 if p = q and 0 if not. If the unknown coefficients 

of wjk,T can be found, Xt,T will be known as a Local Stationary process. It has been 

theoretically proven that wjk,T can be estimated using the wavelet spectrum of the time series. 

Let us denote the estimation of the wjk,T by Wj(z) which is a time-varying quantity defined in 

rescaled time z = k/T ∈ [0,1.) The wavelet spectrum of Xt,T, defined by Sj(z) = Wj(z)2, is a 

unique parameter measuring the power of the process at a particular scale j and time z. 

T

Observed time

Rescaled time
1

T.
0

0  
Figure 4. The rescaled time principle [18]. 

As mentioned before, the auto-covariance is used for obtaining the prediction 

coefficients. The Local Auto-CoVariance (LACV) of a LSW process is defined by cT(z,τ) = 
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Cov(X[zT],T, X[zT]+τ,T.) The relation between cT(z,τ) and the wavelet spectrum, Sj(z), of the LSW 

process Xt,T, as T tends to infinity, is given by 

)()(),(),(lim
1

τΨ=τ=τ ∑
−

−∞=∞→
j

j
jT

T
zSzczc  (5) 

where auto-correlation wavelets Ψj was given by (3). The representation is unique due to the 

fact that Ψj’s are linearly independent. Hence, c(z,τ) can be estimated by 

∑ ∑
−

−=

−

−=

− ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τΨ=⎟

⎠
⎞

⎜
⎝
⎛ τ

1 1
1 )(,

Jj
j

Jl
ljl T

kIA
T
kc where k  = 0, …, t – 1 and τ ≠ 0  (6) 

Here, the elements of the Graam (A) and the wavelet periodogram (I) matrices are obtained 

from 

)()(, τΨτΨ=ΨΨ= ∑
τ

ljljjlA  (7) 

and  

( )
21

0
,)( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψ= ∑

−

=

t

s
jkTsj sX

T
kI  (8) 

From the theoretical point of view, if we use the wavelet periodogram (I) for estimating 

the auto-covariance, some biases will appear in the estimated values leading to some errors in 

the actual values of the auto-covariance. To obtain an asymptotically unbiased estimator, 

some corrections to the periodogram are necessary. As a preliminary estimator of the wavelet 

spectrum, the Corrected Wavelet Periodogram (CWP) can be obtained using 

( )
21

0
,

1
, )( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψ=⎟

⎠
⎞

⎜
⎝
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−

=

−
T

t
lkTt

l
jlTTj tXA

T
kL  (9) 

where AT is a J × J matrix. 
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C. Wavelet-based Prediction Theory 

Now, we wish to use t observations of X0,T,…,Xt – 1,T from an LSW process and predict the tth 

observation. For this, we consider a linear predictor as 

∑
−

=
−−=

1

0
,

)(
,1,

ˆ
t

s
Ts

t
TstTt XbX  (10) 

where coefficients )(
1

t
stb −− ’s are determined to minimize the mean square prediction error 

2
,, )ˆ( TtTt XXE − . These coefficients can be obtained by solving 

( ) ∑∑ ∑
−
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−
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−

−=
−− −Ψ⎟

⎠
⎞

⎜
⎝
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−Ψ⎟
⎠
⎞

⎜
⎝
⎛ + 11

0

1
)1(

,1 )(
22 Jj

jj

t

m Jj
jjTmt nt

T
ntSnm

T
mnSb  (11) 

for all n = 0,…, t – 1. Here, the superscript "1" specifies that we are considering the first 

predicted value obtained using the previous t observations. In the wavelet approach, these 

observations could be used for more predictions. The prediction equation can be obtained 

using the relation between the wavelet spectrum and the local auto-covariance function given 

in (5.) Furthermore, the prediction equation can also be written as 

⎟
⎠
⎞

⎜
⎝
⎛ −+=⎟

⎠
⎞

⎜
⎝
⎛ −+∑

−

=
−− nt

T
tncnm

T
mncb

t

m
Tmt ,

2
,

2

1

0

)1(
,1  (12) 

The above predictor is asymptotically unbiased but is not consistent (its variance does 

not go to zero with T, [17]) and, therefore, it has to be smoothed by using, e.g., a Gaussian 

kernel smoother with the bandwidth of g [17] (for the concept of the bandwidth, g, refer to 

[22].) It should be noted that in the above equations only (t – 1) values could be obtained for 

the auto-covariance from t – 1 previous observations. Consequently, for forecasting the next 

event, extending and smoothing (see, e.g., [22]) the auto-covariance function, which is 

explained next, is unavoidable. Provided that the ith row of auto-covariance matrix (C) is 

given by Ci = [ci1,ci2,…, cin], the Ci(h) represents the smoothing function of Ci, and h is an 

index which can have a value from 1 to n+1. To obtain Ci(h), one can use  
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where ω(x, σ) is given by 
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Note that the parameter σ2 is the same as g in the algorithm. For h = 1, 2, …, n, Ci(h)'s are the 

smoothed coefficients of the ith row of the given C matrix and Ci(n+1) is the extended 

coefficient of the C matrix. 

In the next section, we will discuss a data-driven method for choosing the smoothing 

parameter [22]. Finally, note that for solving the equation of (12), we use the Cholesky 

decomposition method [23].  

D. Forecasting Algorithm 

We now address the question of how to estimate the unknown non-stationary series in the 

system of equations given in (11.) In theory, the best linear predictor of Xt is given by (10), 

where ( )
1,...,0

)(
,1 −=−−=

ts
t

Tstt bb  satisfies the prediction equations (11.) In practice, each of the t 

components of vector bt is estimated by using our estimator of local auto-covariance function 

(12) based on the observations X0,T, …, Xt – 1,T [17][18]. Hence, we have to compromise 

between the estimation error, potentially increasing with t, and the prediction error, which is a 

decreasing function of t [18]. As a natural balancing rule, which works well in practice (cf. 

[17][18]),  it is suggested to choose a number of p such that  

Tst

t

pts

t
Tst

p
Tt XbX ,

1
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,1
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,
ˆ

−

−

−=
−−∑=  (13) 

gives a good compromise between the theoretical prediction error and the estimation error.  
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To select the two parameters of the method which are the order p and the bandwidth g, the 

following automatic procedure may be used. Estimate the auto-covariance c(z,τ) by 

smoothing over k/T to achieve consistency where for the sake of simplicity, the same 

bandwidth g for all τ is chosen. Also, only the last p observations are incorporated into the 

predictor. (g, p) is selected using the adaptive forecasting, i.e., (g, p) is gradually updated 

according to the success of prediction. First, move backward by s observations and choose the 

initial parameters (g0, p0) for forecasting Xt-s,T. Next, forecast Xt-s,T using not only (g0, p0) but 

also the eight neighboring pairs (g0 + δεg, p0 + εp), for εg, εp ∈ {–1,0,1} and δ fixed as shown 

in Figure 5. Since the exact value of Xt-s,T is known, the nine forecasted values are compared 

with the exact value of Xt-s,T, and update (g, p) to be equal to the pair which gives the best 

forecast. This updated pair, as well as its eight neighbors, will be used for forecasting Xt–s+1,T. 

The same procedure is continued until we reach Xt-1,T. The updated pair (g1, p1) is used to 

perform the actual prediction, and it can be updated later if we wish to forecast the following 

members of the series such as Xt,T and Xt+1,T. 

     
 (g0+δ, p0–1) (g0+δ ,p0) (g0+δ, p0+1)  
 (g0, p0–1) (g0 ,p0) (g0 ,p0+1)  
 (g0–δ ,p0–1) (g0–δ, p0) (g0–δ, p0+1)  
     

Figure 5. The neighbors of pair (g0 ,p0) for updating the algorithm parameters. 
 

E. Test of Local Significance 

In the previous discussions, the corrected wavelet periodogram is used for estimating the 

wavelet spectrum. Now, the problem of testing the significance of the corrected wavelet 

periodogram over a given interval at a given scale is addressed. This test is important for 

practical purposes due to the fact that a scale of the wavelet spectrum can be active (i.e., non-

zero) at a given time and not active at another time, and this evolution corresponds to non-
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stationary behavior of the process. Additionally, it is possible that only a few scales to be 

active significantly in the whole time and, as a consequence, the computations for predicting 

the time of the next event will be reduced drastically. More formally, the following criterion 

is used for identifying the active scales. 

Sj(z) = 0 for a fixed scale j < 0 and for all z ∈ ℜ, (14) 

where ℜ ⊆ (0,1) is an interval with non-zero interval. It is then possible to test if, for instance, 

the whole scale is “active” or not, or if it is non-zero before or after a fixed time point. To 

determine if a scale is significantly active, we should calculate its p-value as a criterion [18]. 

The p-value can be approximately calculated using 

⎟
⎟
⎠

⎞
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⎜
⎝

⎛

××××+
×−=

ℜ )/()2(1
125.0exp

,,max
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j nC
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σνη

η ,  

where ν is a universal positive constant depending only on the wavelet mother function ψ, 

Cmax is the maximum eigenvalue of the covariance matrix, n is length of the data, and 

  η = ℑT = |Qj,ℜ,T|/σj,ℜ,T ,  

Here, Qj,ℜ,T is the averaged corrected wavelet periodogram on the time interval of interest, ℜ, 

and σj,ℜ,T is the standard deviation of Qj,ℜ,T. In the proposed DPM, first, the test can be run off-

line (or on-line) to determine the active scales which should be used by the wavelet predictor. 

Since the approach proposed in this work is adaptive, if during the runtime, the prediction 

accuracy decreases, first the DPM automatically adjusts the values of p and g to improve the 

accuracy. If the prediction accuracy is not increased to the desired level using this adjustment, 

the test of local significance will be run again to determine the new active scales. 

F. Test of Local Stationarity 

The time series is considered to be stationary in an interval if the wavelet spectrum of the time 

series does not change considerably in that interval. The condition is tested as explained here. 

Suppose that the wavelet spectrum for the scale j, denoted by Sj, at each time interval is well 
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approximated by the corrected wavelet periodogram (CWP), denoted by Lj. Consider Qj,U,T 

and Qj,ℜ,T as the averages of the CWP of scale j for given intervals of U and ℜ where U is any 

subset of the larger interval of ℜ. If the absolute value of the difference between the two 

values of Qj,ℜ,T and Qj,U,T is not significantly large, then the hypothesis of local stationarity of 

the wavelet spectrum Sj(z) on z ∈ ℜ is passed [18].  

IV. DPM POLICY IMPLEMENTATION FOR PREDICTING THE IDLE TIME 

DURATION 

In this section, the algorithm used for the DPM policy optimization guided by the wavelet-

based idle time prediction algorithm is described. The SP device (HDD) which is considered 

in this study has three states which are idle, active, and sleep (low-power state.) After the 

device finishes servicing a request, it enters the idle state where the duration of the inactivity 

(idle time) is predicted. If the predicted time is greater than a minimum threshold i.e., the 

breakeven time (TBE) AND if the delay constraints upon wakeup can be satisfied, the HDD 

will go to the sleep state (see Section  IV. B). Otherwise, it will remain in the idle state. For this 

device, we need one threshold value for making the decision on changing to a sleep state. It 

should be noted that the device makes a transition from the low power state to the active state 

based on the performance constraint meaning that the transition may occur immediately after 

entering the request in the SQ or after a delay depending on the performance constraint. The 

same approach may be applied to the devices with more low-power states. The approach for 

the multi-low-power state SP is shown in Figure 6 where it is assume that the state n has 

lowest power consumption. The parameters used in this chart will be defined in the following 

subsections. 

 We now explain how the DPM unit works. The DPM unit considers each transition 

from the active state to the idle state as an event occurrence. When an event occurs, the device 
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goes to the idle state and the DPM unit is activated to execute the prediction routine for 

forecasting the idle time duration, from which the transition to a low power state will be 

decided. Next, we describe the approach which has been taken for the calculation of the 

threshold value (i.e., the breakeven time.) 

A. Calculation of Threshold Values  

The approach taken in the calculation of the threshold values is similar to the one discussed in 

[19]. To have a general expression for the breakeven times, assume that the system (device) 

has one active state, one idle state, and n low power states (n + 2 total states.) The low power 

states are denoted as P = {p1, p2, …, pn}, which are in descending power order, i.e., pn is the 

lowest power consuming sleep state. p0 denotes the idle state power consumption. For such a 

system, it is essential to determine n threshold values (one value for each low-power state.) 

The DPM policy utilizes these threshold values to make a decision for changing the state of 

the system from the idle state to a low power state. If the idle time is too short, the device 

must remain in the idle state. As will be seen, for a given device, the decision is made based 

on the idle state duration. For each idle interval, the energy consumed when the state changes 

from the idle state to the state i is calculated from 

Ei = t0→i × p0→i + (tidle – t0→i – ti→0) × pi + ti→0 × pi→0  (15) 

where t0→i (p0→i) is the delay (power dissipation) from transiting from the idle state to low 

power state i, ti→0 (pi→0) is the transition time (power dissipation) for going from low power 

state i to the active state, and tidle is the idle time. If the device does not go to low power state 

i, the consumed energy in the idle state is 

E0 = tidle × p0 (16) 

 To make a decision for changing from the idle state to low power state i, E0 should be 

larger than Ei [19]. Since for a device, except for tidle, all other parameters are fixed, one can 
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obtain the idle time threshold value for making the transition from the idle state to the state i. 

Note that the lower power the state is, the more time the transition from the idle state to this 

state takes and the more power is consumed. Consequently, the threshold value for the idle 

time of this transition will be higher. 

To determine the threshold of each state, E0 is set equal to Ei and is solved for TH0,i as 

i

iiiiiii
BEii pp

ttptptp
TTH

−
+×−×+×

== →→→→→→

0

000000
,0

)(
 (17) 

If the predicted idle time is at least equal to TH0,i, the device makes a transition to low power 

state i [19]. 

B. Delay Constraint 

Minimizing the average power dissipation of a system under a given delay constraint is the 

main objective of the DPM. The average delay that a request experiences from the time it 

enters the queue until it is serviced by the SP is related to the average number of waiting 

requests in the service queue. In a stable system where the queue is essentially not overflowed 

all the time, we must have a condition whereby the average request inter arrival time (ρ) is 

equal to or greater than the average service time of a request by the SP (σ), i.e., ρ ≥ σ. 

 As mentioned earlier, the predictor will be activated for predicting the length of the idle 

period as soon as the SP enters the idle state. Let TBE,i denote the TBE of state of i. The SP is 

commanded to enter the low power state of i only if the predicted idle time is greater than or 

equal to TBE,i. In addition to the power saving check for going to a low power state, the delay 

constraints of the system must also be checked for both making transitioning from the idle 

state to a low power state and from a low power state to the active state. Next, we discuss 

these constraints. 
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B.1. Changing the state of the SP from the idle to the ith low power state 

Let us denote the average request inter-arrival time immediately after a transition from some 

sleep state to the active state as ρb, the average request inter-arrival time as ρ, the average 

service time of a request by the SP as σ, and the maximum service queue size as qmax 

denoting. Clearly, ρb is less than ρ. If ρb ≥ σ, then there is no problem since the current request 

will be serviced by the time when the next service request arrives. In this case, we do not need 

to include any additional delay constraint in the system. Consider the case where ρb < σ. We 

impose the condition that we can only have a service burst for up to Nb requests during a time 

period Tb. In this case, ρb = Tb/Nb. To prevent a service queue overflow, we must have Nb.(1 – 

ρb/σ) ≤ qmax. The requirement that Nb.(1 – ρb/σ) ≤ qmax is equivalent to ρb ≥ σ.(1 – qmax/Nb). If 

this condition is not satisfied, the service loss rate will become too high due to the queue 

overflow (we assume that some other controller in the system adjusts the request generation 

rate for the SP by stalling a pipeline, a system bus, etc.)  

To determine if this delay constraint is satisfied, we should check if the maximum delay 

constraint will be met after the system wake-up when a burst of requests comes in. 

Furthermore, the latency for providing service to the last request in a burst of Nb requests with 

an inter-arrival time of ρb is equal to Ttr,i + Nb.(σ – ρb). The transition from the idle state to the 

low power state i is put in effect only if Ttr,i + Nb.(σ – ρb) ≤ Dmax where Dmax is the maximum 

delay constraint for satisfying the performance constraint A decision to move into a low 

power state i is made only if the breakeven time is satisfied and these delay constraints 

described above are met. 

B.2. Changing the state of the SP from the ith low power state to the active state 

Now the question is that how soon after a request arrives in the system queue, the SP should 

go to the active state. This is an important question since if the delay constraint is loose, the 

SP may choose to stay in the low power state for a while to save power, instead of 
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immediately making a transition to the active mode. Consider the case where the SP is in the 

low power state i, and the first request arrives. For given average burst rate (which is the 

inverse of the request inter-arrival times in the burst) and the expected number of requests in 

the burst following a wakeup from state i, the SP can wait for a maximum time (wakeup 

delay) of  

TDW = MIN(TDW,1,TDW,2) 

where 

TDW,1 = Dmax – (Ttr,i + σ) 

and 

TDW,2 = Dmax – (Ttr,i + Nb.(σ – ρb))  

and  

Dmax = σ.Prfc  

where Prfc is the performance constraint and σ is the average service time of a request by the 

service provider (SP(σ)) [5]. 
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Figure 6. The flowchart illustrating the decision algorithm in the proposed method. 

 

As abovementioned, it is possible, after the first request arrival, many others arrive in burst 

causing the queue to be overflowed and the deadlines to be missed. In these cases, to go to 

low power states, two predictors may be required where one of them should predict the length 

of the idle time assuming an empty queue while the second ought to predicts the request burst 

characteristics. The burst characteristics include the number (Nb) and the average inter-arrival 

time (ρb) of the service requests when we are in the low-power state of i. In this work, we 

have assumed that we are given the maximum bounds on Nb and ρb and based on them we 
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have designed the system including the queue size and the delay constraint such that no queue 

overflow or deadline miss occurs. Also, it should be mentioned since our DPM policy is 

adaptive, when a service request burst occurs, it affects the average idle time of the system 

prohibiting the system from going to a low-power state after the burst has occurred. This way, 

if the system is going into a mode with service request bursts, the system does not enter a 

low-power state which causes a queue overflow or deadline misses. The flowchart of making 

decision by DPM is illustrated in Figure 6 which is explained here. When a to-idle event 

occurs, the PM (Power Manger) is activated and the length of the idle time (Tpr) is predicted. 

Then the current state of the system, i (n ≤ i ≤ 1) is considered to be n which is the lowest 

(deepest) power state. In this step, the predicted idle length is compared with TBEn which is the 

break event time corresponding to the nth low power state. If the predicted value is smaller 

than the TBEn, then the nth low power state will change to (n – 1)th low power state and the 

procedure is repeated by comparing the predicted value with the TBEn–1. The procedure 

continues until the predicted value become greater than the TBEi (Tpr ≥ TBEi) or i becomes 

equal to 0. The latter case means that the idle length is not long enough for a low-power state 

transition and the SP remains in the idle state. When the former occurs, the PM will check 

that changing the state of the SP to the ith low power state can satisfy the PrfC constraint. For 

this, the PM should check if the maximum delay constraint will be met after the system wake-

up and a burst of the requests comes in. This constraint is satisfied if Ttr,i + Nb.(σ – ρb) ≤ Dmax. 

Additionally, to prevent a service queue overflow, we must have Nb.(1 – ρb/σ) ≤ qmax which is 

equivalent to ρb ≥ σ.(1 – qmax/Nb). The power manager will check these two conditions before 

changing the state of the SP to the ith low power. If at least one of the constraints is not 

satisfied, the ith low power state will changes to (i – 1)th and the process of checking these two 

constraints is repeated. This process continues until both constraints are satisfied or i becomes 

equal to zero. If i become zero again the SP will remain in the idle state. In the case that the 
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two constraints are satisfied the PM will changes the state of the SP to ith low power state. 

Finally, when the SP is in ith low power state, if a request enters into the service queue (SQ) 

the SP waits for TDW = min(TDW,1,TDW,2) before going to the active state. 

C. Implementation of Online Prediction of Idle Time Length 

Now, the steps that should be taken in implementing the procedure for the prediction of the 

idle time length are described. The steps are illustrated as a flowchart which is given in Figure 

7. Some of the steps are performed once while the others should be repeated. These steps, 

which are independent of the number of low power states, include 

1- The behavior of the device is modeled according to the method proposed in the Section  III. 

2- Whenever the device makes a transition from the active state into the idle state, the 

prediction program is recalled to calculate the length of the idle time.  

3- Since the significant scales have been determined in the runtime, only are they used in the 

computation. The autocorrelation function is computed and the matrix A is constructed 

using (7.) 

4- Non-decimated wavelet coefficients of the significant scales are derived and its matrix I is 

constructed using (8.) 

5- Using (6), the local auto-covariance function is derived and smoothed. 

6- Equation (12) is constructed and is solved using the Cholesky decomposition, b 

coefficients are calculated, and then the length of the time is predicted. 

7- The decision for the state transition is made based on the predicted time inter-arrival.  

8- When the device makes a transition from the idle state to the active state, the actual idle time 

is determined and the error of the prediction is calculated. If the error is more than a definite 

value, the parameters (p, g) are updated.  
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Figure 7. Flowchart for predicting the idle length in wavelet based DPM. 
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V. RESULTS AND DISCUSSION 

In order to assess the efficiency of the proposed algorithm for the DPM policy, we have 

implemented a simulator which determines the power consumption of the system under 

different DPM policies. The DPM algorithms implemented in the simulator includes Timeout 

[12], Oracle [12], Always On, continuous-time Markov decision processes [11], Predictive 

[6], Time Index Semi-Markov Decision Process (TISMDP) [12], Discrete Time Markov 

Decision Process (DTMDP) [10], and  Non-stationary Markov Decision Process (NSMDP) 

[1] methods. The simulator applies the policies to some time series to make a decision for the 

state change and calculate the corresponding power consumption. 

A. Application of Proposed Method to Hard Disks 

In order to evaluate the performance of the WBDPM policy to real devices, we applied the method 

to the hard disks of a laptop computer and a desktop computer. These devices, whose 

specifications are given Table I and Table II, have four states which are active, idle, standby, 

and shutdown [24][25]. The threshold values for these devices were computed as described in 

Section  IV.A. The required experimental data for the test of various methods are collected by  

Table I. Specifications of the PC hard disk [24].  

Samsung SV4002H 
State  Power(W) Ttr1  Ttr2  Etr1  Etr2  Threshold  

Active  6  -  -  -  -  NA  
Idle  4.8  -  -  -  -  NA  

Standby 0.5 84mesc 38msec 46.31J 8.21J 12.68 
Sleep  0.2  160msec 62msec  112.9J  17.1J  28.246sec  

 

Table II. Specifications of the laptop hard disk [25]. 

Toshiba MK4026GAX 
State  Power(W) Ttr1  Ttr2  Etr1(J)  Etr2(J)  Threshold  

Active  2.5W  -  -  -  -  NA  
Idle  1.05W  -  -  -  -  NA  

Standby 0.25W 75msec 50msec 6.12  2.4 10.673 sec 
Sleep  0.1W  187msec 70msec  17.82  3.6  22.542 sec  
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Figure 8. (a) Collected trace of hard desktop computer , (b) Uncorrected wavelet periodogram of 
the trace, (c) Corrected wavelet periodogram, (d) Magnified corrected wavelet periodogram for the 
five first scale   



Dynamic Power …  Abbasian et. al. 32

 
Table III. Results of the significance test for the hard disk of the desktop computed on ℜ = 

(0,1) for scales –1 to –13. 

Scale TjQ ,,ℜ
2

,, Tj ℜσ Approximated p-value 
–1 60.1 117 0.02 
–2 55 110 0.03 
–3 73.67 84.65 3.2×10–4 

–4 35.29 121.36 0.27 
–5 24.93 92.04 0.429 
–6 18.75 104.89 0.65 
–7 8.26 40.42 0.809 
–8 4.30 18.46 0.891 
–9 3.16 12.54 0.905 

–10 2.42 15.36 0.95 
–11 2.12 13.88 0.96 
–12 1.18 10.64 0.98 
–13 1.23 24.08 0.99 

 
 
Table IV. Results of the significance test for the hard disk of the laptop computed on ℜ = (0,1) 

for scales –1 to –13. 

Scale TjQ ,,ℜ  2
,, Tj ℜσ  Approximated p-value 

–1 72.4 68.53 7×10–5 

–2 54.36 71.92 5.8×10–3 

–3 58.72 62.78 1×10–3 

–4 43.56 76.4 0.044 
–5 32.1 88.7 0.234 
–6 24.6 65.7 0.316 
–7 21.3 92.83 0.542 
–8 14.26 62.67 0.666 
–9 10.51 44.92 0.735 

–10 8.16 38.34 0.804 
–11 7.32 30.76 0.81 
–12 5.6 28.76 0.872 
–13 4.2 21.62 0.903 

 

monitoring the behavior of the hard disks for 24 hours. For collecting the data, we used a 

software package that monitors the states of the hard disks and record the time intervals for 

the idle and the active states. It should be mentioned that we have written a C++ program 

which uses ACPI of the windows for monitoring the state of the hard disk. The power-
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performances of different DPM policies have been compared using the collected traces in a 

simulator. 

The collected data from the hard disk of the PC and the laptop are shown in Figure 8(a) 

and Figure 9(a), respectively and their wavelet spectrum, without the correction by A–1, are 

given in Figure 8(b) and Figure 9(b), respectively. As discussed before, the wavelet 

periodograms are not appropriate for the local significant test, the local stationary test, and the 

prediction procedure. Their corrected wavelet periodograms are shown in Figure 8(c) and 

Figure 9(c) while Figure 8(d) and Figure 9(d) give five scales of the corrected wavelet 

periodograms. The results of the local significance test in the interval ℜ = (0,1) are given in 

Table III and Table IV. As observed from the tables, only scales –1, –2, and –3 are the active 

scales and the values of other scales are negligible. The information would lead us to use only 

the three first scales to reduce the computations.  

In order to see if the collected data from the hard disks are non-stationary (which in that 

case may not be modeled by a stationary-based model) the stationary test is applied to these 

data. We use the same approach for the analysis of the data as the one taken in [18]. Here, for 

a better analysis, the data are partitioned into three segments as given in Figure 10(a) and 

Figure 11(a.) The test is applied to all three segments for scales –1 to –5. The results of the 

test are given in Table V and Table VI where the numbers in the tables are the minimum p-

values obtained in each segment. To determine when a scale is absolutely or relatively 

dominant, we choose two thresholds. If the p-value is between 0.01 and 0.05, the scale is 

relatively dominant and if the p-value is less than 0.01, the scale is absolutely dominant. The 

absolutely dominant scale is of a high significance while the relatively dominant scale is of a 

low significance. The p-value of a scale is inversely proportional to its  
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Table V. Results of the local stationary test for the hard disk of desktop computed on 

segments 1, 2, and 3 according to Fig. 11(a) for scales –1 to –5. 

p-values Scale 1 2 3 
–1 0.0128** 0.058 0.032* 

–2 0.008** 0.06 0.04* 

–3 0.024* 0.0042** 0.018** 

–4 0.52 0.12 0.07 
–5 0.61 0.62 0.38 

* Indicates a p-value 0.01 to 0.05, ** Indicates a p-value less than 0.01. 

 

Table VI. Results of the local stationary test for the hard disk of the laptop computed on 
segments 1, 2, and 3 according to Fig. 12(a) for scales –1 to –5. 

p-values Scale 1 2 3 
–1 2×10–5** 0.0034** 0.32 
–2 0.028* 0.0012** 0.042* 
–3 0.44 0.015* 0.0037** 
–4 0.48 0.17 0.072 
–5 0.58 0.54 0.47 

* Indicates a p-value 0.01 to 0.05, ** Indicates a p-value less than 0.01. 
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Figure 9.  (a) Collected trace of hard of lap-top, (b) Uncorrected wavelet periodogram of the trace, 

(c) Corrected wavelet periodogram, (d) Magnified corrected wavelet periodogram for 
the five first scales 
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Figure 10.  (a) Partitioning of trace collected from the HDD of a laptop to three segments, (b) 

black line: hard trace with the length of 120, red line: predicted sequence. 
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Figure 11.  (a) Partitioning of trace collected from hard of a desktop computer to three segments, 

(b) Solid line: hard trace with length 120, doted line: predicted sequence 
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significance. Specifically, the scales having p-values near 1 are insignificant and may be 

neglected. 

As is observed from Table V and Table VI, scale 1 is absolutely dominant in segment 

(1) and relatively dominant in segment (3) while it is insignificant in segment (2.) A similar 

discussion exists for the results presented in Table VI. Since the active scales are not the same 

in different intervals, the time series is non-stationary. After determining the significant 

scales, they will be used for predicting the length of the idle time. In the following, we will 

use the significant scales for predicting the behavior of the HDD. The prediction accuracies of 

the events with a length of 120 for the hard disks are shown in Figure 10(b) and Figure 11(b.) 

The values (p, g) are chosen optimally and updated during the prediction leading to an 

accuracy of 95%. In Figure 12, the prediction error has been plotted for 220 samples. As is 

evident from the figure, the error decreases as the sample number increases. One should note 

that for the DPM decision making, the required prediction accuracy should be such that the 

PM can make a correct decision for changing to a low power state. 

 As mentioned before, the DPM policies were designed to minimize the power 

consumption subject to the performance constraint expressed in terms of the upper bounds on 

the performance metric (PrfC.) For our experiments, we used PrfC = 0.01 which means that 

the normalized number of waiting request in the queue should be equal or less than 0.01. The 

number is defined as NW/NT where NW and NT are the number of waiting requests in the queue 

and the total number of the incoming requests during time T, respectively. The reported 

parameters are defined in the following: 

• Pwr (Power): It is the average power consumption (Watt.) 

• HR (Hit Ratio): It is the ratio of the corrected predictions to the total predictions. 

• EN (Energy): It is the total energy dissipation of the idle state normalized to the 

energy dissipation of the Oracle policy. 
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• EF (Efficiency): It is the ratio of the normalized power dissipation of the Oracle 

policy to that of other policies. 

• Ntr: It is the total number of transitions from the low power states to the active state  

• Nwtr: It is the number of wrong transitions causing a power and performance 

overhead. 

• Tss: It is the average elapsed time in the low power states per transition (S.) 

Ntr, is directly related to the performance penalty that has to be paid to wake up the SP. If 

these transitions are correct, then the power saving would justify the transitions power 

consumption based on the performance constraint. Nwtr, however, is a measure of the 

algorithm inefficiency which leads to both performance and power penalties. Tss can be seen 

as a measure of efficiency. For minimizing the power dissipation, it is essential to maximize 

the while minimizing the Ntr and Nwtr.  

 The results of the comparison among the DPM methods in reducing the energy 

dissipation for the same performance constraint are given in the Table VII, Table VIII and 

Table IX. The first two tables are for the non-stationary workloads while the third is for five 

concatenated stationary traces (this trace is produced by a pattern generator where each trace 

has a constant spectrum. As an example for concatenating a stationary trace to another trace 

see Appendix A.) As evident from the results, the proposed method has been reduced the 

energy consumption of the system about 28.2% to 35.1% for the non-stationary workloads 

compared to the best savings which is for the NSMDP. In the case of the concatenated 

stationary process, the energy saving is about 11.32% when compared to NSMDP. The lower 

energy saving was expected due to fact that the wavelet based technique outperforms other 

techniques considerably when the workload is non-stationary. It should be noted that the 

proposed method has only between 4 and 7.7% less energy saving when compared to the 

oracle policy. 



Dynamic Power …  Abbasian et. al. 41

 

Table VII. Comparison of the power dissipation and the performance evaluated by the 
simulation of different DPM policies for the traces collected from hard disk of the desktop. 

Algorithm Pwr (W) HR (%) EN (J) EF Ntr Nwtr Tss 
Oracle 0.42 100 1 1 522 0 1170 

WBDPM 0.432 97.2 1.077 0.928 428 12 1010 
NSMDP 0.5 82 1.38 0.724 422 76 916 
TISMDP 0.55 71 1.75 0.571 586 170 1390 
Adaptive 

Learning Tree 
(ADLT) 

0.58 68 2.24 0.446 437 140 878 

timeout 0.45 81 1.142 0.87 273 52 644 

DTMDP 1.67 59 3.51 0.28 434 178 752 

Always on 4.8 --- 12 0.083 --- --- --- 
CTMDP 5.2 22 15 0.066 271 212 248 

 
 
 
Table VIII. Comparison of the power dissipation and the performance evaluated by the simulation 
of different DPM policies for the traces collected from hard disk of the laptop. 

Algorithm Pwr (W) HR (%) EN (J) EF Ntr Nwtr Tss 
Oracle 0.175 100 1 1 382 0 820 

WBDPM 0.179 98.2 1.040 0.962 444 8 830 
NSMDP 0.21 75 1.404 0.712 136 34 890 
TISMDP 0.31 67 1.757 0.571 236 78 620 
Adaptive 
Learning 

Tree(ADLT) 
0.42 58 2.153 0.465 202 85 719 

timeout 0.187 78 1.250 0.803 127 28 289 

DTMDP 0.72 52 2.38 0.42 416 200 410 

Always on 0.95 0 5.5 0.18 0 0 0 
CTMDP 1 18 8.3 0.12 171 141 74 
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Table IX. Comparison of different DPM policies for five concatenated stationary traces. 

Algorithm Pwr (W) HR (%) EN (J) EF Ntr Nwtr Tss 
Oracle 0.154 100 1 1 268 0 620 

WBDPM 0.158 96.8 1.042 0.974 218 7 640 
NSMDP 0.161 97.2 1.16 0.954 392 11 615 
TISMDP 0.174 84 1.28 0.87 150 24 572 
Adaptive 0.188 79 1.49 0.78 180 38 654 

12s timeout 0.21 82 1.7 0.63 177 32 347 

24s timeout 0.24 71 2.17 0.44 203 59 484 

DTMDP 0.220 78 1.78 0.57 186 41 520 

Always on 0.74 --- 4.8 - - - - 
CTMDP 0.192 83 1.61 0.77 258 44 670 
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Figure 12: (a) HDD actual (black line) and predicted sequence (red line) traces, (b) Euclidean 
distance between the predicted values and the actual values for Figure 12(a). Average 
Error (i) = (Euclidean distance between the signal and the predicted signal from 
first sample to the ith sample)/i [18]. 
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B. Power-Performance Tradeoff 

To compare the ability of the DPM policies in reducing the power dissipation of the hard 

disks under different performance constraints, the power-performance characteristics for the 

hard disks are plotted in Figure 13. It should be noted that the input traces of the hard disk 

was tested using the test of local stationary where it was observed that the input trace was 

fully non-stationary. As the results show, for a given performance, the proposed technique 

leads to a less power consumption. The improvement in the DPM policy may be attributed to 

the dynamic nature of the technique which is more suitable for non-stationary behaviors. 

 Regarding the time-out policy, it should be noted that this policy has a single parameter 

Tout and is not a robust method for different performance constraints. In this policy, the DPM 

unit switches the SP from “idle” to “sleep” after the SP has been in the “idle” state (the SQ is 

empty) for a time period of Tout. The DPM unit switches the SP from the “sleep” to “active” 

immediately after a request arrives. In our experimental results, we have used different values 

for Tout to study the performance and the power characteristics of the “time out” policy, and 

the optimum values for Tout which minimizes the power consumption subject to the 

performance constraint of PrfC = 0.01 has been chosen.   

 From Figure 13(a) and Figure 13(b), it is evidence that the proposed WBDPM 

outperforms the other methods including stochastic, adaptive, and time-out methods. This is 

due to the non-stationary feature of the method and its dynamic behavior of the system. The 

WBDPM can always trade the performance for the power and is robust for non-stationary 

applications. Also, it should be noted that the stochastic methods as well as the adaptive 

learning tree method, similar to the WBDPM, can always trade the performance for the 

power. Nevertheless, the heuristic policies such as the time-out policy can not provide a valid  
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Figure 13. Power consumption as a function of the performance of the hard disk of (a) the 
desktop (b) the laptop. 
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power-performance trade-off. In all the experiments, decreasing the time-out threshold 

increase the average latency for the request. On the other hand, decreasing the time-out 

threshold does not essentially decrease the average power consumption [5]. It should be noted 

that for some applications, there could be an optimal time-out threshold which could 

minimize the average request latency and the power consumption. However, if the system has 

different applications with different associated optimal time-out thresholds, then time-out 

policy may not work very well. 

 When the workloads are greatly non-stationary, the predictions made by the methods 

that assume stationary or piecewise stationary workloads would be less accurate. Adaptive 

learning tree uses an idle grouping method for classification the length of the idle period, and 

then predicting it. In fact, the method uses some stationary methods whose statistical 

properties are known in advance and try to extract the idle time duration using the models [3]. 

The main shortcoming of the method is that, not only it is not possible to provide a large 

library of the stationary methods, but there could be a workload with non-stationary behavior 

which is not similar to any of the known stationary work load. Besides, even if such data is 

provided, the processing time for making the decision time will be long which may prohibit 

performing it at the runtime. In these cases, a simple method such as the time-out policy may 

work more efficiently than these methods if the time is selected optimally. It, however, should 

be noted that the time-out policy is not a robust method for different performance constraints 

as is discussed here. Note that the results shown in Figure 13 reveal that when the 

performance constraint decreases, the efficiency of the time-out policy decreases significantly 

compared to other methods. Also, note that for stationary or piecewise stationary workloads, 

the performance of the time-out policy will decrease drastically compared to the previous 

methods. As an example, the results for this type of workloads are presented in Table IX,  
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where the upper bound of the performance is 0.01. As is inducted from these results, the 

performance of the time-out policy is the worse among the DPM policies. 
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Figure 14. Power dissipation of the desktop hard disk versus the Performance and (a) p, (b) g. 
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C. Optimum Values of p and g versus Performance 

The 3D plots of the power versus the performance and p (g) is given in Figure 14(a) (Figure 

14(b).) The plots show that the variations of the optimum values of these parameters as 

functions of the performance. It is evident from figures that for different performance 

constraints, the p and g have almost the same optimal values. If, however, for any reason the 

prediction accuracy decreases, there is a routine included in the DPM unit which finds and 

updates the optimum values of these parameters. 

D. Runtime Speed and Memory Requirement. 

The runtime speed and the memory requirement of the DPM policies have been compared 

with those of others in Figure 15. The algorithms were implemented using a laptop computer 

with Pentium 4 CPU (2GHz) which had 512MB of RAM. As discussed in Section  I, the 

power consumed in the processing unit of a system normally would be smaller than those of 

other parts such as the display and the hard disk drive of the system. Therefore, a DPM policy 

with a higher computation power but with a higher accuracy could lead to more power 

savings and hence would be attractive. The computational overhead of the proposed method is 

not too high. This was achieved by using the Haar wavelet which has a very low 

computational overhead. Also, as was illustrated before (test of local significance), only a few 

scales in the spectrum are active and other scales can be neglected. In addition, a major 

portion of the computations is common between two successive predictions of the idle times 

and only a small amount of the computation should be repeated in each step of the prediction. 

The common parts of the calculation include the calculation of the wavelet coefficients, the 

auto-coloration coefficients, and the smoothing step. For example, when a new point of event  
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Figure 15. Comparison of normalized (a) runtime speed (b) memory (in the range of sub-KB) 
requirement for different DPM algorithms respect to adaptive learning tree. 
 

is concatenated to the event sequence, all the calculated wavelet coefficients are valid and are 

used for the wavelet spectrum evaluation. In this case, only one new wavelet coefficient 

should be calculated for each level. 

To further evaluate the accuracy of the proposed model, we generated fifty non-stationary 

sequences and applied them to different DPM algorithms. To generate these sequences, fifty 
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non-stationary spectra (such as the variations of the spectrum shown Figure 17(a) in 

Appendix A concatenated with white noise) were used. The power dissipation of each time 

sequence is calculated by averaging ten independent time series realizing each non-stationary 

spectrum. Figure 16 shows the results of the comparison of the power dissipations when 

different DPM policies are employed. It is observed that the power dissipation of the system 

managed by the proposed method is close to that of the Oracle policy. 

VI. SUMMARY AND CONCLUSION 

In this work, a wavelet based dynamic power management (WBDPM) policy was proposed. 

On contrary to the previous approaches, a stationary behavior was not presumed for the 

service requests to the device and, hence, the idle time prediction accuracy was improved. To 

determine if the service request behavior of the device is a local stationary process, a test 

called local stationary was utilized. Using another test called the test of local significance, it 

was shown that only a few scales in the wavelet spectrum were active which enabled us to 

ignore insignificant scales. This led to a sparse representation of the SR behavior improving 

the efficiency of the technique. The technique used two parameters which can be adjusted 

during the runtime based on the data (data-driven) to have more accurate idle times 

predictions. The effectiveness of the approach was tested on the hard disk drives (HDD) of a 

laptop and a desktop computer revealing a very good accuracy for the idle time prediction of 

the method under different performance constraints. 
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 Figure 16. A comparison of the power dissipations in different policies. The x-axis shows 

the partition number out of 50 in time series. 
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Appendix A 

An Example for Demonstrating the Technique 

To demonstrate the wavelet based DPM technique, we use an example of a time series whose 

spectrum is shown in Figure 17(a.) The series may be synthesized, for example, by 

concatenating a time modulated process (j = –1) and a simple stationary process (j = –5) 

which is depicted in Figure 17(a.) The sample size is T = 1000. This non-stationary time 

series corresponds to the wavelet process generated using the spectrum given by 

⎪
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⎧

−=≥

−=≤++
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 (18) 

where the boundary between the two concatenated processes is at time z = 0.5. For our 

purpose of having a non-stationary process, the boundary point may be placed at any point in 

the rescaled time. The spectrum of this process shows that it is non-stationary in one segment 

of time ([0,0.5]) and stationary in the other segment ([0.5,1].) Since at each point of the time, 

only one scale is nonzero, the wavelet spectrum S(z) is considerably sparse. Figure 17(c) also 

show the average of 100 uncorrected wavelet periodograms (Ij,k) obtained using (8) from 100 

independent series obtained from the realizations of the spectrum S(z.) When compared to the 

spectrum given in Figure 17(a), it is understood that the uncorrected wavelet periodogram 

given in Figure 17(c) is biased and does not have a good accuracy for the estimation of the 

wavelet spectrum. The periodogram obtained by averaging the 100 corrected wavelet 

periodograms (Lj,k) is depicted in Figure 17(d.) This periodogram is an unbiased estimation of 

the spectrum with a fair accuracy. Figure 17(e) shows a single corrected wavelet periodogram 

(CWP) from one realization of S(z) which is computed using (9). 

Now the local significance and the stationary tests are performed on the 100 time series. 

First, we apply the test of local significance to the CWP. For each of the 100 series, we have 
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computed the test statistics defined by ℑT =|Qj,ℜ,T|/σj,ℜ,T for scales j = –1 to j = –9. The 

computation is performed on two sub-intervals in ℜ. In the test statistics, Qj,ℜ,T is the 

averaged corrected wavelet periodogram on interval ℜ and σj,ℜ,T is the standard deviation of 

Qj,ℜ,T [18]. Using the test statistics ℑT, a parameter “p-value” indicating the significance of 

each scale can be calculated [18]. A box plot of the 100 p-values obtained from the 100 

independent time series in intervals ℜ = (0,1), ℜ = (0,0.5), and ℜ = (0.5,1) are illustrated in 

Figure 18. Based on the theoretical discussions of [18], these figures show that very small p-

values are obtained for the regions with non-zero spectrum and large p-values correspond to 

the sparse regions.  

As the next experiment, to compare the prediction accuracy of the proposed method 

with those of other methods, we used ten independent time series (T = 1000) obtained from 

the spectrum given in Figure 17(a.) These series are then converted to a pattern as entry 

requests for the SR in the system managed with DPM. The prediction accuracy of the 

WBDPM is compared to Oracle, NSMDP, TISMDP, and Timeout policies. For the 

comparison purpose, we partitioned the spectrum S(z) into twenty equal segments where in 

each segment, we generate ten series with the length of fifty samples based on the 

corresponding part of the spectrum. Then, for each of the ten series, the prediction accuracies 

for the abovementioned methods are calculated and averaged to obtain the prediction 

accuracy of the method. The result of this comparison is given in Figure 19. As it is evident 

from the figure, the proposed method has a higher accuracy compared to previous methods.  



Dynamic Power …  Abbasian et. al. 56

Rescaled Time

S
ca

le
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1
0

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

 

(a) 
 

0 200 400 600 800 1000

-3
-2

-1
0

1
2

3

Number of Samples

A
m

pl
itu

de

 
(b) 



Dynamic Power …  Abbasian et. al. 57

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rescaled Time

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

S
ca

le
s

 
(c) 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rescaled Time

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

S
ca

le
s

 
(d) 



Dynamic Power …  Abbasian et. al. 58

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rescaled Time

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

S
ca

le
s
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Figure 17.  (a) The wavelet spectrum S(z), (b) one realization of Spectrum S(z), (c) the mean of 
uncorrected wavelet periodograms from 100 independent realization of S(z), (d) the 
mean of corrected wavelet periodograms from 100 independent realization of S(z), 
(e) The corrected wavelet periodograms of a single realization of S(z.) 
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(c) 

 
Figure 18.  (a) the p-value of the test of local significance for realization of S(z) computed on 

ℜ = (0,1), (b) p-value of test of local significance for realization of S(z) computed 
on ℜ=(0,0.5), (c) p-value of test of local significance for S(z) computed on ℜ = 
(0.5,1.) 
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Figure 19. Comparison of the prediction accuracies of various approaches. 

 
 

Appendix B 

An Example for Showing the Concepts in Section  III 

Assume that we choose the p = 5 (the history size). Also, for the sake of simplicity, suppose 

that we have only two significance scales. For this case, assume that the lengths of the last p 

idle events are [0.2, 10, 20, 5, 3] (sec). To make a mean zero sequence from this input trace, 

we subtract the mean of the data from each sample which to a zero-mean trace as [-7.44, 2.36, 

12.36, -2.64, -4.64] (sec).  

Sequence of idle event lengths (sec)  Zero-mean sequence obtained from the idle events (sec) 
0.2 10 20 5 3  -7.44 2.36 12.36 -2.64 -4.64 

 

It should be noted that, in theory, the mean of the sequence from time = 0 to time = ∞ must be 

zero. The mean of the last p is not necessarily equal to the mean of the complete sequence. 

For practical implementation purposes, we use the mean of the last p samples as the mean of 

the sequence. The Graam matrix “A” is independent of the input data and is only dependent 

on the mother wavelet function. The matrix should be calculated using (7) as 
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As mentioned earlier, we assume that there are only two active scales. This leads to 
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Using (9), we have 

( )
21

0
,

1
, )( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψ=⎟

⎠
⎞

⎜
⎝
⎛ ∑∑

−

=

−
T

t
lkTt

l
jlTTj tXA

T
kL   

The corrected wavelet periodogram (L) will be given by 
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27.87083.164.2128.2236.22
3.4254.7551.2284.2083.20

  

Using the L matrix and the following formula, the Local Auto covariance (C matrix) is 

obtained from (6) 
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which leads to 
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50.130569  1.349425-  18.035637- 10.795948- 0.000000   
1.349425-  50.074749  1.462349-  17.947172- 10.751326- 

18.035637- 1.462349-  50.018524  1.573939-  17.859106- 
10.795948- 17.947172- 1.573939-  49.961922  1.684186-  
0.000000   10.751326- 17.859106- 1.684186-  49.904945

 

Using matrix C and (12) yields 
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The b coefficients will be calculated using (10) as 

P10.2530397]- 0.5386909- 0.4321834- 0.2712338- 0.2798692- [ ×=b  

Finally, the next event will be predicted based b values using 
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Therefore, the next (zero mean) idle length is X6 = -1.3 and, hence, 6X̂  (= X6 + mean) 

becomes = 8.94sec. 

 


