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Abstract—In this paper, we present an accurate approach for the estimation of 
statistical distribution of leakage power consumption in the presence of process 
variations in nano-scale CMOS technologies. The technique, which is additive with 
respect to the individual gate leakage values, employs Generalized Extreme Value 
(GEV) distribution. Compared to the previous methods based on (two-parameter) 
lognormal distribution, this method uses GEV distribution with three parameters to 
increase the accuracy. Using the suggested distribution, the leakage yield of circuits 
may be modeled. The accuracy of the approach is studied by comparing its results 
with those of a previous technique and HSPICE-based Monte Carlo simulations on 
ISCAS85 benchmark circuits for 45 nm CMOS technology. The comparison reveals a 
higher accuracy for the proposed approach. The proposed distribution does not add 
to the complexity and cost of simulations compared to the case of the lognormal 
distribution.   
 
Index Terms— Manufacturing process variation, statistical leakage, GEV distribution. 
 
1. INTRODUCTION 

Process variations have had a large impact on the design of nano-scale digital 

integrated circuits. Process variations, which are created during the fabrication 

processes, such as photolithography and ion implantations, may be categorized into 

global (inter-die) versus local (intra-die) variations, and further subdivided into 

systematic and random variations [1]. Inter-die variations lead to different 

characteristics for the same device across different dies. Intra-die variations are 

responsible for variations in characteristics of the device within a single chip. 

Furthermore, some variations (mainly lithographical and layout-dependent ones) 

exhibit significant systematic spatial correlations while others, such as channel 

doping concentration and surface roughness, are random [1].  
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The leakage power dissipation, which increases with device scaling, has a strong 

dependence on the aforementioned variations. Two main components that induce 

the leakage power consumption include subthreshold and gate-leakage currents [2]. 

The subthreshold current has a strong (exponential) dependence on the channel 

length (L) and channel-length-independent threshold voltage (Vth) [3]. The large 

variability of these parameters in the presence of the process variations, leads to a 

considerable variation of leakage. The variation, which strongly influences the 

(leakage) yield of the circuit, should be modeled using statistical techniques for 

analysis and design optimization purposes. The statistical modeling of leakage 

currents and the (leakage) yield estimation have been a topic of many ongoing 

research efforts as reported in several publications (see, e.g., [4] and [5]). 

An ideal statistical power modeling technique should be accurate, fast, and 

incremental (one simple addition per gate). The last requirement makes the 

technique computationally efficient for even for large circuits. There have been some 

approaches that are capable of producing acceptable results without requiring full-

chip simulations [6]-[9]. These approaches, which estimated the leakage power 

variations, required complicated manipulations of their input parameters. Since the 

parameter manipulations were complex and interdependent, the approaches were 

not incremental [10]. Even an O(N) non-incremental algorithm would still be costly 

[10]. Even an O(N) (O(N) indicates the order of growth of computation cost (time) as 

a function of N where N is the number of logic cells in a chip.) non-incremental 

algorithm would still be costly [10]. . 

There are a few works that rely on the summation of distributions (as a special 

case of incremental technique) for the statistical power analysis (see, e.g., [7]-[8]). 

These methods rely on the Wilkinson’s approach for the addition of lognormal 

distributions. In this approach, the sum of lognormal distributions is approximated by 

another lognormal distribution whose parameters are found by moment matching. 

Thus, this approach is not directly additive, which means that the final lognormal 
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distribution cannot be obtained by simply adding two or more lognormal distributions 

[10]. While this approach finds accurate solutions for small chips relatively fast, any 

model that is primarily dependent on the Wilkinson’s approach (O(N2)) will not be 

scalable to large chips [10]. There are works like [11], which are both incremental 

and linear. In this work, the leakage variation is modeled as a set of orthogonal 

polynomials that can be added directly (linearly). While this method is incremental, it 

requires a different set of orthogonal polynomials for different distributions of variation 

sources [10].  

To achieve the additive property with respect to some distributions for the total 

leakage current estimation, in [10], the leakage current is expressed by a polynomial 

function instead of an exponential one. It is shown that, in order to recalculate the 

chip leakage variation after changing some circuit elements, the computational 

complexity of their approach did not depend on the number of circuit element types 

(i.e., the size of a standard cell library) [10]. In case of the Wilkinson’s approach, the 

complexity linearly depends on the number of the circuit element types. Similar to the 

Wilkinson’s approach, reference [10] invokes a lognormal distribution to model the 

variation of the leakage power. To obtain the two parameters of the lognormal 

distributions, the first and second moments of the polynomial function of variation 

sources are invoked.  

In an earlier work1, we discussed that the accuracy of lognormal distribution for 

chip leakage may be improved by using another type of distribution. We considered 

more than 60 different distributions for the chip leakage power estimation and 

selected the best distribution among them which was generalized extreme value 

(GEV) distribution. By extending the Wilkinson method and calculating the third 

moment of chip leakage we calculated the three parameters of the GEV distribution. 

Although our proposed model increased the accuracy, it had one setback which was 

the requirement of calculating the third moment of the leakage. This increased the 
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computational complexity from O(N2) in Wilkinson’s approach to O(N3). In this paper, 

we kept the accuracy obtained by the GEV distribution yet improved the 

computational complexity. This is achieved by using an additive method to calculate 

the distribution parameters and eliminating the need for calculating the third moment. 

Compared with the traditional Wilkinson’s approach, the proposed approach provides 

more than four times improvement in the computation time for the ISCAS85 

benchmark circuits and five times enhancement in the accuracy of a 99 percentile 

point of the leakage cumulative distribution function (CDF).  

The rest of the paper is organized as follows. In Section 2, we investigate the 

accuracy of different distributions for fitting the leakage variations. Section 3 

describes the approach used to find the three parameters of the proposed leakage 

distribution function. Section 4 discusses the results, and finally, Section 5 concludes 

the paper. 

 

2. FITTING LEAKAGE POWER VARIATION BY GENERALIZED EXTREME 

VALUE DISTRIBUTION 
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In this section, to improve the accuracy of leakage power analysis, we present an 

alternative statistical distribution function to capture the variations of the leakage 

power. The main motivation to provide a new statistical distribution function is that in 

nano-scale technologies, the distribution of the leakage variation for some states of a 

(CMOS) logic gate may deviate from the lognormal function. Note that a state refers 

to the combination of Boolean signal values applied to the inputs of the gate in 

question. The leakage variations for different states of a simple 2-Input NAND gate in 

a 45 nm CMOS technology obtained using HSPICE Monte Carlo (MC) simulations 

are shown in Fig. 1. As the results reveal, the lognormal distribution does not 

accurately model the variations for some states. One may thus expect that the 

leakage variation of a complex circuit with a large number of constituent logic gates 

can sharply deviate from the lognormal distribution. This inspired us to look for a 

different distribution function for more accurate modeling of the statistical variation of 
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Fig. 1  Probability plot of leakage power distribution of a 2-Input NAND gate in states (a) 00
(b) 01 (c) 10 (d) 11. All simulations have been performed in 45 nm technology. 
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the leakage power. First, we performed Monte-Carlo (MC) simulations for the 

ISCAS85 benchmark circuits [12]. Then, using MATLAB, we fitted the leakage 

variations by different distribution functions [12]. The goodness-of-fit values for 

different distribution functions were assessed using the chi-squared test [13]. For 

example, for the leakage distribution of the c1355 circuit, five best distributions 

included Generalized Extreme Value (a three parameter distribution, or 3P for short), 

Frechet (3P), Pearson5 (3P), Burr5 (3P), and Log-Logistic (3P), respectively. The 

Lognormal (2P) distribution, which is used by previous works, ranked 14th. 

Therefore, we propose the GEV distribution function as a more accurate distribution 

function for capturing leakage power variations. The GEV distribution function has 

three parameters, and consequently, has one more degree of freedom compared to 

the lognormal distribution, which relies on two parameters. 

As an example, Figure 2 compares the accuracies of the GEV and lognormal 

distributions in modeling the Probability Density Function (PDF) of  leakage variations 

for c2670 (medium size circuits) and c7552 (the largest circuit) in the ISCAS 

benchmark suite. As is evident from the figure, GEV models the variation more 

accurately especially around the peak and toward the right tail of the distribution. The 

PDF of GEV distribution is given by [13]  
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where µ, σ, and ξ are, respectively, location, scale, and shape parameters of the 

distribution.  

After finding a more accurate distribution function for the leakage variation, next, 

we need to calculate the parameters of the distribution. In the next section, we 

discuss an analytical method for calculating the GEV distribution parameters using 

an additive model. 
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3. ADDITIVE LEAKAGE POWER MODEL FOR FINDING PARAMETERS OF 

GENERALIZED EXTREME VALUE DISTRIBUTION 

Most models for the statistical leakage analysis in a VLSI circuit use an 

exponential functional form to capture the dependence of logic gate leakage current 

on the threshold voltage (and indirectly channel length), which makes the inclusion of 

additional logic gates in the circuit an intricate task (because the addition of two 

exponential functions does not lead to another exponential function). 

A. Additive Leakage Power Model 

In the additive leakage power model, the leakage current (power) is expressed 

using a polynomial functional form instead of an exponential one [10]. The polynomial 

function may be obtained from the series expansion of the exponential relation, and 

hence, the inclusion of higher-order terms provides higher accuracy at the expense 

of increasing the computational cost. The polynomial relation is a function of variation 

sources such as the threshold voltage and channel length. In [10], the leakage power 

is approximated by a fourth-order polynomial of variation sources as 
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Fig. 2.  Comparison between PDF of GEV and Lognormal distributions for (a) c2670 and 
(b) c7552 circuits.  
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where X = (X1,X2,…,Xn) is the vector of the variation sources and aik, bijk, and a0 are 

the coefficients obtained by curve fitting through HSPICE simulations. There are 

totally n2+3n+1 terms in the polynomial, where n is the number of variation sources. 

Using the polynomial leakage power model, the chip leakage power may be 

calculated as the sum of leakage powers of all circuit elements [10]:  

  iiTichip PNP                     (3) 
 

Here, T denotes the set of circuit element types (with the size of Nt) and Ni is the 

number of circuit elements of type i. Since the leakage powers of all circuit elements 

are expressed in a polynomial form as in (2), it is easy to see that Pchip is also in the 

same functional form. Then, the distribution of the chip leakage power, may be 

approximated using a lognormal random variable as [14] 
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The PDF of the lognormal distribution is given by  
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where RN is a Gaussian random variable. The mean of the leakage power is obtained 

from [10] 
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Also, by calculating the second moment as [10] 
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the variance is calculated from 
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Here, mik is the kth-order moment for the ith variation source (Xi). The parameters 

(μ,σ) of ),( xg  are obtained from [14] 
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Next, we show the procedure for obtaining the parameters of the GEV distribution 

function using the additive approach.  

B. Parameter Extraction for the GEV Distribution              

As discussed previously, in order to fit leakage variation by a lognormal 

distribution, the first and second moments should be calculated. Since the calculation 

of the second moment depends on the number of gates (see (7)), this calculation 

may increase the simulation time too much when the number of gates increases. The 

situation becomes worse in the case of calculating the third moment. To fit the 

leakage variation by a lognormal distribution, we have to solve a system of two 

equations and two unknowns (8) to find the parameters of the lognormal distribution. 

The GEV distribution function has three parameters which may be obtained from a 

system of three equations and three unknowns. In [10], the system of two equations 

and two unknowns was obtained by matching the first and second moments. As 

explained previously, matching the third moment is practically infeasible due to the 

large number of polynomials. As a result, we should form the system of three 

equations and three unknowns for GEV by a different solution. For the first two 

equations, we follow the method presented by [10] where (8) is used. Using these 

equations, we equate the mean and variance of the GEV distribution to the right-

hand sides of (8), respectively. The mean of GEV distribution is obtained from [13] 
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where γ is Euler’s constant. Also, the variance of GEV distribution is given by [13] 
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where gk = Γ(1 – kξ) for k = 1 and 2.  

Now, in order to form the third equation, we assume that the lognormal 

distribution accurately estimates the maximum likelihood point. Using this 

assumption, we can find this point for the lognormal distribution and find the GEV 

distribution parameters such that the maximum likelihood for the GEV distribution 

occurs at the same point. To demonstrate the motivation for this assumption, in Fig. 

3, we have plotted the histogram of the leakage variations obtained from the 

simulations as well as the fitted lognormal and GEV distributions for the c7552 circuit. 
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Fig. 3  Histogram of simulation, lognormal fit, and GEV fit of C7552 circuit in 45 nm
technology. 
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The figure shows that the maximum likelihood points obtained from the GEV and 

lognormal distributions are very close to each other. At the point of the maximum 

likelihood, the derivative of the lognormal distribution function is equal to zero.  

By setting the derivative of (5) to zero, one obtains the maximum point as  
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Similarly, the maximum point for the GEV distribution is obtained from 
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By setting these two maximum points equal, the third equation is obtained. Using this 

system of equations, all three parameters of the GEV distribution function may be 

obtained. 

Note that, compared to [10], we have only added (13). Since, we just solve a 

simple equation which is independent of the number of cells or complexity of circuit, 

the proposed method is as efficient as the method presented in [10]. In the next 

section, we compare the results of our technique with those of [10].  

4. SIMULATION RESULTS AND COMPARISON 

The accuracies of the proposed approach based on the GEV distribution and the 

lognormal distribution fitting were investigated using the ISCAS85 benchmark 

circuits. For the simulations, we used the 45nm CMOS technology of Nangate open 

cell library [15]. The variation sources considered were NMOS transistor threshold 

voltage (Vthn), PMOS transistor threshold voltage (Vthp), and effective channel length 

(Leff), respectively. We performed 10,000 Monte Carlo simulations on the circuits. For 

Leff, we assumed a Gaussian distribution. For the 3σ channel length variations, we 

considered the inter-die and intra-die components to be, respectively, 8% and 6% 

(see, e.g., [10]). For the intra-die variations of the channel length, we partitioned the 

entire circuit into N squares and assumed that the correlation coefficient between 
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each two squares was inversely proportional to their distance. For the benchmark 

circuits in Table 1, we took N = 4. For the gate-length independent threshold voltages 

(Vthn0 and Vthp0), we considered only random variations with 3σ value equal to 20% of 

the nominal values. This randomness in the threshold voltage variations is due to the 

random dopant fluctuation phenomenon which is the dominant component in the 

threshold voltage variation [16]. 

The CDF is used to obtain the leakage yield of the circuit (chip). Figure 4 (a,b) 

compares the CDF of these two distributions with the results of the Monte Carlo 

simulation for the c2670 and c7552 circuits. As the comparison in Figure 4 (c,d) 

clearly shows, at high values of CDF, which are used for the yield estimation, the 

GEV distribution is more accurate than the lognormal distribution. In Table 1, we 

have reported the percentile errors of the GEV and lognormal distribution functions 

compared to the Monte Carlo simulation for the ISCAS85 benchmark circuits. As the 

results reveal, for GEV, the average errors for 90%, 95%, and 99% percentile points 

were 0.2%, 0.3%, and 2.0%, respectively. For the case of lognormal, the errors were 

15.1%, 16.3%, and 11.0%, respectively. This verifies a higher accuracy for the GEV 

distribution function. As mentioned before, this improvement in the accuracy has 

been achieved at almost no computational cost.  

Table 1 90%, 95%, and 99% Percentile-Point Error Comparison between GEV and Lognormal Distribution Functions. 
 

 
Bench
mark 

Our Method Lognormal Approximation Monte Carlo 

90%  
 (µW)  

95%  
(µW)  
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(µW) 

90%  
 (µW)  

95% 
(µW) 

99%  
(µW) 

90% 
(µW) 

95% 
(µW) 

99% 
(µW) 

C17 0.543 (0.3%) 0.823 (0.4%) 1.30 (2.6%) 0.459 (-15.3%) 0.662 (-19.2%) 1.41 (11.0%) 0.542 0.820 1.27 

C432 29.1(0.0%) 42.9 (0.1%) 62.9 (1.5%) 24.3 (-16.4%) 34.4 (-19.6%) 67.0 (7.8%) 29.1 42.8 62.1 

C499 38.7 (0.2%) 50.4 (0.4%) 67.3 (3.1%) 33.0 (-14.5%) 44.6 (-11.1%) 78.4 (16.7%) 38.6 50.2 65.3 

C880 40.4(0.1%) 54.2(0.5%) 79.5(3.4%) 86.4(-15.3%) 53.3(-12.1%) 87.7(14.1%) 40.3 53.9 76.9 

C1355 42.2 (0.4%) 61.1 (0.7%) 92.7 (2.7%) 35.1 (-16.6%) 50.1 (-17.4%) 96.8 (7.1%) 42.1 60.7 90.3 

C1908 77.1 (0.5%) 106 (0.2%) 141 (1.8%) 66.2 (-13.8%) 90.3 (-16.2%) 164 (15.2%) 76.8 105 139 

C2670 237 (0.4%) 327 (0.3%) 465 (2.1%) 208 (-11.8%) 281.1 (-16.0%) 497 (8.2%) 236 326 456 

C5315 277(0.4%) 365.7(0.2%) 487(1.1%) 238.5(-13.6%) 301.9(-17.3%) 526.8(9.3%) 276 365 482 

C6288 302.3(0.1%) 397.4(0.1%) 531(1.7%) 246.4(-18.4%) 319.9(-19.4%) 558.6(6.8%) 302 397 523 

C7552 317 (0.1%) 433(0.5%) 570 (2.0%) 267 (-15.7%) 364.2 (-15.5%) 654 (14.5%) 317 431 559 

Ave 0.2% 0.3% 2.0% -15.1% -16.3% 11.0% - - - 
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5. CONCLUSION 

In this work, we proposed the GEV distribution function as an alternative to the 

lognormal distribution function for modeling the chip leakage power variation of nano-

scale CMOS digital circuits under process variations. The GEV distribution function 

has one more parameter compared to the lognormal distribution function. The three 

parameters were calculated using a system of three equations/unknowns. Similar to 

a recently published work based on the lognormal distribution function, we used the 

additive technique to obtain two equations which expressed the equalities of the 

means and variances of the distributions. To obtain the third equation, we suggested 

matching the point that the maximum likelihood of the distribution occurred. The 

added computational cost was negligible compared to that of the lognormal 

distribution. We verified the accuracy of our method on the ISCAS85 benchmark 
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Fig. 4  Comparison between CDFs of GEV and Lognormal distributions for  c7552 and c2670  
in the (a,b) whole range and (c,d) for leakage larger than 2 µW.  
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circuits in a 45 nm CMOS technology under variations of NMOS and PMOS 

transistor threshold voltage and effective channel length. The simulation results 

showed that the approach estimated 90%, 95%, and 99% percentile points with 

average errors of 0.2%, 0.3%, and 2.0%, respectively. The errors were considerably 

lower than those of a recently proposed technique based on the lognormal 

distribution function. 
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