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ABSTRACT 
Quantum algorithms for solving problems of interesting size often 
result in circuits with a very large number of qubits and quantum 
gates. Fortunately, these algorithms also tend to contain a small 
number of repetitively-used quantum kernels. Identifying the 
quantum logic blocks that implement such quantum kernels is 
critical to the complexity management for realizing the 
corresponding quantum circuit. Moreover, quantum computation 
requires some type of quantum error correction coding to combat 
decoherence, which in turn results in a large number of ancilla 
qubits in the circuit. Sharing the ancilla qubits among quantum 
operations (even though this sharing can increase the overall circuit 
latency) is important in order to curb the resource demand of the 
quantum algorithm. This paper presents a multi-core 
reconfigurable quantum processor architecture, called Requp, 
which supports a layered approach to mapping a quantum 
algorithm and ancilla sharing. More precisely, a scalable quantum 
mapper, called Squash, is introduced, which divides a given 
quantum circuit into a number of quantum kernels—each kernel 
comprises k parts such that each part will run on exactly one of k 
available cores. Experimental results demonstrate that Squash can 
handle large-scale quantum algorithms while providing an effective 
mechanism for sharing ancilla qubits. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Placement and 
routing. 

Keywords 
Quantum computing; mapping; physical design; scalable 
algorithms; ancilla sharing. 

1. INTRODUCTION 
Mapping quantum circuits directly to a quantum fabric is a 
challenging task due to the gigantic size of quantum circuits. These 
circuits comprise of two parts: a netlist of quantum logical 
operations followed by the quantum error correction (QEC) 
circuit. The QEC increases the circuit size by one or two orders of 
magnitude depending on the decoherence degree and the desired 
fidelity of results. To handle this growth in the size, circuits are 
mapped in two levels. The lower-level mapping, which is done by 
the physical-level mapper, maps a universal set of quantum 
operations in a fault-tolerant fashion followed by an appropriate 
QEC circuit to a given physical machine description (PMD). In the 
higher-level mapping, which is performed by the logical-level 
mapper, the logical circuit is mapped to an abstraction of the PMD 
assuming that the universal set of fault-tolerant quantum operations 
is provided by the lower level. This approach addresses the 

increase in size by the QEC in the first level very well, but it does 
not help for the second level. Real-size quantum circuits (even 
without QEC) are so large that traditional mappers introduced by 
previous researchers cannot efficiently handle them [1].  
Reference [2] shows that Shor’s factorization algorithm for a 1024-
bit integer has 1.35×1015 physical instructions. Assuming that the 
one-level ⟦7,1,3⟧ Steane code is used in this implementation, each 
logical operation results in about 105 physical instructions. Hence, 
this algorithm has almost 1.35×1010 logical operations. As can be 
seen, the physical-level mapper can handle the low-level QEC in a 
reasonable time as the number of physical instructions is not so 
high (~105 physical instructions). On the other hand, mapping 
1.35×1010 logical operations is very time consuming. 
Fortunately, quantum circuits can be partitioned into multiple 
quantum computational stages. These stages tend to contain a small 
number of repetitively-used quantum kernels. This means that 
mapping one instance of these kernels is sufficient. For instance, 
Figure 1 shows the phase estimation algorithm which is the core of 
many well-known and useful quantum algorithms such as Shor’s 
factorization algorithm [3] and quantum random walk [4]. As can 
be seen, in this circuit the controlled unitary is a kernel which is 
repeated 𝑛 times throughout the circuit with different exponents 
(throughout stages 2 to 𝑛 + 1). The exponent denotes the number 
of repetitions for the corresponding circuit. Clearly, identifying the 
quantum kernels and avoiding the remapping can exponentially 
improve the mapping speed for this circuit. 

 
Figure 1. Quantum circuit representation of the phase estimation 

algorithm [3]. The computational stages are identified in this circuit. 
Another major stumbling block for realizing a scalable quantum 
computer is the limited amount of physical qubits. Each logical 
operation is implemented in a fault-tolerant manner based on the 
adopted QEC code, and using a certain amount of physical data 
qubits and physical ancilla qubits. Physical data qubits are 
uniquely belong to their corresponding logical qubits, and hence 
cannot be shared. However, physical ancilla qubits, which are used 
to store intermediate information, may participate in the QEC 
circuit of various logical operations at different time instances. 
This reuse of ancilla qubits is referred to as ancilla sharing. 
Escalating the ancilla sharing increases the latency of the entire 
circuit while saving the precious quantum resources and vice versa. 
This trade-off is similar to the well-known area-delay trade-off in 
the VLSI circuits. 
This paper introduces a novel quantum architecture, called 
reconfigurable quantum processor architecture (Requp), in order to 
address the problem of ancilla sharing. Requp has 𝑘 quantum cores 
each of which contains a quantum reconfigurable compute region 
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(QRCR), a dedicated quantum cache, and a quantum memory. 
Quantum cores are arranged on a 2-D mesh topology. Each QRCR 
has a constrained amount of ancilla qubits while trying to share this 
limited resource among several quantum operations so as to 
minimize the latency. The major contribution of this architecture 
lies in its reconfigurability where it supports quantum operations 
with different number of ancilla qubits. This difference is quite 
substantial and neglecting it leads to over provisioning of quantum 
physical qubits. 
Using the kernel extraction method and the proposed architecture 
(Requp) mentioned above, a scalable quantum mapper, called 
scalable quantum mapper considering ancilla sharing (Squash), is 
introduced. Squash initially divides the given circuit into a number 
of quantum kernels. For each kernel, it builds a quantum operation 
dependency graph (QODG) based on the data dependency among 
the operations. QODG is then partitioned into 𝑘 sub-graphs and 
bound to the quantum cores. These sub-graphs are subsequently 
scheduled and mapped to the Requp with 𝑘 quantum cores. Finally, 
results of mapping for each quantum kernel are combined in order 
to generate the entire mapping of the given circuit.  
The rest of this paper is organized as follows: Section  2 explains 
the basics of quantum computing as well as the related work. 
Section  3 presents the new architecture (Requp), whereas Section  4 
explains the proposed mapper (Squash). Experimental results are 
presented in Section  5, and finally Section  6 concludes the paper. 

2. PRELIMINARIES AND PRIOR WORK 
2.1 Quantum Computing Basics 
A quantum bit, qubit, is a physical object (e.g., an ion or a photon) 
that carries data in quantum circuits. Qubits interact with each 
other through quantum gates. Depending on the underlying 
quantum computing technology, a universal set of quantum gates is 
available at the physical level. More precisely, each quantum fabric 
is natively capable of performing a universal set of one and two-
qubit instructions (also called physical instructions). However, the 
importance of fault-tolerant quantum computation dictates the 
quantum circuits to be generated from fault-tolerant (FT) quantum 
operations. A universal (but redundant) set of FT operations 
includes H, S, T, T†, X, Y, Z, and CNOT operations [3], which 
may differ from physical instructions supported at the physical 
level. Fortunately, each FT quantum operation (or quantum 
operation for short) can be realized by using a composition of these 
physical instructions. Accordingly, a logical level circuit contains 
quantum operations where QEC is also applied. 
A quantum circuit fabric is arranged as a 2-D array of identical 
cells. Each cell contains sites for creating qubits, reading them out, 
performing instructions on one or two physical qubits, and 
resources for routing qubits (or equivalently swapping their 
information to the neighboring qubit). In practice, however, an 
abstract quantum architecture (QA) is built which hides the 
physical information and the QEC details. Operation sites in this 
QA are capable of performing any quantum operation. The QA is 
also equipped with syndrome extraction circuitries following the 
quantum operation in order to prevent error propagation that may 
have been introduced by the quantum operation.  
A quantum compilation/synthesis tool generates a reversible 
quantum circuit composed of quantum operations. Every qubit in 
the output circuit is called a logical qubit, which is subsequently 
encoded into several physical qubits in order to detect and correct 
potential errors on qubits. Physical qubits are comprised of two 
types: 1) physical data qubits and 2) physical ancilla qubits. 
Physical data qubits carry the encoded data of the logical qubits. 
Based on the type and the concatenation level of the QEC, a logical 
qubit is encoded to seven or more physical data qubits. On the 

other hand, physical ancilla qubits are used as scratchpads and can 
be shared among different logical qubits for the error correction 
procedure. 
A high-level mapping tool schedules, places, and routes the logical 
circuit on the QA. To achieve this, the quantum algorithm is 
initially modeled as a quantum operation dependency graph 
(QODG), in which nodes represent quantum operations and edges 
capture data dependencies [1]. More precisely, operation 𝑂𝑗 
depends on operation 𝑂𝑖 if 𝑂𝑖 and 𝑂𝑗 share at least one qubit and 𝑂𝑗 
is the first operation after 𝑂𝑖 in the circuit that uses this (these) 
shared qubit(s). This dependency is shown as 𝒪𝑖 → 𝒪𝑗 . For 
instance, Figure 2 depicts an FT implementation of a 3-input 
Toffoli operation [5] along with its QODG. 

(a) 

 

(b) 

 
Figure 2. (a) FT implementation of a three-input Toffoli circuit [5], (b) 

the corresponding QODG where each node represents a circuit  
operation. Detailed steps of the 2-way partitioning algorithm are also 

illustrated. 
Next, the QODG is mapped to the desired QA. The latency of the 
quantum algorithm mapped to the QA can be calculated as the 
length of the longest path (critical path) in the mapped QODG, 
where the length of a path in the QODG is in turn the summation 
of latencies of operations located on that path plus routing latencies 
of their qubit operands [1]. Critical path of the mapped QODG may 
not be the same as the original QODG, since the latter does not 
contain routing latencies. This can change the scheduling slacks, 
and hence may increase the critical path of the entire graph.  

2.2 Prior Work 
• Quantum Architectures. Metodi et al. propose the first QA 
called quantum logic array (QLA) which is a 2-D array of super-
cells called tiles [6]. Each tile comprises of an 𝑛 × 𝑛 array of cells 
so as a logical operation can fit in. Thaker et al. observe that the 
parallelism in the quantum circuits is very limited [7]. Hence, they 
suggest the compressed QLA (CQLA) which separates the array 
into two regions: memory and compute. In the memory region, the 
qubits which do not participate in any operation at the current time 
are stored. These qubits absorb less noise and hence require a 
lighter error correction scheme. In other words, the error correction 
needs fewer physical ancilla qubits for every physical data qubit (a 
ratio of 1 to 2). On the other hand, the qubits in the compute region 
actively participate in the quantum operations. Hence they require 
a much larger number of ancilla qubits. Since the compute region 
occupies much smaller area than the memory region, this new 
architecture helps saving a lot of unnecessary physical ancilla 
qubits which are used in QLA. Memory region is also further 
broken down into the cache and the global memory to address the 
qubit locality issue required by the compute region. 
• Quantum Mapping Techniques. The quantum mapping 
problem, similar to the corresponding problem in the traditional 
VLSI area, is known as a hard problem. Whitney et al. suggest a 
CAD flow for mapping a quantum circuit fault-tolerantly to an ion-
trap fabric [2]. To address the scalability issue, they adopt the two-
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level (physical and logical) mapping. Other levels of hierarchy are 
handled manually without any automation. Jones et al. propose a 
five-layer stack for implementing a quantum computer [8]. This 
work does not show how to overcome the complexity of the 
“logical layer” and tries to address other complexities in the design 
by adding more layers. In [1], we have suggested to use a quick 
estimation method called LEQA to calculate the circuit latency 
instead of a full-fledged mapping. Even though this approach is 
quite fast, it does not provide the detailed mapping. Moreover, it 
requires a flattened high-level netlist as the input which requires a 
huge amount of disk space to store the netlist and a large memory 
in order to store its data structures. Additionally, LEQA does not 
consider the ancilla sharing problem. Although several heuristics 
have been proposed in the literature for solving the quantum 
mapping problem, none of them is able to deal with large circuits 
[2][6][7][9][10]. 

3. PROPOSED ARCHITECTURE 
The CQLA architecture reviewed in the previous section assumes 
that the number of required ancilla qubits for all of the logical 
operations followed by the QEC is the same. Hence, CQLA 
accounts for a certain amount of physical ancilla qubits for every 
logical operation in the compute region. However, this assumption 
is not true. An important subset of logical operations, called non-
transversal operations, requires more ancilla than transversal 
operations. It has been proven that every universal logical 
operation set contains at least one non-transversal gate which 
varies based on the employed QEC [11]. Table 1 summarizes the 
ancilla requirements for two typical QEC codes and various logical 
operations. As can be seen, a non-transversal operation requires 
half an order of magnitude (in the Steane code) up to more than 
one order of magnitude (in the Bacon-Shor code) more ancilla 
qubits compared to that of transversal operations. Moreover, a two-
qubit transversal operation (like CNOT) requires twice ancilla 
qubits compared to that of a one-qubit transversal operation.  

Table 1. Ancilla requirements for various QEC codes and operations 
QEC Operation Type Operation # of Ancilla Qubits 

Steane ⟦7,1,3⟧ Transversal X, Y, Z, H, S 28 
CNOT 56 

Non-Transversal T 100 

Bacon-Shor 
⟦9,1,3⟧ 

Transversal X, Y, Z, H 18 
CNOT 36 

Non-Transversal S 58 
T 309 

With this observation, the compute region cannot be a pre-
allocated area with a fixed number of ancilla qubits for all of 
operations; otherwise, it leads to an overestimation of the required 
ancilla. Hence, we propose the quantum reconfigurable compute 
region (QRCR) which distributes the ancilla qubits in the compute 
region based on the dispatched operations. In other words, the 
ancilla qubits are shared among the operations which are being 
executed based on their ancilla qubit requirements. To further 
speed up the computation and eliminate the overhead of qubit 
routing, a hierarchical memory design is adopted. The first level of 
the hierarchy is the quantum cache which stores qubits that are 
immediately needed after the execution of the current operations in 
the QRCR.  The second level is the quantum memory which keeps 
the rest of the qubits. Using this hierarchy, the overhead of the 
routing delay can be mostly hidden. More precisely, the routing 
delay is substantially smaller than the delay of logical operations, 
because the routing involves qubit movement (or information 
swap) which can be done directly by using fast primitive 
operation(s), whereas logical operations require time consuming 
QECs. The only considerable routing delay is the time required to 
load the qubits from the quantum cache to the QRCR.  
Figure 3 (a) depicts a quantum core which is comprised of a 

QRCR, a quantum cache, and a quantum memory. As can be seen, 
QRCR is located at the center and surrounded by the quantum 
cache followed by the quantum memory. The highly shaded areas 
inside the QRCR have higher number of ancilla, whereas lightly 
shaded areas contain lesser ancilla. The arrangement of ancilla 
changes during the runtime of a quantum algorithm based on the 
operations being executed.  

(a) 

 

(b) 

Figure 3. (a) Structure of a quantum core (b) Structure of a quad-core 
Requp 

In large-scale algorithms, the size of the cache and the memory may 
grow. This increases the qubit routing delay which was already 
hidden by the long delay of logical operations. To avoid this effect, 
we further extend the quantum core architecture to the 
reconfigurable quantum processor architecture (Requp). A Requp 
contains multiple reconfigurable quantum cores which are 
connected to each other by quantum interconnects. Quantum 
interconnects are physically implemented similar to the rest of the 
quantum physical fabric. Here, this distinction is made for clarity. A 
quad-core Requp is shown in Figure 3 (b). 

4. SQUASH 
This section introduces a scalable quantum mapper considering 
ancilla sharing (Squash). Squash adopts Requp as its underlying 
fabric abstraction. It takes a netlist of quantum operations in the 
quantum assembly (QASM) format [12], a QEC code description 
similar to Table 1, the number of quantum cores (𝑘), the delay of a 
qubit travelling the extent of one grid cell (called qubit unit-
distance delay and denoted by 𝛽𝑃𝑀𝐷), interconnect width (𝛼𝑖𝑛𝑡), a 
coefficient which models the effect of memory size on the routing 
speed (𝛾𝑚𝑒𝑚), and the total ancilla budget (𝐴). The quantum 
operation set is limited to the fault-tolerant operation set. The 
output of Squash is a circuit mapped to the designated fabric. 
Algorithm 1 presents the steps involved in Squash. 
As it is explained previously, early work found that quantum 
algorithms offer limited parallelism [7]. By investigating various 
quantum algorithms, including the phase estimation algorithm 
which is at the basis of many well-known and useful quantum 
algorithms (such as Shor’s factorization algorithm [3] and quantum 
random walk [4]), we realized that quantum algorithms can be 
divided into major computational stages which cannot be run in 
parallel, i.e., they should be executed serially. The main reason is 
due to the no-cloning theorem, which does not allow a qubit to be 
replicated. This limitation forbids any fan-out in a quantum circuit. 
As a result, scheduling of computational stages becomes a trivial 
task— they should be run serially. Moreover, these stages tend to 
contain a small number of repetitively-used quantum kernels. 
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Mapping only one instance of these kernels significantly reduces 
the runtime overhead. Accordingly, the first line of Algorithm 1 
identifies a list of candidates for the quantum kernels. Moreover, in 
the for-loop block (lines 3 to 7), the algorithm maps each of the 
kernels separately. Then, the entire mapping solution can be 
constructed by properly ordering the mapping results for each of 
the kernels (line 9). 
In the rest of this section, the details of mapping a quantum kernel 
to the given Requp is explained (i.e., the for-loop body). Line 3 
generates a QODG as explained in Section  2. Next, it is broken 
into 𝑘 parts such that 𝑘 quantum cores can execute these parts 
simultaneously while having the minimum amount of inter-core 
communication (line 4). Next, the routing delay matrix is calculated, 
which comprises of the qubit routing delay between every pair of 
quantum cores (line 5). Each part is then bound (line 6), and finally 
mapped (line 7) to a quantum core. 

4.1 QODG K-Way Partitioning 
A standard 𝑘-way partitioning algorithm takes a graph, and divides 
its node set into 𝑘 disjoint parts such that the parts are balanced in 
terms of their size and a minimum number of edges are cut. Using 
this method, the same workload is assigned to each quantum core, 
while inter-core communication is minimized. However, there is 
no guarantee that parts can be executed in parallel which is in fact a 
desired metric in order to reduce the runtime. As an example, 
consider the QODG shown in Figure 2 (b), and assume a 2-way 
partitioning is needed. A standard graph partitioning algorithm may 
suggest the dashed cut which partitions the graph into two parts 
with almost equal number of nodes. Unfortunately, this solution 
does not allow any parallelism. On the other hand, the dotted cut, 
even though one part has twice as many nodes as the other one, is a 
better solution as parts can be executed simultaneously. 
In order to guide the partitioning algorithm to produce parts that 
can be run in parallel, we employ the technique proposed in [13] 
which adopts the multi-constraint graph partitioning (MCGP) 
method [14]. The MCGP method assigns an 𝑛𝑐𝑜𝑛-dimensional 
weight vector to each node, and then balances the total sum of the 
weight values among the parts in each dimension while minimizing 
the edge cut. The weight vector for each QODG node is calculated 
as follows. Initially, the QODG is levelized. Let 𝑛𝑖 be the number 
of nodes at level 𝑖 (𝐿𝑖), 𝑈 =  {𝐿𝑖  |𝑛𝑖  ≥ 𝑘}, and 𝑛𝑐𝑜𝑛 = |𝑈| (i.e., 
the number of levels that contain more than 𝑘 − 1 nodes.) Then, 
weight vectors of size 𝑛𝑐𝑜𝑛 are assigned to each node. For nodes 
that are at level 𝐿𝑖 ∉ 𝑈, the weight vector is set to zero vector. For 
other nodes, we first assign a label to each level 𝐿𝑖 ∈ 𝑈 using the 
one-hot coding scheme. This label will be used as the weight 
vector for all of the nodes within the same level. Hence, by using 
one-hot coding, a unique dimension of the weight vector is 
assigned to all nodes at level 𝐿𝑖 ∈ 𝑈. Therefore, the MCGP method 

is forced to partition these nodes into distinct parts so that the total 
weight in the corresponding dimension for each part is balanced. 
An example for the 2-way MCGP is shown in Figure 2 (b). 

4.2 Routing Delay Matrix Calculation 
In this phase, based on the information obtained from the 
partitioning step, the quantum core is characterized in order to find 
the accurate qubit routing delays between each pair of cores. Note 
that it is not necessary to use the same quantum core configuration 
for all of the quantum kernels, because it is just an abstraction to 
simplify the mapping and hide the technology details. For this 
purpose, four parameters, namely 𝛼𝑄𝑅𝐶𝑅, 𝛼𝑐𝑜𝑟𝑒, 𝛼𝑐𝑎𝑐ℎ𝑒, and 𝛼𝑚𝑒𝑚 
(which are shown in Figure 3) are initially calculated. The 
approach is to derive the number of physical qubits each area 
should accommodate and then the desired distances are calculated 
accordingly. 𝛼𝑄𝑅𝐶𝑅 can be obtained by 

𝛼𝑄𝑅𝐶𝑅 = � �𝐴/𝑘
𝐴𝑚𝑖𝑛

. 𝐿𝑐𝑜𝑑𝑒 + (𝐴/𝑘 − 𝐷𝑚𝑎𝑥

2
) �, (1) 

where 𝐴𝑚𝑖𝑛 is the minimum ancilla qubit requirement among 
quantum operations, 𝐿𝑐𝑜𝑑𝑒 is the QEC code length, and 𝐷𝑚𝑎𝑥 is the 
maximum number of data qubits a core may accommodate. For 
instance, for the Steane code listed in Table 1, 𝐴𝑚𝑖𝑛 = 28 and 
𝐿𝑐𝑜𝑑𝑒 = 7. 𝐷𝑚𝑎𝑥 can be calculated by referring to the partitioned 
set of operations for each core. The first summation term in 
Equation (1) accounts for the maximum number of physical data 
qubits the QRCR may host, whereas the second term accounts for 
the physical ancilla qubits. Note that 𝐴/𝑘 is the ancilla budget per 
core. Furthermore, 𝐷𝑚𝑎𝑥

2
 ancilla qubits are reserved for the error 

correction of data qubits in the cache and the memory. As 
mentioned earlier, for the QEC of every two data qubits in the cache 
or the memory, one ancilla qubit is enough. 𝛼𝑐𝑜𝑟𝑒 is determined by 

𝛼𝑐𝑜𝑟𝑒 = � �𝐷𝑚𝑎𝑥.𝐿𝑐𝑜𝑑𝑒 + 𝐴/𝑘 �. (2) 
As suggested in [7], 𝛼𝑐𝑎𝑐ℎ𝑒 can be set such that the cache area 
becomes twice as large as the QRCR area. Hence, 𝛼𝑐𝑎𝑐ℎ𝑒 can be 
calculated as 

𝛼𝑐𝑎𝑐ℎ𝑒 = 𝑚𝑖𝑛 ��√3−1
2

𝛼𝑄𝑅𝐶𝑅� , 𝛼𝑐𝑜𝑟𝑒−𝛼𝑄𝑅𝐶𝑅
2

�. (3) 
A minimum value is calculated in order to avoid over provisioning 
of resources for the cache, i.e., the cache plus QRCR area should 
not be larger than the area of the core. Finally, 𝛼𝑚𝑒𝑚 can be 
derived based on the values of 𝛼𝑄𝑅𝐶𝑅, 𝛼𝑐𝑎𝑐ℎ𝑒, and 𝛼𝑐𝑜𝑟𝑒: 

𝛼𝑚𝑒𝑚 = �𝛼𝑐𝑜𝑟𝑒
2

− 𝛼𝑄𝑅𝐶𝑅
2

− 𝛼𝑐𝑎𝑐ℎ𝑒�. (4) 
Using these four parameters, the communication delay for routing 
a qubit from the QRCR of core 𝑥 to the QRCR of core 𝑦  can be 
calculated as 

𝑑𝑥,𝑦 = �
𝑛𝑥,𝑦(𝛼𝑐𝑜𝑟𝑒 + 𝛼𝑖𝑛𝑡)𝛽𝑃𝑀𝐷,                             
�𝛼𝑄𝑅𝐶𝑅 + 𝛼𝑐𝑎𝑐ℎ𝑒 + 𝛾𝑚𝑒𝑚𝛼𝑚𝑒𝑚�

2 𝛽𝑃𝑀𝐷 ,
 

𝑥 ≠ 𝑦 
(5) 

𝑥 = 𝑦 

where 𝑛𝑥,𝑦 is the Manhattan distance between core 𝑥 and core 𝑦. 
The first case (𝑥 ≠ 𝑦) is considered as the inter-core routing delay, 
whereas the second case (𝑥 = 𝑦) accounts for the delay of 
transferring a qubit from the cache (or possibly the memory) into 
the QRCR.  Coefficient 𝛾𝑚𝑒𝑚 ensures the proper contribution of the 
memory size to the routing delay of a qubit. In other words, if the 
memory size becomes large enough, then the routing delay cannot 
be overshadowed by the long operation delay, and hence should be 
considered in the routing delay calculation. We capture this effect 
with the 𝛾𝑚𝑒𝑚 coefficient. 

4.3 Resource Binding 
After partitioning the QODG, the resultant parts should be bound 
to the quantum cores such that the total routing delay of qubits 
between cores is minimized. Since the scheduling of the QODG is 

Algorithm 1: Squash 
Input: A QASM, a QEC code, Requp parameters (i.e., number of 
quantum cores ( 𝑘), qubit unit-distance delay (𝛽𝑃𝑀𝐷), interconnect 
width (𝛼𝑖𝑛𝑡), and memory size effect on the routing coefficient 
(𝛾𝑚𝑒𝑚)), and total ancilla budget (𝐴) 
Output: Mapped circuit of the given quantum algorithm 

1. Identify a set of quantum kernels 𝒮 = {𝒮1, … ,𝒮𝑚} 
2. For each 𝒮𝑖 in 𝒮 
3. Generate a QODG for the operations in 𝒮𝑖 (QODGi) 
4. K-way partition the QODGi to get 𝒫𝑖 = {𝒫𝑖,1, … ,𝒫𝑖,𝑘} 
5. Calculate the routing delay matrix  𝒅  
6. Bind each 𝒫𝑖,𝑗 to one of the quantum cores 
7. Map each 𝒫𝑖,𝑗 to the designated quantum core 
8. End For 
9. Return mapping of {𝒫𝑖,𝑗|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘}. 
 



not known at this step, we cannot focus on minimizing the total 
routing delay of the operations on the critical path. Furthermore, 
the scheduling requires this binding information in order to 
properly schedule two dependent operations assigned to two 
different quantum cores. 
The binding problem can be formulated as follows: 

min ∑ ∑ ∑ ∑ 𝑎𝑚,𝑛𝑎𝑥,𝑦𝑑𝑛,𝑦𝑤𝑚,𝑥
𝑘
𝑦=1

𝑘
𝑥=1

𝑘
𝑛=1

𝑘
𝑚=1  (6) 

subject to  
∑ 𝑎𝑚,𝑛
𝑘
𝑛=1 = 1, for 1 ≤ 𝑚 ≤ 𝑘, (7) 

∑ 𝑎𝑚,𝑛
𝑘
𝑚=1 = 1, for 1 ≤ 𝑛 ≤ 𝑘, (8) 

where 𝑎𝑚,𝑛 is a binary variable, which is 1 if 𝒫𝑖,𝑚 is bound to 
quantum core 𝑛 and 0 otherwise, and 𝑤𝑚,𝑥 denotes the number of 
qubits that traverse from part 𝒫𝑖,𝑚 to 𝒫𝑖,𝑥. The objective function (6) 
is the sum of inter-core communication delays while constraints (7) 
and (8) ensure a one-to-one assignment between parts and quantum 
cores. Since 𝑘 is fairly small, the computation time to solve the 
resulting 0-1 quadratic program (0-1 QP) is of little concern. 

4.4 Mapping 
The objective of scheduling the QODG on 𝑘 quantum cores is to 
minimize the overall latency while ensuring that the number of 
ancilla qubits used in each quantum core is no more than the given 
budget. The aforesaid scheduling problem is similar to the well-
known minimum-latency resource-constraint multi-cycle (MLRC-
MC) scheduling problem [15] in high-level synthesis with the 
following difference.  The MLRC-MC problem does not deal with 
the cost of moving data among resources whereas in our 
formulation the resources (i.e., quantum cores) lie on a given grid, 
and therefore, their average communication costs can be pre-
calculated (see Equation (5)).  More precisely, our problem 
formulation is as follows. 

min ℒ (9) 
subject to  
∑ ∑ 𝑏𝑥,z−𝑦𝐴𝑂𝑥 ≤ 𝐴/𝑘𝑇𝑥−1

y=0𝒪𝑥∈𝒫𝑖,𝑗 ,  1 ≤ 𝑧 ≤ ℒ𝑖𝑛𝑖𝑡, 1 ≤ 𝑗 ≤ 𝑘 (10) 
∑ 𝑏𝑥,𝑦
ℒ𝑖𝑛𝑖𝑡
𝑗=1 = 1,∀𝒪𝑥, (11) 

𝑆𝑥 + 𝑇𝑥 + 𝑑𝑚,𝑛 ≤ 𝑆𝑦, 𝒪𝑥 → 𝒪𝑦 ,𝒪𝑥 ∈ 𝐶𝑚 and 𝒪𝑦 ∈ 𝐶𝑛, (12) 
𝑆𝑥 + 𝑇𝑥 − 1 ≤ ℒ, ∀𝒪𝑥 without any successors, (13) 

where ℒ is the total number of scheduling levels, 𝑇𝑥 is the delay of 
operation 𝒪𝑥, 𝑏𝑥,𝑦 is a binary variable which is 1 if 𝒪𝑥 is scheduled 
to start at scheduling level 𝑦 and 0 otherwise, 𝐴𝑂𝑥 denotes the 
ancilla requirement of operation 𝒪𝑥, ℒ𝑖𝑛𝑖𝑡 is an upper bound for the 
total number of scheduling levels (ℒ), 𝑆𝑥 is equal to the scheduling 
level where 𝒪𝑥 is scheduled, i.e., 𝑏𝑥,𝑆𝑥 = 1, and 𝒪𝑥 ∈ 𝐶𝑚 means 
that operation 𝒪𝑥 is bound to quantum core 𝑚. Equation (10) sets a 
constraint on the total number of ancilla that each core can use at 
each scheduling level. Equation (11) ensures that all of the 
operations are scheduled. Equation (12) makes sure that dependent 
operations are properly scheduled, i.e., an operation starts after its 
predecessor in the QODG is finished. Equation (13) assures that the 
operations in the last scheduling level are scheduled to finish their 
execution before or at the scheduling level ℒ. We modified the list 
scheduling method presented in [16] as described above to solve the 
scheduling problem. 
Using the Requp architecture, the ancilla sharing problem is solved 
during the scheduling. Moreover, the placement problem has 
already been solved in the prior step (i.e., resource binding step). 
Additionally, as it is explained earlier, the routing delay is hidden by 
the operation delay. Hence, a simple routing algorithm like the xy-
routing fits well for the purpose of transferring qubits (or 
equivalently swapping their information) through the 
interconnection network of Requp. 

5. EXPERIMENTAL RESULTS 
Squash is developed in Java. It uses METIS 5 [14] as the 
partitioning engine and Gurobi 5.6 [17] for solving the 0-1 QP. A 
computer with an Intel Core i7-3770 CPU running at 3.40 GHz and 
8GB of memory is employed for the experiments. 
The ⟦7,1,3⟧ Steane code with the information presented in Table 1 
is adopted as the QEC code. Moreover, the input variables of 
Squash are set as follows: 𝛽𝑃𝑀𝐷=10 𝜇𝑠, 𝛼𝑖𝑛𝑡 = 3, and 𝛾𝑚𝑒𝑚 = 0.2. 
Squash is not limited to a particular quantum technology; however, 
the ion-trap technology is selected since it is the most promising 
method for realizing quantum circuits to date [18]. The delay of 
quantum operations in this technology is taken from [19].  
In the rest of this section, first the latency-ancilla count trade-off in 
quantum circuits is studied using Squash. Then the optimum 
number of quantum cores for a representative benchmark is found. 
After that, the resource requirement of Requp, CQLA, and QLA 
are analytically compared. Finally, Squash is compared with the 
state-of-the-art mapper. 
• Investigating the latency-ancilla count trade-off: As it is 
explained earlier, ancilla qubits are precious resources in quantum 
computers. Increasing the total ancilla budget lowers the circuit 
latency and vice versa. In order to study this effect using Squash, 
the binary welded tree (BWT) algorithm [20] is selected as the 
benchmark and compiled with Scaffold Compiler (which is 
introduced in [21]) to produce a QASM file. The number of 
quantum cores (𝑘) is set to 4. The trade-off between latency and 
the ancilla budget (𝐴) is shown as a Pareto curve in Figure 4. As 
can be seen, the delay value saturates at 𝐴 = 800. This means that 
the circuit does not require more than 800 ancilla qubits. 

 
Figure 4. Latency-ancilla count trade-off for the BWT algorithm using 

a quad-core Requp architecture 

• Finding the optimum number of quantum cores: One of the 
Squash input parameters is the quantum core count (𝑘). The 
optimum value for this parameter varies based on the parallelism 
inside a given circuit. The quantum core count is just an abstraction 
and has no relation with the usage of quantum physical resources. 
However, Squash has a higher runtime for smaller values of 𝑘, 
because the size of the weight vector for partitioning is larger. 
Figure 5 shows the latency of the BWT algorithm as a function of 
quantum core count when 𝐴 = 800. It can be seen that the optimal 
latency is achieved when 𝑘 is set to 2. However, 𝑘 = 4 is preferred 
since the runtime of Squash for this case is 15 times faster than that 
of the former case. 
• Resource usage comparison among Requp, CQLA, and QLA 
architectures: In the QLA architecture, every qubit requires to be 
placed in a quantum tile. Each tile needs to support all types of 
quantum operations and their respective QEC codes. Hence, in the 
case of one-level ⟦7,1,3⟧ Steane code, the required ancilla in this 
architecture is equal to 100×(total qubit count). CQLA limits this 
value to the maximum number of parallel operations the 
architecture should be able to execute. For instance, if 𝑧 parallel 
operations are supported (which is significantly smaller than the 
total qubit count), 100×𝑧 ancilla qubits are required. Requp 
improves this resource limitation by considering the fact that all of 
the parallel operations may not require the maximum number of 

2.7
2.9
3.1
3.3
3.5
3.7
3.9
4.1
4.3

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500C
ir

cu
it 

L
at

en
cy

 (×
10

00
 se

c)

Total Ancilla Budget (A)

y  



ancilla qubits (i.e., 100). Therefore, Requp allows to run at most 
(100/28)×𝑧 operations at the same time while still having the same 
worst case parallelism as CQLA. This discussion reveals that 
Requp performs more efficiently in the average case compared to 
CQLA and behaves as bad as CQLA in the worst case. 

 
Figure 5. Finding the optimum number of quantum cores for the BWT 

algorithm 

• Comparison between Squash and QSPR: In this section, the 
performance and the quality of results produced by Squash is 
compared with that of QSPR which is introduced in [10]. QSPR is 
a full-fledged quantum mapper which is recently improved to 
support the QLA architecture [1]. Unfortunately, no quantum 
mapper for the CQLA architecture is available for the comparison. 
Various sizes of the BWT algorithm is compiled based on a 
parameter called 𝑠. This parameter is varied from 3 to 19, where 
𝑠 = 19 is the problem size of interest. (For the previous 
experiments, 𝑠 was set to 5.) Figure 6 compares the circuit latency 
mapped by Squash and QSPR. As can be seen, Squash could 
achieve better results in all of problem sizes. This is due to the 
improved qubit routing mechanism in Squash. As it was explained 
earlier, Squash hides most of the routing delay by parallelizing it 
with the execution of logical operations. 

 
Figure 6. Comparison of the circuit latency mapped by QSPR and 

Squash 
Figure 7 compares the runtime of QSPR and Squash. As can be 
seen, for very small problem sizes (𝑠 < 8), QSPR is slightly faster 
than Squash. However, as the problem size grows, the runtime of 
QSPR radically increases, whereas the runtime of Squash does not 
change. This phenomenon is due to the fact that QSPR handles a 
large netlist of quantum operations, whereas Squash maps only the 
quantum kernels which grow very slowly compared to the main 
circuit size. Also note that when 𝑠 > 15, QSPR runtime rapidly 
grows due to the inefficient handling of large netlists. 

6. CONCLUSION 
Quantum circuits for solving real-size problems are gigantic. As a 
result, quantum mappers have difficulty in mapping them to 
quantum fabrics. Moreover, current quantum mappers cannot 
properly handle the ancilla sharing problem which allows reducing 
the resource demand (even though it is achieved at the cost of 
increased latency). To address these two key problems, a scalable 
quantum mapper, called Squash, was introduced. Squash uses a 
novel multi-core reconfigurable quantum processor architecture, 
called Requp, which supports a layered approach to mapping a 
quantum algorithm and enables ancilla sharing. Experimental 
results demonstrated that Squash can handle large-scale quantum 

algorithms while providing an effective mechanism for sharing 
ancilla qubits. 

 
Figure 7. Comparison of mapping results between QSPR and Squash 
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