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Abstract—Plug-in electric vehicles (PEVs) are key new energy 

technology to reduce the fossil fuel usage and therefore 
environmental pollution. The vehicle-to-grid (V2G) technology in 
the smart grid infrastructure can exploit the electrical energy 
storage ability of PEV batteries to enhance the stability and 
reduce peak power demand of the power grid. Through V2G, 
PEV owners can reduce cost through properly scheduling PEV 
charging (and perhaps discharging at some time) and at the same 
time mitigate the negative impacts on the grid. However, there 
are challenges with V2G services because it is not clear how 
much PEV battery aging, and therefore also the associated 
warranty, are affected during V2G operation.  

This paper addresses the problem of PEV charging under 
dynamic pricing, taking into account the degradation of battery 
state-of-health (SoH) during V2G operations. The objective 
function to minimize therefore becomes the summation of the 
energy during PEV charging (and perhaps discharging at some 
moment) and the extra cost associated with the aging of PEV 
battery. An optimal algorithm of PEV battery charging is 
derived to minimize the objective function based on convex 
optimization techniques. Moreover, this algorithm also 
accurately accounts for the power loss during charging/ 
discharging of PEV batteries and in power conversion circuitries, 
which is often neglected in the reference work. 

Experimental results demonstrate that the proposed charging 
control algorithm is able to minimize the combination of 
electricity cost and battery aging cost, whereas a naive algorithm 
which only consider the electricity cost may result in as high as 
9X battery aging rate. 

I. INTRODUCTION 
The increasing demands for energy resources all around the 

world as well as the growing public concern over the 
environmental impacts of fossil fuels have sparked great 
interest in renewable energy. Plug-in electric vehicles (PEVs), 
which utilize electric motors for propulsion, differ from fossil 
fuel powered vehicles in that the electricity they consume can 
be generated from a wide range of energy resources, including 
fossil fuels, nuclear power and renewable energy such as wind 
energy, solar energy and tidal energy. The battery storage in a 
PEV can be flexibly recharged on a car park, corporate or 
public, or at home. Therefore, switching from fossil fuel 
powered vehicles to PEVs will be a promising solution to the 
energy crisis and environmental pollution [1]. 

As more and more PEVs are being plugged into the power 
grid, the control or management issue of PEV charging arises, 
since mass unregulated charging of PEVs may result in 
degradation of power quality and damage utility equipments 
and customer appliances [2], [3]. Typically, a vehicle 
aggregator is required to decide the control sequences of a 

groups of PEVs based on technical constraints (e.g., the state-
of-charge (SoC)) of a PEV) and specific objectives (e.g., 
minimizing the cost of charging.) A group of previous work 
[4]-[6] discussed about coordinating PEV group charging in an 
aggregator in order to minimize power loss in the distribution 
network, to avoid peak power demand from the grid, and so on. 

In the smart grid infrastructure, utility companies could 
employ real-time or time-of-day dynamic pricing techniques 
(with cheaper rate in the off-peak hours) that incentivize 
electric devices to shift their load demands from peak hours to 
off-peak hours [7]-[9]. Moreover, as most of the vehicles are 
parked on an average of 96% of the time [2], the concept of 
vehicle-to-grid (V2G) is proposed, where the electrical energy 
storage ability of PEV batteries is exploited for frequency 
regulation, load balancing, etc [2], [11], [12]. Through V2G, 
PEV owners can reduce cost through properly scheduling the 
charging (or perhaps discharging at some time) of their cars 
and at the same time mitigate the negative impacts on the grid, 
i.e., performing valley filling or grid frequency regulation [11], 
[13]. However, there are challenges with V2G services because 
it is not clear how much PEV battery aging, and therefore also 
the associated warranty, are affected during V2G operation. 
Without a careful consideration of PEV battery aging, the 
benefits from V2G operation can hardly be realized. 

In this paper, we consider the problem of PEV charging 
under dynamic pricing, with a given departure time and a given 
target state-of-charge (SoC) level at that time. In this problem, 
we explicitly take into account the degradation of battery state-
of-health (SoH), which is defined as the ratio of the full charge 
capacity of an aged battery to its designed (nominal) capacity, 
during V2G operations based on an accurate SoH model. The 
objective function to minimize therefore becomes the 
summation of the energy cost during PEV charging (and 
perhaps discharging at some moment) and the extra cost 
associated with the aging of PEV battery. We derive an optimal 
control algorithm of PEV battery charging, which could be 
implemented in either individual PEVs or in the aggregator, to 
minimize the objective function based on convex optimization 
techniques. Moreover, in this algorithm, we also accurately 
account for the power loss during the charging and discharging 
process of PEV batteries (e.g., the rate capacity effect [22]) and 
in power conversion circuitries, which is often neglected in the 
reference work. 

The organization of this paper is as follows: Section II 
describes the power loss modeling of the PHEV storage system, 
whereas Section III presents the SoH degradation modeling. In 
Section IV, we provide the formulation and solution of the 



optimal PEV battery charging algorithm. Section V presents 
experimental results, and Section VI concludes the paper.  

II. THE PHEV STORAGE MODEL 
The most significant portion of power loss in the storage 

system in a PHEV, which is typically made of NiMH batteries, 
or Li-ion batteries, is due to the rate capacity effect. To be 
more specific, high battery discharging current will reduce the 
amount of available energy that can be extracted from the 
battery, thereby reducing the battery life [22]. In other words, 
high-peak pulsed discharging current will deplete much more 
of the battery's stored energy than a smooth workload with the 
same total energy demand. We use discharging efficiency of a 
battery to denote the ratio of the battery's output current to the 
degradation rate of its stored charge. Then the rate capacity 
effect specifies the fact that the discharging efficiency of a 
battery decreases with the increase of the battery's discharging 
current. The rate capacity effect also affects the energy loss in 
the battery during the charging process in a similar way. 

The rate capacity effect can be captured using the Peukert's 
formula, an empirical formula specifying the battery charging 
and discharging efficiencies as functions of the charging 
current 𝐼𝑐 and the discharging current 𝐼𝑑, respectively: 

𝜂𝑟𝑎𝑡𝑒,𝑐(𝐼𝑐) =
1

�𝐼𝑐/𝐼𝑟𝑒𝑓�
𝛼𝑐  ,   𝜂𝑟𝑎𝑡𝑒,𝑑(𝐼𝑑) =

1

�𝐼𝑑/𝐼𝑟𝑒𝑓�
𝛼𝑑 (1) 

where 𝛼𝑐 and 𝛼𝑑 are Peukert's coefficients, and their values are 
typically in the range of 0.1 - 0.3; 𝐼𝑟𝑒𝑓  denotes the reference 
current of the battery, which is proportional to the battery's 
nominal capacity 𝐶𝑓𝑢𝑙𝑙. 

We name 𝐼𝑐/𝐼𝑟𝑒𝑓  and 𝐼𝑑/𝐼𝑟𝑒𝑓  the battery's normalized 
charging current and normalized discharging current, 
respectively. One can notice that the efficiency values 
𝜂𝑟𝑎𝑡𝑒,𝑐(𝐼𝑐) and 𝜂𝑟𝑎𝑡𝑒,𝑑(𝐼𝑑) in Eqn. (1) are greater than 100% if 
the magnitude of the normalized charging or discharging 
current is less than one, which implies that the above-
mentioned Peukert's formula is not accurate in this case. We 
modify the Peukert's formula such that the efficiency values 
𝜂𝑟𝑎𝑡𝑒,𝑐(𝐼𝑐) and 𝜂𝑟𝑎𝑡𝑒,𝑑(𝐼𝑑) become 100% if the magnitude of 
the normalized charging/discharging current is less than one. In 
other words, the battery suffers from no rate capacity effect in 
this case. 

We denote the increase/decrease rate of storage energy by 
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡 , which may be positive (charging), negative 
(discharging), or zero. Based on the modified Peukert's formula, 
the relation between 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡 and the storage output power 𝑃𝑏𝑎𝑡  
is characterized by 

𝑃𝑏𝑎𝑡 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓 ⋅ �

𝑃𝑏𝑎𝑡,𝑖𝑛𝑡

𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓
�
𝛽1

, if 
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡

𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓
> 1

𝑃𝑏𝑎𝑡,𝑖𝑛𝑡,   if − 1 ≤
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡

𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓
≤ 1

−𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓 ⋅ �
�𝑃𝑏𝑎𝑡,𝑖𝑛𝑡�

𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓
�
𝛽2

, if 
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡

𝑉𝑏𝑎𝑡 ⋅ 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓
< −1

 (2) 

where 𝑉𝑏𝑎𝑡 is the storage terminal voltage and is supposed to 
be (near-)constant; 𝐼𝑏𝑎𝑡,𝑟𝑒𝑓  is the reference current of the 
battery storage system, which is proportional to its nominal 
capacity 𝐶𝑓𝑢𝑙𝑙  given in Ah; coefficient 𝛽1 = 1 + 𝛼𝑐  is in the 
range of 1.1 - 1.3, and coefficient 𝛽2 = 1/(1 + 𝛼𝑑) is in the 
range of 0.8 - 0.9. 

One can observe that when the storage discharging (or 
charging) current is the same, the discharging (or charging) 
efficiency becomes higher (i.e., the rate capacity effect 
becomes less significant) when the nominal capacity of the 
storage system is larger. 

We use function 𝑃𝑏𝑎𝑡 = 𝑓𝑏𝑎𝑡�𝑃𝑏𝑎𝑡,𝑖𝑛𝑡�  to denote the 
relationship between 𝑃𝑏𝑎𝑡  and 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡 . One important 
observation is that such function is a convex and monotonically 
increasing function over the input domain −∞ < 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡 < ∞, 
as shown in Figure 1. 

 
Figure 1. Relationship between 𝑃𝑏𝑎𝑡 and 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡 of a Li-ion battery. 

III. SOH DEGRADATION MODEL 
First, we formally define the SoC and SoH degradation of a 

battery storage bank. The SoC of a battery (bank) is defined by: 

𝑆𝑜𝐶 =
𝐶𝑏𝑎𝑡
𝐶𝑓𝑢𝑙𝑙

× 100% (3) 

where 𝐶𝑏𝑎𝑡 is the amount of charge stored in the battery bank, 
and 𝐶𝑓𝑢𝑙𝑙 is the amount of charge in the battery when it is fully 
charged. The 𝐶𝑓𝑢𝑙𝑙  value gradually decreases during battery 
aging (i.e., SoH degradation.) The amount of SoH degradation, 
denoted by 𝐷𝑆𝑜𝐻 , is defined as follows: 

𝐷𝑆𝑜𝐻 =
𝐶𝑓𝑢𝑙𝑙𝑛𝑜𝑚 − 𝐶𝑓𝑢𝑙𝑙

𝐶𝑓𝑢𝑙𝑙𝑛𝑜𝑚 × 100% (4) 

where 𝐶𝑓𝑢𝑙𝑙𝑛𝑜𝑚 is nominal value of 𝐶𝑓𝑢𝑙𝑙 for a fresh new battery. 
The SoH of batteries is difficult to estimate because it is 

related to capacity fading effect (i.e., SoH degradation) that is a 
result of long-term electrochemical reaction. The capacity 
fading is related to the carrier concentration loss and internal 
impedance growth in the batteries. These effects strongly 
depend on the operating condition of the battery such as 
charging and discharging current, number of cycles, SoC swing, 
average SoC, and operation temperature [15], [16]. The 
characterization of battery cell requires time-consuming 
experiments. Therefore, mathematical models help us to reduce 
the time complexity in estimating the SoH degradation. 
Electrochemistry-based models [17], [18] are generally 
accurate but not easy to implement. Hence, we apply the SoH 

-2 -1 0 1 2
-2

-1

0

1

2

Pst,int (kW)
Ps

t (
kW

)



degradation model of Li-ion batteries proposed in [14], which 
can be applied to cycled charging and discharging of the 
battery elements and shows a good match with real data. 

The SoH degradation model estimates the SoH degradation 
for cycled charging/discharging of a Li-ion battery cell, where 
a (charging/discharging) cycle is defined as a charging process 
of the battery cell from 𝑆𝑜𝐶𝑙𝑜𝑤  to 𝑆𝑜𝐶ℎ𝑖𝑔ℎ  and a discharging 
process right after it from 𝑆𝑜𝐶ℎ𝑖𝑔ℎ  to 𝑆𝑜𝐶𝑙𝑜𝑤 . The SoH 
degradation during one cycle depends on the average SoC level 
𝑆𝑜𝐶𝑎𝑣𝑔 and the SoC swing 𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 . We calculate 𝑆𝑜𝐶𝑎𝑣𝑔 and 
𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 of one cycle using: 

𝑆𝑜𝐶𝑎𝑣𝑔 = �𝑆𝑜𝐶𝑙𝑜𝑤 + 𝑆𝑜𝐶ℎ𝑖𝑔ℎ�/2 (5) 

𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 = 𝑆𝑜𝐶ℎ𝑖𝑔ℎ − 𝑆𝑜𝐶𝑙𝑜𝑤  (6) 

𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 achieves the maximum value of 1.0 (100%) for the 
full 100% depth of discharge cycle, i.e., the SoC ranges from 0 
up to 100% and back to 0. 

The SoH degradation 𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒  during this 
charging/discharging cycle, accounting for both average SoC 
level and SoC swing, is: 

𝐷1 = 𝐾𝑐𝑜 ∙ exp ��𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 − 1� ∙
𝑇𝑟𝑒𝑓

𝐾𝑒𝑥 ∙ 𝑇𝐵
� + 0.2

𝜏
𝜏𝑙𝑖𝑓𝑒

 

𝐷2 = 𝐷1 ∙ exp�4𝐾𝑆𝑜𝐶 ∙ �𝑆𝑜𝐶𝑎𝑣𝑔 − 0.5�� ∙ (1 − 𝐷𝑆𝑜𝐻) 

𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒 = 𝐷2 ∙ exp �𝐾𝑇 ∙ �𝑇𝐵 − 𝑇𝑟𝑒𝑓� ∙
𝑇𝑟𝑒𝑓
𝑇𝐵

� 

(7) 

where 𝐾𝑐𝑜 , 𝐾𝑒𝑥 , 𝐾𝑆𝑜𝐶 , and 𝐾𝑇  are battery specific parameters; 
𝑇𝐵 and 𝑇𝑟𝑒𝑓  are the operation battery temperature and reference 
battery temperature, respectively; 𝜏  is the duration of this 
charging/discharging cycle; 𝜏𝑙𝑖𝑓𝑒  is the calendar life of the 
battery. We use 𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒�𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 , 𝑆𝑜𝐶𝑎𝑣𝑔�  to denote the 
relationship between 𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒 , 𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 , and 𝑆𝑜𝐶𝑎𝑣𝑔 . The 
total SoH degradation (from a new battery) after 𝑀 charging 
and discharging cycles is calculated by: 

𝐷𝑆𝑜𝐻 = �𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒,𝑚

𝑀

𝑚=1

 (8) 

where 𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒,𝑚  denotes the SoH degradation in the mth 
cycle. 

In Eqn. (8), the normalized SoH degradation value 𝐷𝑆𝑜𝐻  
increases over the battery lifetime from 0 (brand new) to 100% 
(no capacity left). Typically, the values of 𝐷𝑆𝑜𝐻 = 20%  or 
𝐷𝑆𝑜𝐻 = 30%, which indicate 80% or 70% remaining capacity, 
respectively, are used in literature to measure the battery's end 
of life. The relationship between the Li-ion battery SoH 
degradation versus the SoC swing and average SoC level is 
shown in Figure 2. In this experiment, we change the duration 
of a cycle to achieve different average SoC levels and SoC 
swings. We repeat the charge and discharge cycling until the 
battery reaches 𝐷𝑆𝑜𝐻 = 20%, and record the total number of 
cycles (i.e., the cycle life of the battery.) The results are shown 
in Figure 2. There are two important observations: (i) a higher 
SoH degradation rate is caused by both higher SoC swing and 
higher average SoC level in each charging/discharging cycle, 
(ii) the cycle life of a Li-ion battery increases superlinearly 

with respect to the reduction of SoC swing and average SoC. 
We make use of these observations as well as the function 
𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒�𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 , 𝑆𝑜𝐶𝑎𝑣𝑔� in the rest of this paper. 

 
Figure 2. Li-ion battery SoH degradation versus SoC swing (at different 

average SoC levels) and average SoC level (at different SoC swings). 

IV. PROBLEM FORMULATION AND OPTIMIZATION 
In this section, we present the formulation and solution of 

the optimal PEV battery charging problem under time-of-day 
pricing. We consider a slotted time model, i.e., all system 
constraints as well as decisions are provided for discrete time 
intervals of equal and constant length ∆𝑇 . The PEV begins 
parking at home or at a public parking lot at the beginning of 
the 1st time slot, and it is scheduled to depart at the end of time 
slot 𝑁. The initial SoC level of the PEV battery is given by 
𝑆𝑜𝐶[0] = 𝑆𝑜𝐶𝑖𝑛𝑖 , and the target SoC level is 𝑆𝑜𝐶𝑡𝑎𝑟  when the 
PEV departs. We consider the time-of-day energy pricing 
function 𝑃𝑟𝑖𝑐𝑒[𝑖] for 1 ≤ 𝑖 ≤ 𝑁 over all 𝑁 time slots, which is 
pre-announced by the utility company before PEV charging. 
Let 𝑃𝑏𝑎𝑡[𝑖]  for 1 ≤ 𝑖 ≤ 𝑁  denote the battery 
charging/discharging power in each time slot, where 𝑃𝑏𝑎𝑡[𝑖] >
0  implies charging and 𝑃𝑏𝑎𝑡[𝑖] < 0  implies discharging. Let 
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑖]  for 1 ≤ 𝑖 ≤ 𝑁  denote the energy 
accumulation/decrease rate in the PEV battery. We have 
𝑃𝑏𝑎𝑡[𝑖] = 𝑓𝑏𝑎𝑡�𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑖]�  as in equation (2). The PEV 
charging controller, which resides either in individual vehicles 
or in an aggregator, controls the battery charging/discharging 
power 𝑃𝑏𝑎𝑡[𝑖] for 1 ≤ 𝑖 ≤ 𝑁. 

The objective function to minimize is comprised of two 
parts: the energy cost during PEV charging (and perhaps 
discharging at some moments) and the cost associated with 
PEV battery aging, as shown below: 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐶𝑜𝑠𝑡𝑎𝑔𝑖𝑛𝑔 (9) 

The energy cost in Eqn. (9) is given by the following equation: 

𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 = �𝑃𝑟𝑖𝑐𝑒[𝑖] ∙ ∆𝑇 ∙
𝑁

𝑖=1

 

�
1
𝜂𝑐
𝑃𝑏𝑎𝑡[𝑖] ∙ 𝐈[𝑃𝑏𝑎𝑡[𝑖] > 0] + 𝜂𝑑𝑃𝑏𝑎𝑡[𝑖] ∙ 𝐈[𝑃𝑏𝑎𝑡[𝑖] < 0]� 

(10) 
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where 𝜂𝑐, 𝜂𝑑 < 1 are the charging and discharging efficiency 
of the AC/DC power conversion circuitry between the PEV 
battery and grid, and 𝐈[−] is the indicator function. 

To calculate 𝐶𝑜𝑠𝑡𝑎𝑔𝑖𝑛𝑔, we provide as follows an estimate 
of the SoH degradation of the PEV battery during the charging 
process and the previous driving period. We approximate the 
combination of the driving period and charging process as 
multiple discharge/charge cycles of PEV battery. During the 
driving period, the SoC drops from 𝑆𝑜𝐶𝑡𝑎𝑟  (suppose that the 
SoC level at the beginning of the previous driving period is 
also𝑆𝑜𝐶𝑡𝑎𝑟) to 𝑆𝑜𝐶𝑖𝑛𝑖 . Therefore the highest and lowest SoC 
value 𝑆𝑜𝐶𝑙𝑜𝑤  in this discharge/charge cycle is: 

𝑆𝑜𝐶ℎ𝑖𝑔ℎ = max
0≤𝑖≤𝑁

𝑆𝑜𝐶[𝑖] 
𝑆𝑜𝐶𝑙𝑜𝑤 = min

0≤𝑖≤𝑁
𝑆𝑜𝐶[𝑖] 

(11) 

where 𝑆𝑜𝐶[𝑖] denotes the SoC value at the end of time slot i 
(𝑆𝑜𝐶[0] = 𝑆𝑜𝐶𝑖𝑛𝑖), and is calculated by: 

𝑆𝑜𝐶[𝑖] = 𝑆𝑜𝐶[0] + �
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑗] ∙ ∆𝑇
𝑉𝑏𝑎𝑡 ⋅ 𝐶𝑓𝑢𝑙𝑙

𝑖

𝑗=1

 (12) 

The number of cycles during the combination of driving period 
and charging process is: 

𝑁𝐶 = �
𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑗] ∙ 𝐈[𝑃𝑏𝑎𝑡[𝑗] > 0] ∙ ∆𝑇

𝑉𝑏𝑎𝑡 ⋅ 𝐶𝑓𝑢𝑙𝑙 ⋅ (𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔)

𝑁

𝑗=1

 (13) 

where 𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 = 𝑆𝑜𝐶ℎ𝑖𝑔ℎ − 𝑆𝑜𝐶𝑙𝑜𝑤 . Finally, the cost 
associated with SoH degradation of the PEV battery is given 
by (we assume that the battery reaches end-of-life when SoH 
degradation is 30%): 

𝐶𝑜𝑠𝑡𝑎𝑔𝑖𝑛𝑔 =
𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒�𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 , 𝑆𝑜𝐶𝑎𝑣𝑔� ∙ 𝑁𝐶

0.3
∙ 𝐶𝑜𝑠𝑡𝑏𝑎𝑡 (14) 

where 𝐶𝑜𝑠𝑡𝑏𝑎𝑡  is the cost to purchase the PEV battery (The 
state-of-art Li-ion battery capital cost is between $200 to $500 
per kWh [20]); 𝑆𝑜𝐶𝑎𝑣𝑔 =

𝑆𝑜𝐶ℎ𝑖𝑔ℎ+𝑆𝑜𝐶𝑙𝑜𝑤
2

; and function 
𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒�𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔, 𝑆𝑜𝐶𝑎𝑣𝑔� is defined in Section III.  

We formally describe the PEV battery charging problem as 
follows: 

Given: Initial SoC 𝑆𝑜𝐶𝑖𝑛𝑖 , target SoC 𝑆𝑜𝐶𝑡𝑎𝑟 , time-of-day 
energy pricing function 𝑃𝑟𝑖𝑐𝑒[𝑖] for 1 ≤ 𝑖 ≤ 𝑁. 
Find: Battery charging/discharging current profile 𝑃𝑏𝑎𝑡[𝑖] for 
1 ≤ 𝑖 ≤ 𝑁. 
Optimize: Objective function Eqn. (9). 
Subject to: 
Constraints on the maximum charging/discharging power: 

−𝑃𝑀𝐴𝑋,𝑑 ≤ 𝑃𝑏𝑎𝑡[𝑖] ≤ 𝑃𝑀𝐴𝑋,𝑐,∀𝑖 (15) 

Constraints on the SoC levels: 

0 ≤ 𝑆𝑜𝐶[𝑖] ≤ 1,∀𝑖 (16) 

Satisfying the final target SoC level: 

𝑆𝑜𝐶[𝑁] ≥ 𝑆𝑜𝐶𝑡𝑎𝑟 (17) 

We present the optimal solution of the PEV battery 
charging problem. The motivation of the optimal solution is 
that 𝐷𝑆𝑜𝐻,𝑐𝑦𝑐𝑙𝑒�𝑆𝑜𝐶𝑠𝑤𝑖𝑛𝑔 , 𝑆𝑜𝐶𝑎𝑣𝑔�  only depends on 𝑆𝑜𝐶𝑙𝑜𝑤  and 
𝑆𝑜𝐶ℎ𝑖𝑔ℎ. The optimal solution is comprised of an outer loop 
and a kernel problem. In the outer loop, we perform parameter 
sweeping on 𝑆𝑜𝐶𝑙𝑜𝑤  and 𝑆𝑜𝐶ℎ𝑖𝑔ℎ . With given 𝑆𝑜𝐶𝑙𝑜𝑤  and 
𝑆𝑜𝐶ℎ𝑖𝑔ℎ, the kernel problem is an optimization problem to find 
the battery charging/discharging profile with regard to an 
additional constraint on 𝑆𝑜𝐶[𝑖]: 

𝑆𝑜𝐶𝑙𝑜𝑤 ≤ 𝑆𝑜𝐶[𝑖] ≤ 𝑆𝑜𝐶ℎ𝑖𝑔ℎ ,∀𝑖 (18) 

In order to solve the kernel problem optimally and 
efficiently, we use 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑖] for 1 ≤ 𝑖 ≤ 𝑁 as the optimization 
variables since it can help transform the kernel problem into a 
standard convex optimization problem. Please note that in 
reality the PEV charging controller still controls 𝑃𝑏𝑎𝑡[𝑖]  for 
1 ≤ 𝑖 ≤ 𝑁. 

We observe from (10) that 𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦  is a convex and 
increasing function of 𝑃𝑏𝑎𝑡[𝑖] for 1 ≤ 𝑖 ≤ 𝑁. We know from 
Section II that 𝑃𝑏𝑎𝑡 = 𝑓𝑏𝑎𝑡�𝑃𝑏𝑎𝑡,𝑖𝑛𝑡�  is a convex function. 
Therefore, 𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦  is a convex function of the optimization 
variables 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑖]  for 1 ≤ 𝑖 ≤ 𝑁  according to the rules of 
convexity in function composition [23]. As for 𝐶𝑜𝑠𝑡𝑎𝑔𝑖𝑛𝑔, it is 
also a convex function of 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑖] for 1 ≤ 𝑖 ≤ 𝑁. Moreover, 
the constraints of the kernel problem are all linear inequality 
constraints (or at least can be transformed to linear inequality 
constraints, e.g., (15)) of the optimization variables because 
𝑆𝑜𝐶[𝑖] is a linear function of 𝑃𝑏𝑎𝑡,𝑖𝑛𝑡[𝑖] for 1 ≤ 𝑖 ≤ 𝑁. Based 
on the above observations, we conclude that the kernel 
problem is a standard convex optimization problem with 
convex objective functions and linear constraints. Hence, it can 
be optimally solved using standard optimization tools with 
polynomial time complexity [23]. Therefore, the optimal 
solution for the complete problem has pseudo polynomial time 
complexity, 

V. EXPERIMENTAL RESULTS 
In the simulation, we consider a 24kWh Li-ion battery, and 

a charging period of 12 hours, divided into 24 time slots. We 
compare with two baseline solutions. The first baseline 
solution is one which neglects the aging cost and only 
minimize the energy cost (denoted by MEC). The second 
baseline solution considers aging cost but does not sell back 
electricity (denoted by NSB). 

First we use a pricing function as shown in Figure 3(a). The 
pricing function consists of two low-price sections and two 
high-price sections. TABLE I shows the energy cost and aging 
cost of the optimal solution for different low and high 
electricity unit prices, and different Li-ion battery prices. It also 
shows the energy cost and aging cost of MEC and NSB 
solutions. A negative energy cost indicates the EV makes some 
profit by buying electricity when the electricity price is low and 
selling back when the price is high, at the cost of exacerbating 
the aging process of the battery. As shown in TABLE I, 
although MEC solution makes the most profit by selling back 



electric energy, it results in significant aging cost. In some of 
the test cases, the aging cost, or equivalently, the aging rate of 
MEC solution is almost 9X as large as that of the optimal 
solution. Nonetheless, both solutions will maximize the amount 
of energy sold back to the grid when the electricity price 
difference is large and the price of Li-ion battery is low. On the 
other hand, NSB solution achieves the minimum aging cost, 
but has the largest energy cost of the three. Figure 3(b) shows 
the charging/discharging profile of all three solutions for the 
case where high electricity price is $0.3/kWh and Li-ion 
battery price is $200/kWh. As shown in the figure, MEC 
solution uses the most of the battery. 

 
Figure 3. (a) Electricity price; (b) Battery charging/discharging profile. 

 
Figure 4. Electricity price and battery charging/discharging profile of a 

different test case. 

Figure 4 shows the electricity price vector and the battery 
charging/discharging profile of a different test case. Although 
the electricity price at the first and last time slots are the 
cheapest, all solutions charge the battery at some other time 
slots as well since the charging efficiency at the first and last 
time slots are much lower due to the rate capacity effect. The 
total cost achieved by the optimal solution (1.15) is 68% less 
than MEC solution (3.59) and 37% less than the NSB solution 
(1.82). 

VI. CONCLUSION 
In this paper, we consider the problem of PEV charging 

under dynamic pricing, with a given departure time and a given 

target SoC level at that time. In this problem, we explicitly take 
into consideration the degradation of battery SoH during V2G 
operations, based on an accurate SoH modeling. The objective 
function to minimize therefore becomes the summation of the 
energy cost during PEV charging (and perhaps discharging at 
some moment) and the extra cost associated with the aging of 
PEV battery. We derive an optimal control algorithm of PEV 
battery charging, which could be implemented in either 
individual PEVs or in the aggregator, to minimize the objective 
function based on convex optimization techniques. Moreover, 
the proposed algorithm also accurately accounts for the power 
loss during the charging and discharging process of PEV 
batteries, especially the rate capacity effect, and in power 
conversion circuits, which is often neglected in the reference 
work. 

Experimental results demonstrate that the proposed optimal 
PEV charging algorithm minimizes the combination of 
electricity cost and battery aging cost and achieves much 
smaller Li-ion battery aging rate. 
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