
A Semi-Markovian Decision Process Based Control
Method for Offloading Tasks from Mobile Devices

to the Cloud

Shuang Chen, Yanzhi Wang, Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles, USA

{shuangc, yanzhiwa, pedram}@usc.edu

Abstract—The finite and rather small battery energy capacity
in today’s mobile devices has limited the functionality that
can be integrated into these platforms or the performance and
quality of applications that can be delivered to the users. In
the last few years, there is a trend toward offloading certain
computation-intensive and latency-tolerant local applications and
service requests to a mobile cloud computing (MCC) system so
as to save the precious battery life while providing the services
requested by the users. Each mobile application can be thought
of as a sequence of tasks that are executed locally or remotely. In
this paper, the problem of optimal task dispatch, transmission,
and execution onto the MCC system is considered. To achieve a
good balance between the application execution time and power
consumption, dynamic voltage and frequency scaling (DVFS)
is applied to the local processor in the mobile device, while
the transmitter can choose among multiple modulation schemes
and bit rates. The rate capacity effect of a battery and power
conversion losses in the mobile device are also accounted for so
as to have a more realistic model of the remaining battery life.
The mobile device is modeled as a semi-Markov decision process
(SMDP) and the optimization problem to set the DVFS level and
the transmission rate is effectively solved by linear programming
combined with a one-dimensional heuristic search. Experimental
results show that the proposed algorithm consistently outperforms
some baseline algorithms.

I. INTRODUCTION

Continued evolution of mobile systems including smart-
phones and tablet-PCs has resulted in ever more powerful yet
more power hungry embedded systems with advanced func-
tionality and high performance. Unfortunately, the increase
in volumetric/gravimetric energy density of (rechargeable)
batteries has been much slower than the increase in the power
demand of these devices, resulting in a short battery life in
these devices and a “power crisis” for the smartphone tech-
nology development and product line expansion. Therefore,
an effective solution to achieve a reasonable balance between
the performance and power consumption of applications is
required to ensure the overall service quality of the mobile
devices.

To provide an alternate method of managing the appli-
cations in a mobile device, the concept of mobile cloud
computing (MCC) system has been employed. The idea is to
move the processing, memory, and storage requirements of
some applications from the resource limited mobile devices to
the resource unlimited cloud [1]. An MCC system provides
multiple advantages for the mobile devices [2], including

extension of the battery life for mobile users and reduction of
the risk of data and application losses on the mobile devices
by backing up the users’ data. The most important benefit
for the mobile users is, however, the extension of battery
life time in between successive battery chargings. The MCC
paradigm achieves this objective by offloading and executing
some computation intensive (and latency-tolerant) applications
on remote servers in the cloud. These applications, if run on
the local processor in the mobile device, tend to consume
a large amount of battery energy. This offloading is in turn
enabled by a virtualization technique that allows each mobile
application to be abstracted as a virtual machine requiring
certain computation/memory/storage/bandwidth resources [3].
The virtual machines coming from different mobile users are
then run concurrently on a set of remote servers in the cloud
while maintaining performance isolation and security for each
application’s data and results. This technique is referred to as
computation offloading.

If computation offloading is done judiciously, the resource
usage on the mobile device (and thus, the battery energy lost to
power up the local resources) is reduced and at the same time
the performance constraints (e.g., the total computation time
or latency) for the offloaded applications can be satisfied. The
discussion of this issue may be found in the prior work. Refer-
ence [4] provides an analysis and guideline on the conditions
that computation offloading could help save energy for mobile
devices, i.e., an application or task with high computation but
limited data communication requirement could benefit from
computation offloading. A comparison on power consumption
between local execution and remote execution is made in
[5], in which decisions of computation offloading is jointly
made based on the application’s latency deadline, data size,
and wireless channel condition. Reference [6] addresses the
problem of carbon footprint profiling and optimization, by
considering the power consumption of both the local device
and the remote server. A number of dynamic computation
offloading schemes are presented in [7]–[9]. For example, [9]
introduces an online algorithm that aims at minimizing the
power consumption while being aware of both the application
response time and conditions of the wireless environment. Fi-
nally, some runtime offloading frameworks have been proposed
for specific applications, such as ODESSA for interactive
perception applications [10] and MAUI for .NET applications
[11].



Since a key goal of the MCC paradigm is to extend the
battery life in (battery-powered) mobile devices, we need to
(i) account for the power consumption in various components
in the mobile device, i.e., CPU, memory, DSP, display module,
RF module, etc., and (ii) accurately estimate the total energy
drawn from the battery by utilizing an accurate model of the
discharging process of the battery. The prior work on this topic
has not taken into account these two aspects, without which
the results can be inaccurate or even misleading. For instance,
the rate capacity effect of a battery, originally discovered by
Peukert, can affect the effective battery capacity significantly.
According to the Peukert’s law [12], the battery loses its
stored energy as a super-linear function of the discharging
current rate. In other words, the energy drawn from the battery
is a superlinear function of the summation of the power
consumptions in all the mobile device components times the
duration of the discharge.

In this paper, we consider the problem of optimal appli-
cation management for a mobile device in an MCC system.
The computational requests of an application can be either
executed locally or offloaded and executed remotely on a
server. The local processing unit employs dynamic voltage
and frequency scaling (DVFS) [13] to dynamically adjust
the processing speed and power consumption of the mobile
processing unit. The transmitter can adaptively select the
most appropriate bit rate and modulation scheme for request
offloading, depending on the number of waiting requests, the
wireless channel capacity, anticipated server congestion levels,
and so on. We know that a higher frequency for the local
processor reduces the processing delay. However, this comes
at the cost of a power consumption level that is superlinearly
higher. Similarly, higher bit rate and corresponding modulation
scheme can speed up the data transmission while significantly
increasing the transmission power. Automatic Repeat Request
(ARQ) protocol is applied for the purpose of error control
in request offloading in a noisy wireless environment. We
model the mobile device as a semi-Markov decision process
(SMDP) [14], in which actions are decision pairs (DVFS
level, bit rate) for the local processor and the transmitter
in the mobile device. We set the objective function of the
SMDP framework as a linear combination of the average
request response time and energy loss of the mobile device’
s battery in order to achieve a balance between performance
and battery life. The optimization framework is capable of
deriving the corresponding optimal DVFS policy, offloading
rate, and transmission scheme for different workload character-
istics, wireless environments, server congestion levels, etc. The
proposed SMDP optimization framework properly accounts for
the power consumptions in various components in the mobile
device, the power conversion efficiency from the battery to
the components, as well as the rate capacity effect and battery
characteristics, which are overlooked by the prior work.

The rest of this paper is organized as follows: the system
model is presented in Section II. The optimization problem
formulation and solution are provided in Section III and
Section IV, respectively. Simulation results are given in Section
V, and we conclude in Section VI.

II. SYSTEM MODEL

A. Overall system modeling for an MCC system
An MCC system is comprised of a server (or a set of

servers) and a set of mobile devices (See Fig. 1). Assume

that the computation capability of the server is much higher
than the mobile devices and the total number of mobile devices
in the MCC system is relatively large, then the influence of
one device’s behavior is negligible on the overall performance
of the server. From the view of a certain mobile device, the
server can be modeled by an average processing rate µs and
a utilization level ρs.

The wireless channel between a mobile device and the
server is noisy and may cause error in transmission, and
therefore, the ARQ protocol is applied. Let Es denote the
average energy per symbol received at the receiver side. Es
is calculated as the arithmetic average value of the energy
consumption of all the symbols in the symbol set. And
Eb = Es/ log2 n is the average transmission energy per bit,
where n is the order of modulation. Given the power spectral
density of the noise, denoted by N0, the symbol error rate

(SER) of transmission can be expressed as a function of
Eb
N0

[15]. For quadrature amplitude modulation (QAM), the SER
can be calculated as

SER = 1−

(
1− 2

(
1− 1√

n

)
Q

(√
3 log2 n

n− 1

Eb
N0

))2

(1)

where n is the order of modulation. And the frame error rate
(FER) can be calculated as

FER = 1− (1− SER)L/ log2 n (2)

where L is the number of bits in one frame.
According to [16], the energy required per transmitted bit

at the transmitter side, denoted by Eb,Tx, is calculated as

Eb,Tx = kTEb (d)
β (3)

where kT is a constant depending on the channel bandwidth,
antenna gain and amplifier efficiency; d is the distance between
the transmitter and the receiver, and β is the path loss exponent.
In general, if we assume that the mobile device only moves
within a short distance relative to its distance to the server
during transmission, then the actual transmission energy per
bit can be approximated as proportional to the received energy
per bit.

B. Modeling for a mobile device using SMDP
A mobile device is comprised of a task dispatching unit,

a local processing unit, a processing queue, a transmitter, a
transmission queue, and some other components (display, DSP,
etc.). Each application is interpreted as a set of tasks in the
form of computation requests. In order to find an analytical
form of the average processing delay of each request, we
assume that the request generation follows a Poisson process
with average generation rate of λ. Suppose that we are to of-
fload a request to the server (cloud) with probability poff . Then
according to the characteristics of Poisson process, the request
arrivals at the transmission queue and the processing queue are
independent of each other and both follow a Poisson process,
with average arrival rates λt = poffλ and λp = (1 − poff )λ,
respectively.

An SMDP is comprised of a set of states S and a set of
actions A, and is characterized by the probability distribution
of transition destination and the stay time in each state when
an action is taken. After a transition, if state s ∈ S is observed,



Fig. 1. System framework of an MCC system

an action is chosen from a subset As ⊆ A. In this paper, we
consider the case where the system can tra from a state to itself.
We use a policy π = {(s, a)|s ∈ S, a ∈ As} to represent the
action we take in each state of the system. In this paper, we
use π(s) = a to indicate that under policy π, action a is taken
when state s is observed. Please note that in general cases,
different policies will result in different transition probabilities
and different average stay time for a state.

First we model the transmission queue and the processing
queue as SMDP. For the transmission queue, the state set
S(t) = {0, 1, . . . , Qt}, each state representing the corre-
sponding length of the transmission queue (in this paper
the length of a queue includes the request that is being
processed, unless otherwise noted), where Qt is the maxi-
mum length of the transmission queue. And the action set
A(t) = {Rb,0, Rb,1, . . . , Rb,K}, where each action represents
a bit rate the transmitter can support. We assume that each
request is transmitted in one frame and the frame length
follows an exponential distribution with mean value L̄. The
transmission time for a request when action Rb,k ∈ A(t)

is taken also follows an exponential distribution with mean
value µt(k) = L̄/Rb,k, which can be interpreted as the
average processing rate of the transmitter. Note that a request
may require ARQ and be added back into the transmission
queue if an error occurs. Using the property of exponential
distribution, we calculate the transition probabilities of the

SMDP as follows:

pt,ki,i′ =



1, i = 0, i′ = 1

q(k), i = i′ = Qt

1− q(k), i = Qt, i
′ = Qt − 1

λt
λt + µt(k)

, 1 6 i 6 Qt − 1, i′ = i+ 1

q(k)µt(k)

λt + µt(k)
, 1 6 i 6 Qt − 1, i′ = i

(1− q(k))µt(k)

λt + µt(k)
, 1 6 i 6 Qt − 1, i′ = i− 1

0, otherwise
(4)

where pt,ki,i′ is the probability that the system will make a
transition to state i′ under the condition that the system is
currently in state i, and q(k) is the FER under bit rate Rb,k.

For the processing queue, we define pp,mj,j′ as the transition
probability that the system will make a transition to state j′
given that the system is currently in state j. The state set St =
{0, 1, . . . , Qp}, where Qp is maximum length of the processing
queue. And the action set is Ap = {f0, f1, . . . , fM}, where
each action represents an execution frequency of the processor.
Assume that the execution time for a request follows an
exponential distribution with mean value µp(m) if frequency
fm is chosen. We will not give the explicit expression for the
transition probabilities due to limited space.

As mentioned in Section I, by simply adding up the power
consumption of the above two parts, we are underestimating
their impact on battery life due to the existence of rate capacity
effect. In order to reflect the effect of power consumption on
battery life in an accurate way, we need to calculate the energy
draining rate of the battery which is affected jointly by the
actions of the two parts. Therefore, we combine the two afore-
mentioned process into one SMDP (See Fig. 2). In the new
SMDP, the state set is S = {(i, j)|0 6 i 6 Qt, 0 6 j 6 Qp},
and the action set is Ai,j = {(k,m)|k ∈ A

(t)
i ,m ∈ A

(p)
j }.

Since the two processes are independent, we can calculate the
transition probabilities in a straightforward way. For 1 6 i 6
Qt − 1, 1 6 j 6 Qp − 1, we have

p
(k,m)
(i,j),(i′,j′) =



λt
λ+ µt(k) + µp(m)

, i′ = i+ 1, j′ = j

λp
λ+ µt(k) + µp(m)

, i′ = i, j′ = j + 1

µp(m)

λ+ µt(k) + µp(m)
, i′ = i, j′ = j − 1

q(k)µt(k)

λ+ µt(k) + µp(m)
, i′ = i, j′ = j

(1− q(k))µt(k)

λ+ µt(k) + µp(m)
, i′ = i− 1, j′ = j

0, otherwise
(5)

And the transition probabilities of the state on the boundaries
can be calculated in a similar way. Also, we calculate the
average transition time for a state, denoted by τ

(k,m)
(i,j) . For



Fig. 2. State transition diagram for the joint SMDP

example, τ (k,m)
(i,j) = 1/(λ + µt(k) + µp(m)) for 1 6 i 6

Qt − 1, 1 6 j 6 Qp − 1.

C. Power modeling and rate capacity effect
The processor’s power consumption consists of the static

part and the dynamic part. The static power is a constant
independent of the action we take, and the dynamic power
is a superlinear function of the frequency [17]. Similarly,
the transmitter has its own static power and dynamic power
depending on the modulation scheme [18].

As for other components, their power consumption can be
comparable to that of processor and transmitter and should not
be ignored. Since their power consumption depends greatly on
the design of the device and the user’s behavior and is hard
to be modeled accurately, in this paper, we will model it as a
random variable whose distribution is related to the action of
the processor and the transmitter.

According to Peukert’s law, the discharge time Td and the
equivalent discharge current Ieq can be given by

Td =
Qref
Ieq

(6)

Ieq =

(
Ieff
Iref

)α
· Iref (7)

where Ieff is the effective discharging current seen from
outside of the battery, Iref is a reference current level, Qref is
the capacity measured under the reference discharge current,
and α is the Peukert constant.

Since the output voltage of the battery changes only slightly
before the battery runs low, the effective discharging current is
proportional to the total power of the device. Define P (k,m)

eq =

Vt · I(k,m)
eq as the equivalent power of the device reflected on

battery, where Vt is the terminal voltage of the battery. Then
equation (7) can be rewritten as

P
(k,m)
eq

Vt
=

(
P t,k0 + P p,m0 + P other0 (k,m)

VtIref

)α
· Iref (8)

P t,k0 =
P t,k

ηt
, P p,m0 =

P p,m

ηp
, P other0 (k,m) =

P other(k,m)

η̄other
(9)

where P t,k, P p,m, and P other(k,m) are the power consump-
tion of the transmitter, the processor, and the other parts,
respectively, while ηt, ηp, and η̄other are the power conversion
efficiency from the battery to the transmitter, to the processor,
and the average value of that to other parts, respectively.
Deducing from equation (8), we get

P (k,m)
eq =

(
P t,k

ηt
+
P p,m

ηp
+
P other(k,m)

η̄other

)α
· I1−αref · V

1−α
t

(10)
Since the terminal voltage of the battery does not change
significantly in the whole discharging process, a simplified
expression of P (k,m)

eq can be given by

P (k,m)
eq = keq

(
P t,k

ηt
+
P p,m

ηp
+
P other(k,m)

η̄other

)α
(11)

where keq is a constant.
Also note that P

(k,m)
eq is a random variable since

P other(k,m) is a random variable. We will use the expectation
of P (k,m)

eq , denoted by P̄ (k,m)
eq , as its estimation value.

P̄ (k,m)
eq = E[P (k,m)

eq ] (12)

III. PROBLEM FORMULATION

Our objective is to find the offloading probability poff and
the policy π, such that when the system reaches a stable state,
the average overall cost per request is minimized.

First, we will define the overall cost function. To charac-
terize both delay and power performance, we define the cost
function C as the linear combination of the measurement of
the two factor.

C = D̄(π) + kpowerP̄ (π) (13)

where D̄(π) and P̄ (π) denote the average processing latency
and the equivalent power consumption of a request, respec-
tively, π is the policy we take, and kpower is a coefficient
reflecting how seriously can the battery life affect the perfor-
mance of the device. In the SMDP framework introduced in
Section II, P̄ (π) can be calculated as the weighted average
of the power consumption of each state. According to Little’s
Theorem [19], the average stay time for a request is the average
number of requests in the system divided by the effective
request generation rate. Apart from the time it spend in the
queueing system, an offloaded request will also have to wait
for the server to finish execution and send it back. Therefore,
the D̄(π) can be calculated as

D̄(π) =
N̄

λ
+ poff · (T̄proc +RTT ) (14)

where N̄ is the average number of request in the system, T̄proc
is the average processing time of the server , and RTT is the
round trip time for the request. T̄proc can be calculated as
1/[µs(1 − ρs)], and the value of RTT depends on various
factors such as routing policy and the congestion level of the
channel. Therefore, the average processing latency can also
be paraphrased as a function of the steady state probabilities.



Substituting each term in C with its expression as a function
of steady state probabilities, we can rewrite equation (13) as

C =
∑
i

∑
j

(
i+ j

λ
+
kpower
λ

P̄ (π(i,j))
eq

)
p̃
(π(i,j))
i,j

+poff · (T̄proc +RTT )

(15)

where p̃(π)i,j is the steady state probability of state (i, j) under
policy π in the SMDP introduced in Section II.B.

Then, we can formulate the optimization as follows:

Find poff , π(i, j)

Minimize C

Subject to∑
i′

∑
j′

p̃
(π)
i′,j′

τ
(π)
(i,j)

· p(π)(i′,j′),(i,j) =
p̃
(π)
i,j

τ
(π)
(i,j)

, ∀(i, j) ∈ S (16)

∑
i

∑
j

p̃
(π)
i,j = 1 (17)

0 6 p̃
(π)
i,j 6 1, ∀(i, j) ∈ S (18)

Constraint (16) enforces the balance of flow between states in
a stable system. Constraint (17) normalize the total probability.
Constraint (18) specify the domain for each probability.

IV. SOLUTION FRAMEWORK

In this section we will provide the solution framework to
optimally solve the problem formulated in Section III.

We noticed that this problem is hard to solve directly
because of the complicated relationship between the steady
state probabilities p̃

(π)
i,j and the variables π(i, j) and poff .

However, we can divide this problem into two much simpler
problems and solve them one after the other. First we will
introduce a linear programming approach to find the optimal
π(i, j) with given poff . And then we will use this approach at
different points to find the optimal poff .

A. Find the optimal π(i, j)
With given poff , we can make the observation that now the

transition probabilities p(k,m)
(i,j)(i′,j′) is confined to a finite state

of values, each corresponding to one action pair. Therefore,
the problem can be transformed into a Markov renewal pro-
gramming problem as is described in [20]. Let fk,mi,j denote the
frequency that the system enters state (i, j) and action (k,m) is
taken in the state. We have the following relationship between
fk,mi,j and p̃(π)i,j :

p̃
(π)
i,j =

∑
k

∑
m

fk,mi,j τ
(k,m)
(i,j) (19)

Rewrite C in equation (15) as follows:

C =
∑
i

∑
j

∑
k

∑
m

(
i+ j

λ
+
kpower
λ

P̄ (k,m)
eq

)
fk,mi,j τ

(k,m)
(i,j)

+poff · (T̄proc +RTT )
(20)

Then the problem is formulated as

Find fk,mi,j

Minimize C(poff )

Subject to∑
i′

∑
j′

∑
k

∑
m

fk,mi′,j′ · p
(k,m)
(i′,j′),(i,j) =

∑
k

∑
m

fk,mi,j ,

∀(i, j) ∈ S

(21)

∑
i

∑
j

∑
k

∑
m

fk,mi,j · τ
(k,m)
(i,j) = 1 (22)

fk,mi,j > 0, ∀(i, j) ∈ S,∀(k,m) ∈ A (23)

where C(poff ) is the cost function calculated with a specified
poff value. Constraint (21) addresses the balance condition for
a system in steady state. Constraint (22) normalize the sum of
the probability in all states. Constraint (23) limits a frequency
value to be non-negative. Note that now the objective function
and the constrains are all transformed into a linear form of the
optimization variables. This is a linear programming problem
that can be solved using standard solver such as the MOSEK
[21]. Note that although their is no explicit constraint to
enforce that no more than one fk,mi,j can be greater than zero,
this is in fact the case in our problem formulation. It means that
for any specified state (i0, j0), we can find at most one action
(k0,m0) which is taken at a positive frequency. Then we know
that a deterministic policy exists and π(i0, j0) = (k0,m0).

B. Find the optimal poff
Since the value of the cost function C can be acquired using

the approach mentioned above, the problem of finding optimal
poff between 0 and 1 is a one-dimensional unconstrained
optimization problem. In general, C is a quasi-convex function
of poff that will decrease before an optimal point and increase
after that. Therefore, we can apply the golden section search
technique [22] to get the optimal value of poff .

V. EXPERIMENTAL RESULTS

In this section, we implement the proposed algorithm and
compare it with the baseline algorithms. Note that we use the
normalized value for most of the parameters instead of their
real value in the simulation setup.

We use the following simulation parameter setup: the
request generation rate varies from 0.4 to 1.4. The average
execution time on the server and the RTT add up to 1.6. The
maximum length of both queues is set to 10. The average
processing rate of the processor at the minimum frequency is 1.
The static power of the processor is 0.2 and the dynamic power
at the minimum frequency is 1. The processor can perform a
five-level DVFS at 1x, 1.25x, 1.5, 1.75x, and 2x of the mini-
mum frequency. The average processing rate is proportional to
the frequency. The dynamic power is proportional to the square
of the frequency. The static power of the transmitter is 0.2. The
transmitter can select QPSK (4-QAM), 16-QAM, or 64-QAM
as its modulation scheme. The average transmitting time for a
request in QPSK scheme is 0.25 with an FER of 10−2. The
symbol rate and the distance between neighboring symbols are
the same in different modulation schemes. Therefore the ratio
of bit rate in three scheme is 1:2:3, and the ratio of FER is
approximately 6:3:2. The dynamic power consumption of the
three modulation schemes are 1, 2.5, 11.5 respectively. The



Fig. 3. Cost comparison between the proposed algorithm and some most
simple baselines

Fig. 4. Cost comparison between the proposed algorithm and some improved
baselines

total equivalent power consumption in equation (12) is set to
be two time the equivalent power consumption of the processor
and the transmitter altogether. The power conversion efficiency
is set to 0.85 for all components. The coefficient kpower in (15)
is set to 0.5 and the Peukert constant is set to 1.3.

We first consider the baseline without any offloading or
DVFS. In Baseline 1, the processor always runs at the mini-
mum frequency to reduce the power consumption. In Baseline
2, the processor always runs at the maximum frequency to
minimize the delay. In Baseline 3, the processor always runs
at the medium frequency (1.5x) to seek for a balance between
performance and power issue. It can be seen from Fig. 3 that
the proposed algorithm consistently outperforms these three
baselines. When λ = 1, the cost of the proposed algorithm is
33.2%, 24.7%, and 15.4% lower than that of Baseline 1, 2,
and 3, respectively.

We then consider the baselines that support DVFS and
modulation scheme selection but cannot determine the optimal
offloading probability, poff . In Baseline 4, requests are always
dispatched to the local processor. In Baseline 5, requests are
always dispatched to the remote server. It can be seen from
Fig. 4 that the proposed algorithm still have lower cost in
every case than Baseline 4. Compared to Baseline 5, the cost
of the two algorithms are almost the same when the request
generation rate is low since the optimal policy would be 100%
offloading in that case. But the cost increase much slower in
the proposed algorithm than does in Baseline 5 as the request
generation rate goes up. When λ = 1, the cost of the proposed
algorithm is 12.0% and 10.3% lower than that of Baseline 4

and 5 respectively.

VI. CONCLUSION

In this paper, we consider the the problem of optimal task
dispatch, transmission, and execution for a mobile device in a
MCC system. The objective is to balance between performance
and battery life to improve overall service quality through
appropriately offloading tasks to the server and allocating local
resources in a power-aware manner. The power consumption of
different components is considered and a more realistic model
for the discharging process including the rate capacity effect
and the power conversion loss is utilized. We model the mobile
device as a SMDP and solve the optimization problem using
linear programming combined with a golden section search.
The experimental results show that the proposed algorithm
consistently results in lower cost than baseline algorithms.

REFERENCES
[1] P. Rong and M. Pedram, “Extending the lifetime of a network of battery-

powered mobile devices by remote processing: a markovian decision-
based approach,” in Design Automation Conference, 2003. Proceedings,
2003, pp. 906–911.

[2] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, 2011.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM symposium on Operating systems
principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
164–177.

[4] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp.
51–56, 2010.

[5] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
INFOCOM, 2012 Proceedings IEEE, 2012, pp. 2716–2720.

[6] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource
allocation for overall energy minimization in mobile cloud computing
system,” in Proceedings of the 2012 ACM/IEEE international sympo-
sium on Low power electronics and design, ser. ISLPED ’12. New
York, NY, USA: ACM, 2012, pp. 279–284.

[7] C. Shankar and R. Campbell, “Managing pervasive systems using role-
based obligation policies,” in PerCom Workshops 2006, Proceedings
IEEE, 2006, pp. 373–377.

[8] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic,
“Adaptive offloading inference for delivering applications in pervasive
computing environments,” in PerCom 2003, Proceedings IEEE, 2003,
pp. 107–114.

[9] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” Wireless Communications, IEEE Transactions
on, vol. 11, no. 6, pp. 1991–1995, 2012.

[10] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in Proceedings of the 9th international conference on Mobile
systems, applications, and services, ser. MobiSys ’11. New York, NY,
USA: ACM, 2011, pp. 43–56.

[11] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–62.

[12] D. Doerffel and S. A. Sharkh, “A critical review of using the peukert
equation for determining the remaining capacity of lead-acid and
lithium-ion batteries,” Journal of Power Sources, vol. 155, no. 2, pp.
395 – 400, 2006.

[13] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press,
2008.



[14] J. Medhi, Stochastic processes. Wiley, 1982.
[15] J. Proakis and M. Salehi, Digital Communications, ser. McGraw-Hill

higher education. McGraw-Hill, 2008.
[16] T. Rappaport, Wireless communications: principles and practice, ser.

Prentice Hall communications engineering and emerging technologies
series. Prentice Hall PTR, 1996.

[17] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage
scaled microprocessor system,” in Solid-State Circuits Conference,
2000. Digest of Technical Papers. ISSCC. 2000 IEEE International,
2000, pp. 294–295, 466.

[18] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” Selected Areas in
Communications, IEEE Journal on, vol. 23, no. 1, pp. 89–103, 2005.

[19] L. Kleinrock, Queueing systems. volume 1: Theory. Wiley-Interscience,
1975.

[20] E. V. Denardo, “On linear programming in a markov decision problem,”
Management Science, vol. 16, no. 5, pp. 281–288, 1970.

[21] E. D. Andersen and K. D. Andersen, The MOSEK interior point
optimization for linear programming: an implementation of the homo-
geneous algorithm. Kluwer Academic Publishers, 1999, pp. 197–232.

[22] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of
the American Mathematical Society, vol. 4, no. 3, pp. 502–506, 1953.


