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Abstract— The focus of this paper is on energy-aware resource 
management in a cloud computing system. Much of the 
existing work assumes that the resource requirements for 
various applications are known and given as scalar values. 
However, it is very difficult to know the exact resource 
requirements, and thus, it is more appropriate to treat 
resource requirements for applications as random variables 
with known characteristics. For a desired quality of service, 
the required total resource amount can then be estimated as a 
function of the means and standard deviations of these random 
variables. Inspired by the modern portfolio theory, this paper 
presents algorithms that minimize the total amount of 
estimated resource in the system. A source of difficulty is that 
some of the aforesaid random variables may be correlated with 
each other. The proposed algorithms effectively deal with 
correlated applications. Experimental results show that, in 
spite of its simplicity and scalability, the proposed solution 
outperforms the well-known heuristics i.e., first fit decreasing 
(FFD) and best fit decreasing (BFD) by an average of 10% 
while having a low execution time.  

Keywords- Cloud computing; portfolio effect; bin-packing; 
resource allocation 

I.  INTRODUCTION 

Cloud computing systems, which are typically housed in 
facilities called data centers, are composed of a large number 
(say, thousands) of servers, each server consuming 100’s of 
Watt. This means that the power consumption of the servers 
plus cooling and air conditioning units in a typical datacenter 
can easily exceed 1MW. With 10 cents per KWhr of 
electrical energy consumed, the electrical energy cost alone 
will be in the order of thousands of dollars per day. Thus, 
there is a growing need for energy-aware resource 
management in cloud computing systems. Considering that 
much of the time, server machines in a data center are under-
utilized, efficient resource management can be quite 
effective in reducing the electrical energy cost of the cloud 
computing systems. 

Energy aware resource management problem has been 
the subject of many previous studies. A key approach has 
been to adopt a performance model and allocate resources so 
as to maximize the performance. For example, in [1], Gandi 
et al. present a performance model based on the queuing 
theory and allocate power to minimize the average response 
time of the tasks. Quality of the results obtained by such an 
approach is strongly dependent on the accuracy of the 
performance model. The issue is that it is difficult to come 

up with an accurate (assumption-free) performance model 
under realistic usage scenarios.  

Another approach for energy-aware resource 
management is based on the control theory.  For example, in 
[2], Raghavendra et al. present five power management 
controllers that utilize feedback control loops to minimize 
energy while meeting some performance targets. This 
approach is quite practical but the challenge is to determine 
control parameters, which are supposed to be customized for 
target systems. Yet another approach starts by assuming that 
resource requirements of applications are known and assigns 
resources to the applications. The approach makes the further 
assumption that there are no performance violations as long 
as enough resources are allocated to each application. For 
example, in [3], Srikantaiah et al. investigate the problem of 
application consolidation to minimize energy consumption in 
a cloud computing system. They assume that resource 
requirements for each application are pre-known, and thus 
formulate the problem as a multi-dimensional bin packing 
problem.  Stillwell et al., who study resource allocation 
problem for HPC applications [4], also assume that resource 
requirements are known a priori. Wilcox et al., which rely on 
a probabilistic resource requirement model [5], simply 
calculate the amount of required resource from the given 
probability density function (pdf). 

In this paper, we assume resource requirements for each 
application are given as random variables with known means 
and standard deviations. We believe random variable 
resource requirement model is more realistic and useful than 
deterministic model; this is because resource requirements 
are estimated from historical data and profiling, which are 
subject to noise and uncertainties and show variability. If the 
resource requirements are modeled as random variables, we 
can reduce the total amount of required resource by applying 
principles of the modern portfolio theory. 

There can be tens of thousands of virtual machines and 
thousands of physical machines in a cloud computing system. 
Hence, scalability of any proposed resource management 
solution is a must. In this paper, we present a portfolio-based 
hierarchical resource management solution, which is scalable 
and reduce the energy cost of the cloud computing system.   

The rest of the paper is composed as follow: In the 
section II, we introduce the concept of portfolio effect and 
our problem statements. Main algorithms and detailed 
explanation about the proposed scheme is explained in 
section III. In section IV, the simulation results are shown 
and discussed. Finally, we summarize and conclude in 
section V. 



II. PORTFOLIO BASED RESOURCE ALLOCATION 

A. Estimation of the required resource  

We assume that the amount of a required resource for 
each application is specified as a random variable (RV). This 
amount is estimated based on the application characteristics 
and computing needs as well as the target quality of service 
(QoS) level. If the cumulative distribution function (cdf) of 
this RV is known, we can estimate the amount of required 
resource from the cdf based on our target QoS. However, 
such detailed information may not be available in many 
cases. Without knowledge of the cdf, and based on only the 
mean and standard deviation of RVs, the amount of required 
resource can be estimated by Cantelli's inequality [6], which 
is the one-tailed variant of Chebyshev’s inequality: ��� � �� � �	�
 � 1 1 � ���� 			 , � � 0	 (1) 

According to the Cantelli’s inequality, the amount of 
resource to achieve a target QoS of ��/1 � ���  may be 
calculated as: �� � �	� (2) 

In this study, our target QoS is 95% resource satisfaction 
i.e., 95% of the time the resource allocation meets the 
resource requirement of the application. This is achieved 
with β = 4.4. However, the above equation tends to overbook 
the resource because the Cantelli’s inequality does not give a 
tight bound. If we know more information about the VM 
such as the cdf, we can assign fewer resources while meeting 
the same QoS. For example, if we are told that RV X is 
normally distributed, β can be set to as low as 1.7, which is 
much smaller than what the Cantelli’s inequality gives.  

According to the central limit theorem (CLT), the mean 
of a sufficiently large number of independent random 
variables, each with finite mean and variance, will be 
approximately normally distributed [6].  CLT holds even for 
weakly dependent RVs. Hence, we can use smaller β (=1.7) if 
the RV is sum of large number of weakly dependent RVs.  

B. Review of the modern portfolio theory 

Modern portfolio theory (MPT) is a theory of finance, 
which attempts to maximize a portfolio’s expected return for 
a given amount of portfolio risk, or equivalently minimize 
risk for a given level of expected return, by carefully 
choosing the proportions of various assets.  The MPT models 
an asset's return as a normally distributed function, defines 
risk as the standard deviation of return, and models a 
portfolio as a weighted combination of assets, so that the 
return of a portfolio is the weighted combination of the 
assets' returns. By combining different assets whose returns 
are not perfectly positively correlated, MPT seeks to reduce 
the total variance of the portfolio return [7]. 

MPT reduces risk of portfolio through the portfolio effect, 
which may be stated as follows: the risk of a portfolio is 
always less than or equal to sum of each asset’s risk (3). Let 
Y denote a portfolio composed of assets Xi. Then, �� � ∑ ����  ,   	�� � ∑ ∑ ���	��	���� 	� 	 �∑ 	��� ��   !"#"	$ � ∑ ��� 	and	���()	*!"	+,##"-.*(,/	  +,"00(+("/*	1"* ""/	��	./2	��31 � ��� � 1�   (3) 

The degree of risk reduction is a function of a correlation 
coefficient (���)—the smaller ��� is, the lower the risk is (cf. 
Figure 1. ) In other words, one has to avoid from putting 
highly positively correlated assets into the same portfolio.  

In this study we apply the portfolio effect to resource 
assignment problem in a cloud computing system in order to 
reduce the standard deviation of the required resource. From 
(2), a reduction in the standard deviation also reduces the 
amount of required resource. The goal is then to do a VM to 
PM assignment such that the sum of standard deviations for 
all PMs is minimized.  Note that this is a reasonable problem 
formulation since by minimizing the total amount of required 
resource for the given QoS level, fewer PMs can be utilized; 
hence, energy cost can be reduced.  

 

Figure 1.  Effect of correlations between portfolio’s assets on a portfolio’s 
risk (standard deviation) 

We illustrate the portfolio effect applied to resource 
management by the following example (cf. Figure 2. ) 
Consider four applications and two physical machines (PM1 

and PM2.). For simplicity sake, we assume applications are 
uncorrelated. The case on the left assigns the 1st and 2nd 
applications to PM1 and the other two to PM2. Once a 
collection of VMs are assigned to a PM, the standard 
deviation of the required resource for that PM is computed as 
the square root of the sum of variances of assigned 
applications. The total standard deviation of the left case is 
31.6 (� √15� � 5� � √15� � 5� .) On the other hand, the 
case on the right assigns the 1st and 4th applications to PM1 
and the other two to PM2. In this case, the total standard 
deviation is 28.3 (� √15� � 15� � √5� � 5� ), which is 
smaller.  As discussed before, the second case will require 
less resource to meet the same QoS level, and hence, it is 
more desirable.  

 
Figure 2.  Comparison of different resource allocation cases 
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From the above discussion, we conclude the following: 
1. It is desirable to assign applications that are least 

(positively) correlated to the same PM.  
2. Applications must be well deployed on PMs to 

maximize the portfolio effect. 
It is well known that the performance drops dramatically 

when CPUs are almost fully utilized (close to 100% 
utilization) [8]. Hence, the target CPU utilization level 
should be appreciably lower than 100%, e.g. 80%. We 
assume that the resource capacity of the CPUs is set based on 
this target CPU utilization level.  

Our target system is a virtualized cloud computing 
system. This is not because the proposed solution is only 
applicable to virtualized systems; Instead it is because the 
proposed solution can easily be implemented and applied 
under virtualized systems—live migration [9], which 
decreases the performance overhead of virtual machine 
migration, and performance isolation [10], which makes 
effective resource management easier, are supported in 
virtualized environments.  

C. Problem statement - bin-packing optimization problem 

There are M physical machines (PMs) and N virtual 
machines (VMs.) We assume that the amount of resource 
required by VMs are random variables (RVs) with known 
means and standard deviations. In this paper, we only 
consider CPU resource. The work may be extended to deal 
with multiple resource type. We leave it as the future work.  

Our objective is to find the optimal assignment ("67) of 
VMs to PMs so as to minimize the total amount of assigned 
resource while meeting the target QoS.  

To provide a precise problem formulation, we need to 
give some definitions and notation. �6 : CPU resource required by the nth VM (n = 1,2,…,N.) 

This is a RV (similar to an asset) with mean and 
variance of ��8 and 	�8� ��� : Correlation coefficient between ��  and �� "67  : Assignment variable. It is 1 if the nth VM is 
assigned to the mth PM, and 0 otherwise  $7 � ∑ "67 ∙ �6:6;<  : Total CPU resource demand on the 
mth PM. This is a RV (similar to a portfolio) #7 : CPU resource capacity of the mth PM (m = 1,2,…,M) 07 � =1								(0	$7 	� 0				0								,*!"# ()"		  

The minimum resource assignment (MRA) problem may 
be formulated as follows. >(/2	"67	*,	?(/(?(@"	 ∑ 07 ∙ #77   

). *.		 B∀/,?						"67 ∈ �0, 1
														∀/											 ∑ "67E7;< � 1										∀?											��$7 � #7
 	� 0.95  
(4) 

If PMs are homogenous, the objective is simply to 
minimize the number of active PMs (∑ 077 	.) However, our 
target system is comprised of heterogeneous PMs, thus our 
objective function is the sum of total required resource for all 
active PMs (those to which at least one VM has been 
assigned.) Note that the above formulation assumes that 
resource capacity of a PM will be fully utilized as soon as the 
PM becomes active. It implicitly drives a solution to have 

fewer active PMs as possible. As shown in (2), the last 
condition of (4) can be re-written as follow: ∀?			��G � �	�G 	� 	 #7 

 !"#"	� � 	 H1.7					(0	$7	()	2()*#(1J*"2					/,#?.--K4.4					,*!"# ()"																		  
(5) 

The above problem is variation of the bin-packing 
optimization problem, which is known to be a NP-hard 
problem [6]. Several heuristic algorithms have been 
presented in the literature to solve this problem, including the 
first fit decreasing (FFD) and best fit decreasing (BFD) 
algorithms. The solution should be scalable because there 
can be tens of thousands of VMs and thousands of PMs in a 
cloud system [11]. In this paper, we present a hierarchical 
resource management solution.  The algorithms used as parts 
of this solution are explained in section III, and we will show 
that the proposed solution outperforms FFD and BFD in 
terms of our objective function (4) in section IV. The 
improvement is possible because the proposed solution 
effectively maximizes the portfolio effect by considering 
correlation between required resources of applications. 

The proposed solution is composed of a cloud-level 
resource manager and cluster-level resource managers. We 
introduce additional definitions and notation. MN : Set of indices m of the PMs that belong to the cth 

cluster (c = 1, 2,…,C) O6N  : Assignment variable. It is 1 if the nth VM is 
assigned to the cth cluster; otherwise  0 (c = 1,2,…,C) PN � ∑ O6N ∙ �6:6;<  : Total CPU resource demand on the 
cth cluster *N � ∑ #77∈QR  : CPU resource capacity of the cth cluster 

A cloud-level resource manager deploys VMs to clusters. 
A cluster can be defined as a group of PMs, which are 
connected to each other through a network switch and are 
sharing their power supply. Now we have a new 
optimization function. The summation of the means is 
independent of the assignment variables (06N), so the new 
objective is to minimize the sum of standard deviations of 
the clusters. 

S(/	T ��UR � �	UR�V
N;< 	≡ S(/	T 	URV

N;< 	 
). *.		 B∀/, +											06N ∈ �0, 1
∀/											 ∑ O6NVN;< � 1∀+			�UR � X	UR 	� 	 *N   

(6) 

After the cloud-level resource manager deploys VMs to 
clusters, cluster-level resource managers deploy VMs to 
PMs. Note that cluster-level resource managers are 
independent of each other, i.e., they work in parallel. 
Resource allocation problem of cluster-level resource 
managers is the same as problem (4), but its size is much 
smaller. 

III.  HIERARCHICAL RESOURCE MANAGEMENT SOLUTION 

In this section we introduce main idea and algorithms for 
the hierarchical resource management solution. The 
proposed solution is composed of two resource managers, 
cloud-level and cluster-level resource manager. First the 



cloud-level resource manager assigns VMs to clusters, and 
then the cluster-level resource manager allocates VMs to the 
PMs in the cluster.  Modern data centers consist of many 
clusters, and the number of PMs in a cluster is bounded 
because of capacity of network switches and power supply 
capacity limitations: larger data centers or cloud computing 
systems have more clusters, but typically not bigger clusters. 
The key advantage of the proposed solution is that it converts 
a large problem into number of small independent problems. 
The size of small problems is bounded, and these problems 
can be solved in parallel, thus, there is an opportunity to 
apply more sophisticated and elaborate solution approaches 
to these problems, something which is not possible for the 
original (flat) problem because of its size.  

A. Cloud-level Resource Manager 

The cloud-level resource manager assigns VMs to 
clusters. Some VMs may be correlated with each other. For 
example, multiple VMs may be spawned off by the same 
application and VMs may correspond to different tiers of a 
multi-tiered application, etc. We can imagine two typical 
cases: all VMs are uncorrelated or some VMs are correlated 
each other. Because the uncorrelated case is simpler, we 
analyze and solve this case first in order to get some useful 
intuition, and then present another algorithm for the other 
case where some VMs are correlated each other. 

1) Case1: uncorrelated (��� � 0	(0	( Y Z) 
In this section we present the Portfolio-based Resource 

Allocation algorithm I (PBRAuncorr), which is for the case that 
resource requirement of VMs (Xn) is uncorrelated. Main idea 
of the algorithm is based on the following proposition. 

Proposition: Let us say we have N balls with weights σn 
(n = 1, 2, … , N) and K bins. The size of the kth bin is ck and 
total size of all bins is the same as the number of balls 
(∑ +[\[;< � ].) The balls are sorted by their weight in non-
increasing order (	� � 	�	0,#	( ^ Z.) The bins are also sorted 
by their size (ck) in non-increasing order (+� � +� 	0,#	( ^ Z.) 
Set M[ is the set of balls that are put into the kth bin. Cost is 
defined as: 

+,)* ∶�T` T 	6�a8∈Qb
\
[;<  (7) 

The cost is minimized if the bin of bigger size contains 
the heavier (or the same weight) balls: 0,#		c ∈ M� 	./2		d ∈ M� 			( ^ Z� 	c � 	d (8) 

Proof: We first think about a simple case that there are 
only two bins (K = 2.) It will be generalized later. The initial 
deployment of balls is: M< � e	<, 	�, … , 	Ngh	./2		M� � e	Ngi<, 	Ngi�, … , 	:h 

The cost of the initial deployment is: 

+,)* � j∑ 	6�Ng6;< �j∑ 	6�:6;Ngi<   

Now, each set is split into two subsets.  M< � Mk ∪ Mm	and	M� � MV ∪ Mn  
Assume that the size of set Mk is the same as that of	MV. 

The cost can be rewritten as follow: 

+,)* � √vk � vm �pvV � vn ,  !"#"	v∗ � ∑ 	6�a8∈Q∗   
Note that there is couple of inequalities between sets: vk � vV 	./2	vm � vn  
This is because any member of Mk  is greater than 

members of MV  and any member of Mm  is greater than 
members of	Mn. In addition, the size of Mk is equal to that of MV and the size of Mm is greater than or equal to that of	Mn. 

If set Mk is swapped for set	MV, the new cost is: +,)*r � pvV � vm � √vk � vn  
For easy comparison of the cost, we check if the 

difference of cost squared is positive or negative. +,)*r� 3 +,)*�  � 2�pvV � vm�vk � vn� 3 pvk � vm�vV � vn��  vV � vm�vk � vn� 3 vk � vm�vV � vn�  � vk 3 vV�vm 3 vn� 	� 0  
 Hence,	+,)*r� 3 +,)*� � 0	and	+,)*r 	� 	+,)*  and this 

means the initial deployment (8) is the optimal solution in 
terms of minimum cost.   

This result can be generalized. For the case of more than 
two bins (K > 2), we can convert any swaps among a number 
of bins into a sequence of swaps between two bins. Hence, 
the proposition is true for the general case. □  

Note that the above proposition is not perfectly fit to our 
problem. Capacity of bins is defined as the number of balls it 
can have, so the capacity is independent of the types of balls. 
However, in our problem, the number of VMs that can be 
assigned to a cluster depends on the resource requirements of 
the VMs. Nevertheless, simulation results in section IV show 
that the proposed algorithm, which is based on the above 
proposition, produces high quality results.  

Pseudo code of Portfolio-based Resource Allocation 
Algorithm I (PBRAuncorr) is shown below. Its main structure 
is similar to the First Fit Decreasing (FFD) algorithm.  
Portfolio-based Resource Allocation Algorithm  I (PBRAuncorr )  
Inputs:     	*N	, ��8 	, 	�8 	, ./2	��� 
Output:     gnc 
1: sort clusters C  by *N in non-increasing order 
2: sort VMs �6by 	�8 in non-increasing order     
3: for all clusters C do 
4:     for all unassigned VMs �6 do 
5:        gnc = 1           // assign �6 to C 
6:       resource = ∑ O�N ∙ ���� � � ∙ ∑ ∑ O�N ∙ O�N ∙ ��� ∙ 	�� ∙ 	����  
7:       if  resource > tc then       
8:             gnc = 0       // cancel the assignment  
9:       end if 
10:    end for 
11: end for 

Figure 3.  Portfolio-based Resource Allocation Algorithm I (uncorrleated) 

At the beginning, we sort clusters and VMs in non-
increasing order (lines 1 and 2 in Figure 3. ) Note that VMs 
are sorted by their standard deviations, not by their means. 
For each cluster the algorithm pre-assigns the VM with 
largest standard deviation among all unassigned VMs (lines 4 
and 5.) It calculates the total amount of resource that the 
cluster is supposed to provide (line 6.) If it is greater than the 
capacity of the cluster, the assignment is canceled (line 7 and 
8.) We repeat the above steps until either all VMs are 



assigned or all clusters are full. Note that the equation in line 
6 can be simplified as: ∑ O�N ∙ ���� � � ∙ ∑ O�N ∙ 	����   (9) 

This is because correlation coefficient ��� is zero for	( Y Z , 
that is, Xi‘s are uncorrelated. 

2) Case2: correlated  
Dealing with the correlated case requires very high 

amount of computing resources because complexity of 
correlation calculation is square of the number of VMs. 
Finding the optimal solution takes huge amount of time and 
makes the scheme is non-scalable. Hence, we present a 
heuristic approach to solve the problem. 

The main idea is that a VM is assigned to a cluster one at 
a time and the best VM is selected in a greedy manner. 
Suppose there are N VMs in a cluster (� � ∑ �6	:6;< ) and we 
are going to assign a VM to the cluster. If a VM is deployed 
to the cluster, variance of the cluster becomes: 	�i�tug� � 	�� � 2�∑ �6: ∙ 	�8:6;< �	�tug � 	�tug�	  v"/.-*K ∶� ∑ �6: ∙ 	�8:6;<   

(10) 

If there are a few candidates �:i< for whom the standard 
deviations 	�tug are similar to each other, the VM with least 
penalty (10) is the best choice that gives rise to the smallest 
increase in standard deviation. 

Portfolio-based Resource Allocation algorithm II 
(PBRAcorr) is nearly identical to PBRAuncorr except for a few 
lines (lines 5 through 8 in Figure 4. ) It considers the first H 
VMs as candidates for allocation. Because the list of VMs is 
sorted by standard deviations of the VMs, standard deviations 
of the candidates are similar to each other. Hence, PBRAcorr 
subsumes the correlated case by choosing the VM with least 
penalty (10) among the candidates.  

Determining proper H is important for good performance 
of the algorithm. If H is 1, PBRAcorr becomes almost 
identical to PBRAuncorr. On the other hand, PBRAcorr is very 
different from PBRAuncorr if H is equal to N. Hence, it is 
important to choose a proper value for H. Intuitively, a large 
value for H is reasonable if many VMs are correlated. 
However, it is not so simple, and it will be discussed at the 
next section IV. 

B. Cluster-level Resource Manager 

The cluster-level resource manager deploys VMs that are 
given by the cloud-level resource manager on PMs of the 
cluster. Its job is conceptually equivalent to the job of the 
cloud-level resource manager: assign VMs to clusters/PMs. 
Thus, we use the same algorithms (PBRAcorr and PBRAuncorr) 
for implementation of the cluster-level resource manager: 
the only difference is clusters in the algorithms are replaced 
by PMs. However, more elaborate algorithms e.g., minimum 
bin slack (MBS) heuristic [12] may also be used. Because 
the size of problems given to the cluster-level resource 
manager is bounded, we have more liberty to choose more 
complex (but yielding better results) algorithms. 

The algorithms implicitly reduce the energy cost by 
utilizing the minimum number of PMs. The algorithms start 
from sorting its PMs by their capacity in non-increasing 
order, and assigning as many as VMs to each PM. Hence, the 
algorithms effectively solve (4).  

There may be no feasible solution. If the manager cannot 
deploy some VMs, it lets the cluster-level resource manager 
know which VMs are not assigned. The cluster-level 
resource manager will reassign the VMs to other clusters. 
These steps are repeated until either all VMs are assigned or 
all clusters are full. 
Portfolio-based Resource Allocation Algorithm  II (PBRAcorr )  
Inputs:     	*N	, ��8 	, 	�8 	, ./2	��� 
Output:     gnc 
1: sort clusters C  by *N in non-increasing order 
2: sort VMs �6by 	�8 in non-increasing order     
3: for all clusters C do 
4:     while true then 
5:        for the first H unassigned VMs �6 do 
6:              find �6 of which penalty is minimal (10)  
7:              where penalty = ∑ O�N ∙ ��6 ∙ 	��� 	
8:        end for 
9:       gnc = 1            // assign �6 to C 
10:       resource = ∑ O�N ∙ ���� � � ∙ ∑ ∑ O�N ∙ O�N ∙ ��� ∙ 	�� ∙ 	����  
11:        if  resource > tc then       
12:            gnc = 0       // cancel the assignment  
13:           break         // break while loop 
14:        end if 
15:    end while 
16: end for 

Figure 4.  Portfolio-based Resource Allocation Algorithm II (corrleated) 

IV. SIMULATION RESULTS 

A. Simulation setup 

For the simulation we needed the following data:  
i) capacity of PMs, ii) list of PMs in clusters, iii) means and 
standard deviations for resource requirements of VMs, and iv) 
correlation coefficients among various VMs. We generate the 
data randomly as follows: 

• Number of VMs (N), PMs (M), and clusters (C) 
• Resource requirements of VMs: mean and standard 

deviation of	��/, 	�8   (�wx8 , 	wx8 , �ax8 , ./2		ax8) 

• Capacity of PMs: mean and standard deviation of 
total resource amount 

• yzc{�|	: (# of correlated VMs) / (# of total VMs) 
• y}�~�: # of correlated VMs in a group 
It is randomly decided which PMs are placed in which 

clusters. Because we have heterogeneous VMs, their means 
(���) and standard deviations (	��) are randomly generated 
from the given information (�wx8 , 	wx8 , �ax8 , ./2		ax8 .) A 
correlation matrix is created based on yzc{�| and	y}�~�. Note 
that yzc{�| � 0  means all VMs are uncorrelated whereas yzc{�| � 0.5 means half of VMs are correlated. Furthermore, 
if, for example, we have 10 correlated VMs and	y}�~� � 5, 
there is going to be two groups, and each of the two groups 
has five VMs in it. VMs in a group are correlated only with 
the VMs in the same group. 

Making a valid correlation coefficient matrix �����  is 
important. We use the hypersphere decomposition [13] 
method, which is a relatively simple method for generating a 
valid correlation matrix.  



B. Comparing algorithms 

To assess the quality of solutions generated by the 
proposed algorithms, we compare our solution with some 
other well-known algorithms: 

• SA–use simulated annealing [14] algorithm. It does not 
guarantee to find the global optimal point, but it finds a 
near-optimal solution given a slow enough cooling 
schedule. This method may generate different solutions 
each time, so we run the SA six times and pick the best 
result. SA results may be treated as the result to beat. 

• random–do assignments randomly. If a solution is worse 
than random, it means quality of the solution is quite 
poor. Lower gap between results of SA and random 
means there is less gain to be had from any optimization. 
We run random algorithm ten times and report the 
average of these runs. 

• FFD and BFD–use first fit decreasing and best fit 
decreasing algorithms. Both are well-known and 
commonly used heuristics for solving the bin-packing 
problem. FFD sorts Xn by its resource requirements 
(�� � �	�) in a non-increasing order, and assigns Xn to 
the first cluster that is available. BFD is similar to FFD, 
but it assigns Xn to the cluster with the minimum 
remaining capacity among the cluster of which capacity 
is greater than (�� � �	�). None of these two heuristics 
takes advantage of the portfolio effect. More precisely, 
they treat the resource requirements of VMs not as RVs 
but as constant values equal to	�� � �	�. They simply 
add or subtract these constant values in order to 
calculate the required resource.  This is equivalent to 
assuming that all VMs are fully correlated (∀(, Z	��� � 1), 
which is a very conservative approach. 

• FFDpf and BFDpf – They are identical to FFD and BFD 
except that they consider the portfolio effect. 

C. Cloud-level Resource Manager 

The objective of the cloud-level resource manager is to 
minimize the sum of standard deviations of clusters (6), 
which will be called cost in this section. Lower cost means 
better quality of the solution. There are 300 VMs (N = 300), 
which is relatively small number of VMs. This is because SA 
requires huge amount of time for large problem sizes. We 
first investigate the quality of the algorithms by comparing 
with the near optimal (SA’s results) for small problem size, 
and then compare results of the algorithms except SA for 
larger number of VMs in section D. 

Figure 5. depicts normalized costs of the algorithms. For 
a fair comparison, we generate eight different test cases 
based on the same data and run simulations. Note that even 
based on the same data, the results can be different because 
the data is randomly generated in each case (see IV-A.) Both 
PBRAcorr and PBRAuncorr produce excellent results that are 
even better than the results of SA (Figure 5. a.) Note that 
results of PBRAcorr and PBRAuncorr are almost identical when 
VMs are uncorrelated (yzc{�| � 0.) This is because penalty 
(10) is always zero for H candidate VMs.  When half of the 
VMs are correlated (yzc{�| � 0.5), PBRAcorr produces better 
result (less cost) than PBRAuncorr, and is still better than SA 
for six test cases (Figure 5. b.) 

Quality of the algorithms can be affected by yzc{�| and	y}�~� , thus we run multiple simulations for 
different combinations of yzc{�| and 	y}�~� . Comparison 
among the algorithms under different 	y}�~� values is shown 
in Figure 6. 	yzc{�| is 0.9 for all cases, which means 270 VMs 
out of 300 VMs are correlated. For larger	y}�~� , the cost 
difference between random and SA decreases, which means 
cost reduction from optimization decreases. This is because 
if 	y}�~�  is sufficiently enough, we can easily put positively 
correlated VMs into different clusters; hence the cost will 
decrease a lot. On the other hand, if too many VMs are 
correlated with each other, it is difficult to avoid assigning 
correlated VMs to the same PM. Hence, there are small 
improvements obtained from the algorithms.  

 
Figure 5.  Comparison among algorithms (N = 300, H=30) 

 
Figure 6.  Size of correlated group vs. cost (yzc{�|= 0.9, N=300, H =30) 

If 	y}�~�  is small enough, the quality of PBRAcorr and 

PBRAuncorr is not influenced much by yzc{�| (Figure 7. ) 
PBRAcorr produces better results than PBRAuncorr and cost of 
both algorithms increases a little bit for higher	yzc{�|. This 
shows that the proposed algorithms produce high quality 
solutions if size of correlated group is small enough. The 
statement is also valid even if there are many correlated VMs. 

 
Figure 7.  Ratio of correlated VMs vs. cost (y}�~�= 10, N=300, and H=30) 

As mentioned at the previous section, choosing a proper 
H is important for higher quality of PBRAcorr (Figure 4. ) If 
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H is 1, PBRAcorr is nearly identical to PBRAuncorr. On the 
other hand, PBRAcorr becomes very different from PBRAuncorr 

when H is N (the number of VMs.) Note that there are two 
reasons for cost reduction: the first one comes from the 
proposition presented in section III.A and the second is due 
to avoiding the assignment of highly correlated VMs to the 
same cluster. The best H minimizing the cost is decided 
depending on which source of cost reduction is dominant: 
when the first source (proposition) is dominant, smaller H is 
better choice and vice versa. 

The results of PBRAcorr for variety of H values are 
reported in Figure 8. It is expected that the best H is not the 
same under different patterns of correlation: How many VMs 
are correlated and how big the group of correlation is? We 
categorize correlation patterns into four cases and run 
simulations for each case: 

• Mid 	yzc{�|(0.5), small y}�~�(10) – Figure 8. a 
• Mid 	yzc{�|(0.5), large y}�~�(100) – Figure 8. b 
• High 	yzc{�|(0.9), small y}�~�(10) – Figure 8. c 
• High 	yzc{�|(0.9), large y}�~�(100) – Figure 8. d 

 
Figure 8.  H vs. cost for four cases (N=300) 

yzc{�| = 0.5 means that half of VMs are correlated; hence 
there are two sources of cost reduction. Depending on which 
source is dominant, the best H value is chosen. For 
small	y}�~� (Figure 8. a), it is easier to avoid putting highly 
correlated VMs into the same cluster. In addition, bigger H 
means more candidate VMs are investigated; hence, cost 
saving from the second source becomes greater. However, at 
the same time, cost saving from the first source (proposition) 
keeps decreasing for bigger H. Thus, the best H is around 50 
(Figure 8. a.) How about bigger y}�~� with the same	yzc{�|? 
(Figure 8. b) As shown in Figure 6. , the amount of cost 
saving from putting correlated VMs in separate clusters 
becomes smaller for bigger	y}�~�.  Thus, cost saving from the 
first source is dominant. Because cost saving from the 
second source is rather small, the best H is around 10. When yzc{�| is close to 1.0, that is most of all VMs are correlated, it 
is highly probable that the second source of cost saving is 
dominant (Figure 8. c and d) When 	y}�~� is small (Figure 8. 
c), there is more cost saving as H increases, and amount of 
cost saving of this case is largest among the four cases. 

When both yzc{�|  and y}�~�  are large, PBRAcorr always 
produces better result, but there is neither big difference in 
cost nor a clear relationship between H and cost saving 
(Figure 8. d.)  

Based on the above discussion, we get some insight for 
choosing the proper H. First of all, relatively bigger H is 
promising for the case of small	y}�~� (Figure 8. a and b.) For 
the last case (Figure 8. d), it does not matter if we choose any 
value of H, but higher H increases the computational 
overhead. Hence, we need to pick as small H as possible. 
Consequently, small H is good for the case of large 	y}�~� 
(Figure 8. b and d.)   

D. Overall performance comparisons 

We have shown that the proposed algorithms are simple 
and work well for cluster-level resource allocation. Their 
results are very close to or even better than the SA results. 
What cluster-level resource managers do is very similar to 
what the cloud-level resource manager does: assign VMs to 
PMs. Hence, we apply the same algorithms (PBRAuncorr and 
PBRAcorr) for cluster-level resource managers. However, the 
high quality of each level does not necessarily guarantee the 
high quality of the overall solution. In this section, we will 
compare the quality of the final solution generated by 
different algorithms and verify that the proposed algorithms 
produce better quality solutions. In addition to this, we run 
the simulation for a large number of VMs, and show if the 
proposed scheme is scalable or not. 

Comparison among the algorithms with different 
numbers of VMs is reported in Figure 9. It is seen that costs 
of FFD and BFD are much larger than those of all others. 
This is because FFD and BFD do not consider the portfolio 
effect and thus tend to overbook the resource. A reason for 
this big difference is that 	�8is set to be larger than	��8 in 
this study, which magnifies the portfolio effect. Nevertheless, 
the experiment suggests that the portfolio effect has to be 
considered.  Figure 9. (a-2 and b-2) plots the same results as 
Figure 9. (a-1 and b-1) except that results of BFD and FFD 
are excluded for better visual clarity. Because PBRAuncorr and 
PBRAcorr are nearly the same for uncorrelated VMs, their 
results look almost identical. The difference in cost among 
the four algorithms is very small (less than 2 %) (Figure 9. 
(a-2).) Interestingly, PBRAcorr produces the best result for the 
other case where many VMs are correlated (Figure 9. b-2.) 
This result shows PBRAcorr outperforms all other heuristics 
when many VMs are correlated (up to 10% cost reduction 
compared to FFD.) 

One of the most important features of a solution for 
clouding computing is scalability. Hence, the relationship 
between execution time of the algorithms and problem size is 
very important. Execution time of the proposed algorithm is 
defined as follow: ���� � �N�|�� �max	�N��}{�z� 
where �N�|�� 	and �N��}{�z  are execution time of the cloud-
level resource manager and cluster-level resource managers, 
respectively. The cluster-level resource managers are 
running in parallel; hence, their longest execution time is 
used. As shown in Figure 10. , the trends of two cases 
(correlated and uncorrelated) are very similar: execution time 

0 20 40 60 80 100
0.92

0.94

0.96

0.98

1

1.02

(a) C
ratio

=0.5 ,  C
size

=10

co
st

 (
n

o
rm

a
li

ze
d

)

0 20 40 60 80 100
0.85

0.9

0.95

1

(c) C
ratio

=0.9 ,  C
size

=10

co
st

 (
n

o
rm

a
li

ze
d

)

H

0 20 40 60 80 100
0.98

1

1.02

1.04

1.06

1.08

(b) C
ratio

=0.5 ,  C
size

=100

 

 

PBRA
uncorr

PBRA
corr

0 20 40 60 80 100
0.97

0.98

0.99

1

1.01

1.02

(d) C
ratio

=0.9 ,  C
size

=100

H



of FFD and BFD is the smallest while the execution time of 
PBRAcorr is the largest. Execution times of the other three 
algorithms (FFDpf, BFDpf, and PBRAuncorr) are similar. Note 
that y axis is plotted with a logarithmic scale; thus, the plots 
clearly show the proposed algorithms are scalable. In 
addition to this, the execution time of PBRAcorr becomes 
close to those of the other portfolio-based algorithms (FFDpf, 
BFDpf, and PBRAuncorr) as the number of VMs increases. 

 
Figure 9.  Quality comparison among algorithms (yzc{�|= 0 and 0.9) 

The results show that the proposed algorithms (PBRAcorr 
and PBRAuncorr) outperform the well-known heuristic 
algorithms (FFD and BFD.) PBRAcorr produces the best 
results among the algorithms for correlated VMs. The 
important fact is that the proposed scheme is distributed 
whereas other algorithms are centralized. Because the 
problem size of cluster-level resource manager is much 
smaller, we have the opportunity to apply more sophisticated 
algorithms with less concern about their computational 
complexity. Hence, the fact that solution of the proposed 
scheme is better than the existing heuristics is meaningful 
even when the difference between qualities of solutions is 
not so big. 

 
Figure 10.  Running time comparison among algorithms (yzc{�|= 0 and 0.9) 

V. CONCLUSIONS 

With increasing energy cost of cloud computing systems, 
necessity of energy aware resource management techniques 
has been growing. This paper proposed a hierarchical 
resource management scheme which is scalable and 
produces high quality solutions. Resource requirements were 
modeled as random variables and correlation among the RVs 
were considered. The proposed solution outperforms well-
known heuristic algorithms when VMs are correlated with 
each other. The solution achieves up to 10% cost reduction 
compared to FFD and BFD.  
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