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Abstract— The focus of this paper is on energy-aware resoce
management in a cloud computing system. Much of the
existing work assumes that the resource requiremest for
various applications are known and given as scalavalues.
However, it is very difficult to know the exact resurce
requirements, and thus, it is more appropriate to teat
resource requirements for applications as random wuaables
with known characteristics. For a desired quality @ service,
the required total resource amount can then be estiated as a
function of the means and standard deviations of #se random
variables. Inspired by the modern portfolio theory, this paper
presents algorithms that minimize the total amount of
estimated resource in the system. A source of diffilty is that
some of the aforesaid random variables may be coraed with
each other. The proposed algorithms effectively déawith
correlated applications. Experimental results showthat, in
spite of its simplicity and scalability, the proposd solution
outperforms the well-known heuristics i.e. first fit decreasing
(FFD) and best fit decreasing (BFD) by an average of 10%
while having a low execution time.

Keywords- Cloud computing; portfolio effect; bin-packing;
resource allocation

. INTRODUCTION

up with an accurate (assumption-free) performanceean
under realistic usage scenarios.

Another  approach for energy-aware resource
management is based on the control theory. For gheain
[2], Raghavendraet al. present five power management
controllers that utilize feedback control loopsnnimize
energy while meeting some performance targets. This
approach is quite practical but the challenge idettermine
control parameters, which are supposed to be custoinior
target systems. Yet another approach starts by asguhat
resource requirements of applications are knownaasins
resources to the applications. The approach makefitther
assumption that there are no performance violatinbng
as enough resources are allocated to each appficdtor
example, in [3], Srikantaiaét al. investigate the problem of
application consolidation to minimize energy conption in
a cloud computing system. They assume that resource
requirements for each application are pre-knowml #us
formulate the problem as a multi-dimensional binkpay
problem. Stillwell et al., who study resource allocation
problem for HPC applications [4], also assume thaburce
requirements are known a priori. Wilcekal, which rely on
a probabilistic resource requirement model [5], simpl
calculate the amount of required resource from ghen

Cloud computing systems, which are typically housed i probability density function (pdf).

facilities called data centers, are composed ofge laumber
(say, thousands) of servers, each server consub@idg of
Watt. This means that the power consumption of émeess
plus cooling and air conditioning units in a typidatacenter

In this paper, we assume resource requirementsaich
application are given as random variables with kmoweans
and standard deviations. We believe random variable
resource requirement model is more realistic anfulLig&an

can easily exceed 1IMW. With 10 cents per KWhr ofdeterministic model; this is because resource remgnts

electrical energy consumed, the electrical energy atone
will be in the order of thousands of dollars pey.dahus,
there is a growing need for energy-aware

are estimated from historical data and profilindyich are
subject to noise and uncertainties and show véitiabf the

resourceesource requirements are modeled as random vas;jatde

management in cloud computing systems. Consideriay thcan reduce the total amount of required resourcapplying

much of the time, server machines in a data centeurader-
utilized,
effective in reducing the electrical energy costhe cloud
computing systems.

principles of the modern portfolio theory.

efficient resource management can be quite There can be tens of thousands of virtual machames

thousands of physical machines in a cloud compuystem.
Hence, scalability of any proposed resource managemen

Energy aware resource management problem has begolution is a must. In this paper, we present #gim-based

the subject of many previous studies. A key apgrdaas
been to adopt a performance model and allocateines so
as to maximize the performance. For example, inGHndi

hierarchical resource management solution, whicitasable
and reduce the energy cost of the cloud computisges.
The rest of the paper is composed as follow: In the

et al. present a performance model based on the queuingction I, we introduce the concept of portfolifeet and

theory and allocate power to minimize the averagponse
time of the tasks. Quality of the results obtaingdsbch an

our problem statements. Main algorithms and detailed
explanation about the proposed scheme is explained

approach is strongly dependent on the accuracyhef t section Ill. In section IV, the simulation resulte ashown

performance model. The issue is that it is diffidol come

and discussed. Finally, we summarize and conclude i
section V.



. PORTFOLIOBASED RESOURCEALLOCATION The degree of risk reduction is a function of arelation
L . coefficient p;;)—the smallep;; is, the lower the risk is (cf.
A. Estimation of the required resource . Figure 1.) I:1 other words, (])ne has to avoid frouttipg

We assume that the amount of a required resource f@iighly positively correlated assets into the sawfglio.
each application is specified as a random varigR\g. This In this study we apply theortfolio effectto resource
amount is estimated based on the application cleaistats  assignment problem in a cloud computing system ierci
and computing needs as well as the target qudlisevice  reduce the standard deviation of the required resotrom
(Qo3 level. If the cumulative distribution functiomdf) of  (2) a reduction in the standard deviation alsauced the
this RV is known, we can estimate the amount of require@mount of required resource. The goal is then ta \d® to
resource from thedf based on our targ€poS However,  pMm assignment such that the sum of standard devéafmn

such detailed information may not be available iBngn 3|l PMsis minimized. Note that this is a reasonable prable
cases. Without knowledge of tiedf, and based on only the formulation since by minimizing the total amountrefjuired
meanandstandard deviatiorof RVs the amount of required resource for the give®oSlevel, fewerPMs can be utilized;
resource can be estimated ®gntelli'sinequality [6], which  hence, energy cost can be reduced.
is the one-tailed variant @hebyshev'@equality. stdev vs. correlation coefficient

P{Xzﬂx+ﬁax}§1/(1+32) >0 Q)
According to theCantelli’s inequality the amount of

resource to achieve a targ@pS of f%/(1 + £2?) may be
calculated as:

1 - -

,,,,UX"'UX
1 2

(normalized)

ux + Box (2)
In this study, our targegdoSis 95% resource satisfaction ‘ ‘ ‘
i.e., 95% of the time the resource allocation meéts % 0.5 0 05 1
resource requirement of the application. This isieae correlation coefficient (g, )
with 8 = 4.4. However, the above equation tends to ovérboo
the resource because tBantelli's inequalitydoes not give a  Figure 1. Effect of correlations between portfolio’s asseatsagortfolio’s
tight bound. If we know more information about thi risk (standard deviation)
such ashe cdf we can assign fewer resources while meeting e jllustrate theportfolio effect applied to resource
the sameQoS For example, if we are told th&®V X is  management by the following example (cf. Figure 2. )
normally distributedf can be set.,to. as Iow_ as 1.7, which isconsider fourapplicationsand twophysical machine¢PM,
much smaller than what ti@Eantelli's inequalitygives. and PM,.). For simplicity sake, we assume applications are
According to thecentral limit theorem(CLT), the mean  yncorrelated. The case on the left assigns thartd 2
of a sufficiently large number of independent rando applications toPM; and the other two t®M, Once a
variables, each with finite mean and variance, Wil  gjlection of VMs are assigned to RM, the standard
approximately normally distributed [6]CLT holds even for  geviation of the required resource for tRM is computed as
weakly dependeriRVs Hence, we can use smalie(=1.7) if  the square root of the sum of variances of assigned
theRVis sum of large number of weakly depende¥s applications The total standard deviation of the left case is

B. Review of the modern portfolio theory 31.6 & V152 + 52+ V152 + 52 ) On the other hand, the
Modern portfolio theory(MPT) is a theory of finance, C2S€ On the right assigns thi¢and 4' applications tPM,

which attempts to maximize a portfolio’s expectedmefor ~ and the other two @M, In this case, the total standard
a given amount of portfolio risk, or equivalentljnimize ~ deviation is 28.3 £ v15% + 152 + V5% + 52), which is
risk for a given level of expected return, by caligf Smaller. As discussed before, the second caseregilire
choosing the proportions of various assets. Th@ MBdels less resource to meet the sa@eS level, and hence, it is
an asset'seturn as a normally distributed function, defines more desirable.
risk as the standard deviation of return, and models a 04 =15
portfolio as a weighted combination of assets, st the 01=15 02=5 -
return of a portfolio is the weighted combinatioh the =20
assets' returns. By combining different assets w/hegirns w=10 | " .
are not perfectly positively correlated, MPT seakseduce oppl —appZ  app3  appd
the total variance of the portfolio return [7].

MPT reduces risk of portfolio through tipertfolio effect, O1s=212
which may be stated as follows: the risk of a pdidfis R | |

O2:3=7.1

always less than or equal to sum of each asssk<3). Let E>

Y denote a portfolio composed of assétsThen,
2

py =Zikx, o 0v" = %iX;pyoxox; < (Xiox,)

whereY = },; X; and p;;is the correlation 3) P, P, P, PM,
coef ficient between X; and X;(—1 < p;; < 1)

Ox_+x 1
172

standard deviation

4=20

Figure 2. Comparison of different resource allocation cases



From the above discussion, we conclude the follgwin ~ fewer activePMs as possible. As shown in (2), the last
1. It is desirable to assigapplicationsthat are_least condition of (4) can be re-written as follow:

(positively) correlated to the sarRd/. vm py, +Boy, < 1y
2. Applications must be well deployed ofPMs to 1.7 if Y, is distributed

maximize the portfolio effect. where § = normally ®)
It is well known that the performance drops draozly 44 otherwise

when CPUs are almost fully utilized (close to 100% The above problem is variation of thgin-packing
utilization) [8]. Hence, the target CPU utilizatidevel  ,nimization problem, which is known to be a NP-hard
should be appreciably lower than 100%, e.g. 80%. Wgroplem [6]. Several heuristic algorithms have been
assume that the resource capacity of the CPUslimsetl on  hresented in the literature to solve this problempiding the
this target CPU utilization level. _ first fit decreasing (FFD)and best fit decreasing (BFD)
Our target system is airtualized cloud computing gigorithms. The solution should be scalable becalieee

system. This is not because the proposed solutiamlis .4 he tens of thousands\é¥ls and thousandsf PMsin a
applicable to virtualized systems; Instead it isause the g4 system [11]. In this paper, we present a tbieal

proposed solution can easily be implemented andieabpl yesource management solution. The algorithms us@aris
under virtualized systems—live migration [9], which f his solution are explained in section IlI, ame will show

decreases the performance overhead of virtual machifnat the proposed solution outperforfED and BFD in
migration, and performance isolation [10], which k&8 (erms of our objective function (4) in section I\The

effective resource management easier, are suppanted jnprovement is possible because the proposed soluti
virtualized environments. effectively maximizes the portfolio effect by considg
C. Problemstatement - bin-packing optimization problem ~correlation between required resources of apptinati

. . . The proposed solution is composed ofclaud-level
There areM physical machinesPMs) and N virtual resource manageand cluster-level resource managetale
machines YMs) We assume that the amount of résourcgi,q,,ce additional definitions and notation.
required byVMs are random variableRY9 with known S, : Set of indicean of the PMs that belong to the™
means and standard deviations. In this paper, wg on Cc.luster(::l 2.0
consider CPU resource. The work may be extendetbab - Assi ’ t iable. It is 1 if the™ VM i
with multiple resource type. We leave it as theifetwork. Ine - ss&gnmheghoc\l/arla 'e.h IS L1 IT the IS
Our objective is to find the optimal assignmeny,() of assigned tot uster; otherwise &E 1.2,...G

VMs to PMs so as to minimize the total amount of assigned Zc = 2m=19nc *Xn : Total CPU resource demand on the

resource while meeting the targaeS c” cluster .
To provide a precise problem formulation, we need t  tc = Ymes,Tm : CPU resource capacity of thé cluster
give some definitions and notation. A cloud-level resource managdeploysVMsto clusters.

X, : CPU resource required by thBVM (n =1,2,...,N) A cluster can be defined as a group Ri¥ls which are
This is aRV (similar to an asset) with mean and connected to each other through a network switch ame
variance ofuy andoy ? sharing their power supply. Now we have a new

p;; : Correlation coefficient betweef) and; optimization function. The summation of the means is

. ; ; ; : : independent of the assignment variablgs)( so the new
enm . Assignment variable. It is 1 if the™ VM is L L T
assigned to thei” PM, and 0 otherwise objective is to minimize the sum of standard dewiai of

the clusters.
Y, =YN_. e,m X, : Total CPU resource demand on the

m" PM. This is aRV (similar to a portfolio) Min ZC (4z, + Boy) = Min ZC oy
T, . CPU resource capacity of thd PM (m=12,...,.M =1 ¢ ¢ c=1 ¢
= {1 if Yo >0 v, fac €{0,1} (6)
™0 otherwise s.t. 1Vn YiciGne =1
The minimum resource assignmdMRA) problem may Ve pg, +kog <t

be formulated as follows.

] o After the cloud-level resource managéeeploysVMs to
Find e, to minimize Y., fm * Tm

clusters, cluster-level resource managedeploy VMs to

vn,m ey, €{0,1} @) PMs. Note that cluster-level resource managersare
s.t. {Vn M o ewm =1 independent of each other, i.e., they work in pelal
vm P{Y,, <nr,} =095 Resource allocation problem ofluster-level resource

If PMs are homogenous, the objective is simply toManagersis the same as problem (4), but its size is much
minimize the number of actiieMs (X, f,, .) However, our Smaller.
target system is comprised of heterogend@Ms, thus our M
objective function is the sum of total requiredose for all
active PMs (those to which at least onéM has been In this section we introduce main idea and algmttﬁor
assigned.) Note that the above formulation assuthas the hierarchical resource management solution. The
resource capacity offaM will be fully utilized as soon as the Proposed solution is composed of two resource neasag
PM becomes active. It implicitly drives a solution have  cloud-level and cluster-level resource manageFirst the

HIERARCHICAL RESOURCEMANAGEMENT SOLUTION



cloud-level resource manageassignsVMs to clusters and
then thecluster-level resource managaliocatesvMsto the
PMs in the cluster.
clusters, and the number &Ms in a cluster is bounded
because of capacity of network switches and powpplg
capacity limitations: larger data centers or cloothputing
systems have more clusters, but typically not biggesters.
The key advantage of the proposed solution isitlcanverts
a large problem into number of small independenblpros.
The size of small problems is bounded, and thesklgns
can be solved in parallel, thus, there is an oppdst to
apply more sophisticated and elaborate solutionmcamhes
to these problems, something which is not possitiette
original (flat) problem because of its size.

A. Cloud-level Resource Manager
The cloud-level resource manageassigns VMs to

Modern data centers consist ofyman

cost =V, + Vg + /v + vp, where v, = ¥ 5. 0,°

Note that there is couple of inequalities betwedst se

V4 = veand vg = vp

This is because any member $f is greater than
members ofS. and any member of; is greater than
members of,. In addition, the size &, is equal to that of
Sc and the size df is greater than or equal to thatSgt

If setS, is swapped for s&;, the new cost is:

COSt’ = WIVC + VB + VVA + VD

For easy comparison of the cost, we check if the
difference of cost squared is positive or negative.

cost'? — cost?

= 2(\/(Vc +vp)(vy +vp) — \/(VA +vp)(ve + VD))

(ve +vp)(va +vp) — (v4 + vp)(ve + vp)

= (g —v)vg—vp) =20

Hence,cost’? — cost? > 0 and cost’ > cost and this

clusters. Som&Ms may be correlated with each other. Formeans the initial deployment (8) is the optimal sohuin
example, multipleVMs may be spawned off by the same terms of minimum cost.

application andvMs may correspond to different tiers of a

multi-tiered application, etc. We can imagine twpital
cases: alMVMs are uncorrelated or soméMs are correlated
each other. Because the uncorrelated case is sjmpée
analyze and solve this case first in order to getesuseful
intuition, and then present another algorithm fog bther
case where soméMsare correlated each other.

1) Casel: uncorrelatedof; = 0if i # j)

In this section we present thrortfolio-based Resource
Allocation algorithm | (PBR&\or), Which is for the case that
resource requirement ®Ms (X,,) is uncorrelated. Main idea
of the algorithm is based on the followipmpposition

Proposition: Let us say we havld balls with weightss;
(n=1,2, ..., NandK bins. The size of the" bin isc, and
total size of all bins is the same as the number alis b

This result can be generalized. For the case oé rii@n
two bins K > 2), we can convert any swaps among a number
of bins into a sequence of swaps between two bieace,
the proposition is true for the general case.

Note that the above proposition is not perfectiydiour
problem. Capacity of bins is defined as the numbéats it
can have, so the capacity is independent of thestgp balls.
However, in our problem, the number ¥Ms that can be
assigned to a cluster depends on the resourcaeapnts of
theVMs Nevertheless, simulation results in section I'gvgh
that the proposed algorithm, which is based onatheve
proposition, produces high quality results.

Pseudo code ofortfolio-based Resource Allocation
Algorithm | (PBRAwr) IS shown below. Its main structure
is similar to theFirst Fit Decreasing (FFDpalgorithm.

(Xk=1¢x = N.) The balls are sorted by their weight in non-Portfolio-based Resource Allocation Algorithm | (PBRA ncorr )

increasing ordero( > g; for i < j.) The bins are also sorted Inputs:

by their size ¢) in non-increasing ordet(= ¢; fori <j.)
SetS,, is the set of balls that are put into #{&bin. Cost is
defined as:
K
cost :=
k=1

> o (7)
Oon€ESk
The cost is minimized if the bin of bigger size @ns
the heavier (or the same weight) balls:
foro, € S;and o, €S; (i <))
O, = 0y

(8)

te, Ux, »Ox,  and p;j
Output:  gne

1: cortclusteis C byt, in nor-increasing orde
sort VMsX,, by gy, in non-increasing order
for all clusters Cdo
for all unassigned VMX,, do

Oc=1 /l assignX,, to C

resource 2; gic * ix, + B - XiXj Gic * Gjc " Pij " Ox, " Ox;

if resourci> t;then

Oc= 0  //cancethe assignmer

end if
10:  endfor
11: endfor

Proof: We first think about a simple case that there arerigure 3. Portfolio-based Resource Allocation Algorithm | ¢anrleated)

only two bins K = 2.) It will be generalized later. The initial
deployment of balls is:

S; = {0'1, 0y, ...,acl} and S, = {0-01+110-01+2' ...,GN}

The cost of the initial deployment is:

— ¢ N
cost = \/anzlanz + \/Zn=c1+1 Unz

Now, each set is split into two subsets.

S, =S,USzandS, =S U S,

Assume that the size of sgtis the same as that &f.
The cost can be rewritten as follow:

At the beginning, we sort clusters aMMs in non-
increasing order (lines 1 and 2 in Figure 3. ) Nbt VMs
are sorted by their standard deviations, not by theans.
For each cluster the algorithm pre-assigns Wi with
largest standard deviation among all unassigfidd (lines 4
and 5.) It calculates the total amount of resouha the
cluster is supposed to provide (line 6.) If it ir@ter than the
capacity of the cluster, the assignment is candgilesl 7 and
8.) We repeat the above steps until either all Vaie



assigned or all clusters are full. Note that theadion in line
6 can be simplified as:
YiGic " Hx, + B Xi Gic " 0%, 9
This is because correlation coefficigptis zerofori # j ,
thatis, X/'s are uncorrelated.
2) Case2: correlated

There may be no feasible solution. If the managenat
deploy some/Ms it lets thecluster-level resource manager
know which VMs are not assigned. Theluster-level
resource managewill reassign theVMs to other clusters.
These steps are repeated until eithe/Mk are assigned or
all clusters are full.

Dealing with the correlated case requires very higHortfolio-based Resource Allocation Algorithm 11 (PBRAy )

amount of computing resources because complexity df’PUtS

te) HUx, »O0x, and Pij

Output:  gne

correlation calculation is square of the number\ifls
Finding the optimal solution takes huge amountraétand

makes the scheme is non-scalable. Hence, we presen%ja

heuristic approach to solve the problem.

The main idea is that\dM is assigned to a cluster one at .

a time and the bes¢M is selected in a greedy manner.

Suppose there ai VMsin a clusterX = Y¥_, X,,) and we

are going to assign\dM to the cluster. If &M is deployed

to the cluster, variance of the cluster becomes:

Oxixys, . = Ox° + 2(ZN=1 Puv an)UXN+1 + Oxpys”
penalty := YN_; pny " 0x,

If there are a few candidat&g.,, for whom the standard
deviationsoy, ., are similar to each other, theM with least
penalty (10) is the best choice that gives rise to the lesial
increase in standard deviation.

(10)

1:
2.

sortclustes C byt, in nor-increasing orde
sort VMsX,, by oy in non-increasing order
for all clusters Cdo

4: while true then

5 for the firstH unassigned VMX,, do

6:

find X, of whichpenalty is minima (10)
7: where penalty ; g;c - pin * 0x,
8: end for
9: Onc=1 [ assignX,, to C
10: resource 2; gic * ix, + B+ Xi Xj Gic * Gjc " Pij " Ox, " Ox;
11: if resourci>t.then
12: Oc=0 /lcance the assignmer
13: break /I break while lo
14: end if
15: endwhile
16: endfor

Portfolio-based Resource Allocation algorithm |l
(PBRA,:) is nearly identical td®BRAcorr €XCept for a few
lines (lines 5 through 8 in Figure 4. ) It consildre firstH
VMs as candidates for allocation. Because the listM§ is
sorted by standard deviations of ¥kls standard deviations
of the candidates are similar to each other. HERB& Ao
subsumes the correlated case by choosinykhevith least
penalty(10) among the candidates.

Determining propeH is important for good performance
of the algorithm. IfH is 1, PBRA,, becomes almost
identical toPBRAncor- On the other handBRA, is very
different from PBRAnor if H is equal toN. Hence, it is
important to choose a proper value fforIntuitively, a large
value for H is reasonable if manyWMs are correlated.
However, it is not so simple, and it will be dissed at the
next section 1V.

B. Cluster-level Resource Manager

Thecluster-level resource managdeploysVMsthat are
given by thecloud-level resource managen PMs of the
cluster Its job is conceptually equivalent to the job bét
cloud-level resource manageassignVMs to clusterd?Ms
Thus, we use the same algorithrRBRA,r andPBRAncor)
for implementation of thecluster-level resource manager:
the only difference iglustersin the algorithms are replaced
by PMs However, more elaborate algorithms e.g., minimu
bin slack (MBS) heuristic [12] may also be used. &se
the size of problems given to thauster-level resource

manageris bounded, we have more liberty to choose mor

complex (but yielding better results) algorithms.

The algorithms implicitly reduce the energy cost b
utilizing the minimum number d?PMs The algorithms start
from sorting itsPMs by their capacity in non-increasing
order, and assigning as many\adsto eachPM. Hence, the
algorithms effectively solve (4).

mzratio

Figure 4. Portfolio-based Resource Allocation Algorithm Ibfdeated)

IV. SIMULATION RESULTS

A. Simulation setup

For the simulation we needed the following data:
i) capacity ofPMs, ii) list of PMsin clusters, iii) means and
standard deviations for resource requiremenighd$, and iv)
correlation coefficients among variou$ls. We generate the
data randomly as follows:

Number ofVMs (N) PMs (M),and cluster$C)
Resource requirements ¥Ms mean and standard
deviation Ofuxn, 0%, Wy, Ouy, Hoy, and og, )
Capacity ofPMs mean and standard deviation of
total resource amount

Cratio - (# of correlated/Ms) /(# of total VMSs)

Csize: # Of correlated/Msin a group

It is randomly decided whicPMs are placed in which
clusters. Because we have heterogen&ts, their means
(ux,) and standard deviationsy() are randomly generated
from the given information &, ,o,, ,us, andog, .) A
correlation matrix is created based @y;;, andC;,.. Note
that C,4:;, = 0 means allVMs are uncorrelated whereas
= 0.5 means half o¥/Ms are correlated. Furthermore,
if, for example, we have 10 correlat®ds andC;,, = 5,
there is going to be two groups, and each of tledmups

as fiveVMsin it. VMsin a group are correlated only with
heVMsin the same group.

Making a valid correlation coefficient matrip;;] is
important. We use théwypersphere decompositiofi3]
method, which is a relatively simple method for gating a
valid correlation matrix.



B. Comparing algorithms Quality of the algorithms can be affected by

To assess the quality of solutions generated by theratio @1d Csize , thus we run multiple simulations for
proposed algorithms, we compare our solution witmeso different combinations 0fCy4¢;o and Cyize . Comparison
other well-known algorithms: among the algorithms under differefi;,, values is shown

« SA-use simulated annealing [14] algorithm. It does notn Figure 6.Cyay, is 0.9 for all cases, which means A7ds

guarantee to find the global optimal point, butindé a
near-optimal solution given a slow enough cooling
schedule. This method may generate different swisti
each time, so we run the SA six times and pickbist
result. SA results may be treated as the resuktdb b

than random, it means quality of the solution is quite
poor. Lower gap between results A and random
means there is less gain to be had from any otz
We run random algorithm ten times and report the
average of these runs.

FFD and BFD-use first fit decreasingand best fit
decreasing algorithms. Both are well-known and
commonly used heuristics for solving the bin-pagkin
problem. FFD sorts X,, by its resource requirements
(ux + Pox) in a non-increasing order, and assigpgo
the first cluster that is availablBFD is similar toFFD,
but it assignsX, to the cluster with the minimum
remaining capacity among the cluster of which capacit
is greater thanul + fox). None of these two heuristics
takes advantage of the portfolio effect. More @el,
they treat the resource requirementd/ts not asRVs
but as constant values equalto+ Bay. They simply
add or subtract these constant values in order
calculate the required resource. This is equivalent
assuming that aWMsare fully correlated(i, j p;; = 1),
which is a very conservative approach.

FFDy and BFDQ; — They are identical t6FD andBFD
except that they consider the portfolio effect.

t

C. Cloud-level Resource Manager

The objective of theloud-level resource managés to
minimize the sum of standard deviations of clust)
which will be calledcostin this section. Lower cost means
better quality of the solution. There are 30ds (N = 300),
which is relatively small number &Ms. This is becaus8A
requires huge amount of time for large problem si¥és.
first investigate the quality of the algorithms bgmparing
with the near optimal3A’s results¥or small problem size,
and then compare results of the algorithms ex&fpfor
larger number o¥Msin section D.

Figure 5. depicts normalized costs of the algorithFor
a fair comparison, we generate eight different tsdes
based on the same data and run simulations. Notetkat
based on the same data, the results can be diffeeeatise
the data is randomly generated in each case (sée€)|Beth
PBRA: and PBRAor produce excellent results that are
even better than the results ®A figure 5.a) Note that
results ofPBRA: andPBRA,.or are almost identical when
VMs are uncorrelatedC(,;;, = 0.) This is becauspenalty
(10) is always zero fod candidatevMs. When half of the
VMs are correlated@,,;;, = 0.5), PBRA produces better
result (less cost) thaRBRAm and is still better thaBA
for six test cases (Figure 15)

out of 300VMs are correlated. For largét;,., the cost
difference betweemandomand SA decreases, which means
cost reduction from optimization decreases. Thiseisause
if Csize is sufficiently enough, we can easily put posityv
correlatedVMs into different clusters; hence the cost will

random-do assignments randomly. If a solution is worsed€crease a lot. On the other hand, if too meiMs are

correlated with each other, it is difficult to asloAssigning
correlatedVMs to the samePM. Hence, there are small
improvements obtained from the algorithms.
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Figure 5. Comparison among algorithms (N = 300, H=30)
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If Csize is small enough, the quality d?PBRA,, and
PBRAncor is not influenced much b{,.;;, (Figure 7. )
PBRA. produces better results thRBRAncor and cost of
both algorithms increases a little bit for higlfgg,;,. This
shows that the proposed algorithms produce higHitgua
solutions if size of correlated group is small erfoughe
statement is also valid even if there are many tzae@¢VMs
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As mentioned at the previous section, choosingopesr
H is important for higher quality d?BRA,,, (Figure 4. ) If



H is 1, PBRA,, is nearly identical tdPBRAcor ON the
other handPBRA,, becomes very different frolBRAyncorr
whenH is N (the number o/Ms) Note that there are two
reasons for cost reduction: the first one comemftbe
propositionpresented in sectioil.A and the second is due
to avoiding the assignment of highly correlatééls to the
same cluster. The best minimizing the cost is decided
depending on which source of cost reduction is dam
when the first sourcg(opositior) is dominant, smallei is
better choice and vice versa.

The results ofPBRA, for variety of H values are
reported in Figure 8. It is expected that the ks not the
same under different patterns of correlation: HomynamMs
are correlated and how big the group of correlat&thWe
categorize correlation patterns into four cases amal
simulations for each case:

e Mid Cr40(0.5), smallCy,;,.(10) — Figure 8. a
Mid C,4+1,(0.5), largeCy;,.(100) — Figure 8. b
High C,4:i0(0.9), smallCy;,.(10) — Figure 8. ¢
High C,4:i,(0.9), largeC,;,.(100) — Figure 8. d

(@)C (b)c_.

ratio

=0.5, C_, =10

7 Vsize”

=0.5, C_. =100
size

ratio
1.02

1.08

+ PBRA
uncorr y
< PBRA 4

corr ‘

B 1.06

0.98 1.04

0.96 1.02 4 <

< q < q
q 4 < 1 ﬁaﬁ*******

cost (normalized)

0.94

0.98
100 0 20 40 60 80

0.92
0

20 40 60 80 100

(© Crati0:0'9' Csize:10 @ Crati0:0'9’ Csize:1 00
—_— 1.02
=
E 1.01
= 0950 4 ’
g ; W o+ ko o  *
S 1
0.99 ; p
E o9 44 449 |
= “ . -
g 1 a4 os8l I 4 g <4
S 1 <
0.85 0.97
[ 20 40 60 80 100 0 20 40 60 80 100
H H

Figure 8. H vs. cost for four cases (N=300)

Cratic = 0.5 means that half Msare correlated; hence
there are two sources of cost reduction. Depenalingrhich
source is dominant, the be#t value is chosen. For
smallCy;,. (Figure 8. a), it is easier to avoid putting highl
correlatedVMs into the same cluster. In addition, bigdér

When bothC,,:;, and Cy,. are large,PBRA,, always
produces better result, but there is neither bifgrdince in
cost nor a clear relationship betwekn and cost saving
(Figure 8.d.)

Based on the above discussion, we get some infight
choosing the propeH. First of all, relatively biggeH is
promising for the case of smél;,. (Figure 8. a and b.) For
the last case (Figure 8. d), it does not mattereithoose any
value of H, but higherH increases the computational
overhead. Hence, we need to pick as srdakis possible.
Consequently, smal is good for the case of large,,.
(Figure 8. b and d.)

D. Overall performance comparisons

We have shown that the proposed algorithms arelasimp
and work well for cluster-level resource allocatiorheir
results are very close to or even better thanSAeesults.
What cluster-level resource manageds is very similar to
what thecloud-level resource managdoes: assigivMs to
PMs Hence, we apply the same algorithri®BRAncor and
PBRA.) for cluster-level resource managetdowever, the
high quality of each level does not necessarilyragnize the
high quality of the overall solution. In this sectj we will
compare the quality of the final solution generateyl
different algorithms and verify that the proposégbethms
produce better quality solutions. In addition t@stiwe run
the simulation for a large number ¥Ms and show if the
proposed scheme is scalable or not.

Comparison among the algorithms with different
numbers olVMsis reported in Figure 9. It is seen that costs
of FFD andBFD are much larger than those of all others.
This is becaus€FD andBFD do not consider the portfolio
effect and thus tend to overbook the resource.asae for
this big difference is thaty is set to be larger thary, in
this study, which magnifies the portfolio effectewrtheless,
the experiment suggests that the portfolio effext to be
considered. Figure 9. (a-2 and b-2) plots the smsidts as
Figure 9. (a-1 and b-1) except that result8B6D andFFD
are excluded for better visual clarity. BecaB8RAcorand
PBRA. are nearly the same for uncorrelatéils their
results look almost identical. The difference irstcamong
the four algorithms is very small (less than 2 %pqre 9.
(a-2).) InterestinglyPBRA,; produces the best result for the
other case where manyMs are correlated (Figure 9. b-2.)

means more candidatéMs are investigated; hence, cost This result show®BRA. outperforms all other heuristics

saving from the second source becomes greater. \oyat
the same time, cost saving from the first souptegosition
keeps decreasing for biggér Thus, the bedt is around 50
(Figure 8. a.) How about biggéy;,. with the samé&,.,;;,?
(Figure 8. b) As shown in Figure 6. , the amountcos$t
saving from putting correlate®Ms in separate clusters
becomes smaller for biggéy;,.. Thus, cost saving from the
first source is dominant. Because cost saving fribie
second source is rather small, the bé€$$ around 10. When
Cratio 1S Close to 1.0, that is most of ®Ms are correlated, it
is highly probable that the second source of casing is
dominant (Figure 8. ¢ and d) Wheh,,. is small (Figure 8.

when manyVMs are correlated (up to 10% cost reduction
compared t&-FD.)

One of the most important features of a solution fo
clouding computing is scalability. Hence, the rielaship
between execution time of the algorithms and proldize is
very important. Execution time of the proposed atgm is
defined as follow:

Texe = Teroua + max(Tepyster)
whereT,;,,q and T uster @re execution time of theloud-
level resource managandcluster-level resource managers
respectively. The cluster-level resource managerare
running in parallel; hence, their longest executiione is

c), there is more cost saving lsincreases, and amount of used. As shown in Figure 10. , the trends of tweesa

cost saving of this case is largest among the frages.

(correlated and uncorrelated) are very similar: eiien time



of FFD andBFD is the smallest while the execution time of

PBRA, is the largest. Execution times of the other three

algorithms EFDy;, BFDy, andPBRAcor) are similar. Note
thaty axis is plotted with a logarithmic scale; thus, tihats
clearly show the proposed algorithms are scalabie.
addition to this, the execution time &BRA,, becomes
close to those of the other portfolio-based alborg EFDy,
BFDyy, andPBRAcor) as the number dfMsincreases.
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Figure 9. Quality comparison among algorithn.{;;,= 0 and 0.9)

The results show that the proposed algorithRBRA
and PBRAnm outperform the well-known heuristic
algorithms FFD and BFD.) PBRA, produces the best
results among the algorithms for correlat®@is The
important fact is that the proposed scheme is ibligtd

. . 8
whereas other algorithms are centralized. Because trg]

problem size ofcluster-level resource manages much
smaller, we have the opportunity to apply more sijgated
algorithms with less concern about their computetio
complexity. Hence, the fact that solution of thepwsed
scheme is better than the existing heuristics is mghar
even when the difference between qualities of swiatis

not so big.
0.9
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Figure 10.Running time comparison among algorithrs,{;,= 0 and 0.9)

V. CONCLUSIONS

With increasing energy cost of cloud computing eyst,
necessity of energy aware resource managementideeisn

has been growing. This paper proposed a hieratchica
resource management scheme which is scalable and
produces high quality solutions. Resource requirdsneere
modeled as random variables and correlation aman&Ws
were considered. The proposed solution outperfornmit-
known heuristic algorithms whe¥iMs are correlated with
each other. The solution achieves up to 10% caktct®on
compared té-FD andBFD.
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