
Portfolio Theory-Based Resource Assignment in a Cloud
Computing System

Inkwon Hwang and Massoud Pedram
University of Southern California

Los Angeles, CA, USA
{inkwonhw, pedram}@usc.edu

Abstract— The focus of this paper is on energy-aware resource
management in a cloud computing system. Much of the
existing work assumes that the resource requirements for
various applications are known and given as scalar values.
However, it is very difficult to know the exact resource
requirements, and thus, it is more appropriate to treat
resource requirements for applications as random variables
with known characteristics. For a desired quality of service,
the required total resource amount can then be estimated as a
function of the means and standard deviations of these random
variables. Inspired by the modern portfolio theory, this paper
presents algorithms that minimize the total amount of
estimated resource in the system. A source of difficulty is that
some of the aforesaid random variables may be correlated with
each other. The proposed algorithms effectively deal with
correlated applications. Experimental results show that, in
spite of its simplicity and scalability, the proposed solution
outperforms the well-known heuristics i.e., first fit decreasing
(FFD) and best fit decreasing (BFD) by an average of 10%
while having a low execution time.

Keywords- Cloud computing; portfolio effect; bin-packing;
resource allocation

I. INTRODUCTION

Cloud computing systems, which are typically housed in
facilities called data centers, are composed of a large number
(say, thousands) of servers, each server consuming 100’s of
Watt. This means that the power consumption of the servers
plus cooling and air conditioning units in a typical datacenter
can easily exceed 1MW. With 10 cents per KWhr of
electrical energy consumed, the electrical energy cost alone
will be in the order of thousands of dollars per day. Thus,
there is a growing need for energy-aware resource
management in cloud computing systems. Considering that
much of the time, server machines in a data center are under-
utilized, efficient resource management can be quite
effective in reducing the electrical energy cost of the cloud
computing systems.

Energy aware resource management problem has been
the subject of many previous studies. A key approach has
been to adopt a performance model and allocate resources so
as to maximize the performance. For example, in [1], Gandi
et al. present a performance model based on the queuing
theory and allocate power to minimize the average response
time of the tasks. Quality of the results obtained by such an
approach is strongly dependent on the accuracy of the
performance model. The issue is that it is difficult to come

up with an accurate (assumption-free) performance model
under realistic usage scenarios.

Another approach for energy-aware resource
management is based on the control theory. For example, in
[2], Raghavendra et al. present five power management
controllers that utilize feedback control loops to minimize
energy while meeting some performance targets. This
approach is quite practical but the challenge is to determine
control parameters, which are supposed to be customized for
target systems. Yet another approach starts by assuming that
resource requirements of applications are known and assigns
resources to the applications. The approach makes the further
assumption that there are no performance violations as long
as enough resources are allocated to each application. For
example, in [3], Srikantaiah et al. investigate the problem of
application consolidation to minimize energy consumption in
a cloud computing system. They assume that resource
requirements for each application are pre-known, and thus
formulate the problem as a multi-dimensional bin packing
problem. Stillwell et al., who study resource allocation
problem for HPC applications [4], also assume that resource
requirements are known a priori. Wilcox et al., which rely on
a probabilistic resource requirement model [5], simply
calculate the amount of required resource from the given
probability density function (pdf).

In this paper, we assume resource requirements for each
application are given as random variables with known means
and standard deviations. We believe random variable
resource requirement model is more realistic and useful than
deterministic model; this is because resource requirements
are estimated from historical data and profiling, which are
subject to noise and uncertainties and show variability. If the
resource requirements are modeled as random variables, we
can reduce the total amount of required resource by applying
principles of the modern portfolio theory.

There can be tens of thousands of virtual machines and
thousands of physical machines in a cloud computing system.
Hence, scalability of any proposed resource management
solution is a must. In this paper, we present a portfolio-based
hierarchical resource management solution, which is scalable
and reduce the energy cost of the cloud computing system.

The rest of the paper is composed as follow: In the
section II, we introduce the concept of portfolio effect and
our problem statements. Main algorithms and detailed
explanation about the proposed scheme is explained in
section III. In section IV, the simulation results are shown
and discussed. Finally, we summarize and conclude in
section V.

II. PORTFOLIO BASED RESOURCE ALLOCATION

A. Estimation of the required resource

We assume that the amount of a required resource for
each application is specified as a random variable (RV). This
amount is estimated based on the application characteristics
and computing needs as well as the target quality of service
(QoS) level. If the cumulative distribution function (cdf) of
this RV is known, we can estimate the amount of required
resource from the cdf based on our target QoS. However,
such detailed information may not be available in many
cases. Without knowledge of the cdf, and based on only the
mean and standard deviation of RVs, the amount of required
resource can be estimated by Cantelli's inequality [6], which
is the one-tailed variant of Chebyshev’s inequality: ��� � �� � �	�
 � 1 1 � ���� 			 , � � 0	 (1)

According to the Cantelli’s inequality, the amount of
resource to achieve a target QoS of ��/1 � ��� may be
calculated as: �� � �	� (2)

In this study, our target QoS is 95% resource satisfaction
i.e., 95% of the time the resource allocation meets the
resource requirement of the application. This is achieved
with β = 4.4. However, the above equation tends to overbook
the resource because the Cantelli’s inequality does not give a
tight bound. If we know more information about the VM
such as the cdf, we can assign fewer resources while meeting
the same QoS. For example, if we are told that RV X is
normally distributed, β can be set to as low as 1.7, which is
much smaller than what the Cantelli’s inequality gives.

According to the central limit theorem (CLT), the mean
of a sufficiently large number of independent random
variables, each with finite mean and variance, will be
approximately normally distributed [6]. CLT holds even for
weakly dependent RVs. Hence, we can use smaller β (=1.7) if
the RV is sum of large number of weakly dependent RVs.

B. Review of the modern portfolio theory

Modern portfolio theory (MPT) is a theory of finance,
which attempts to maximize a portfolio’s expected return for
a given amount of portfolio risk, or equivalently minimize
risk for a given level of expected return, by carefully
choosing the proportions of various assets. The MPT models
an asset's return as a normally distributed function, defines
risk as the standard deviation of return, and models a
portfolio as a weighted combination of assets, so that the
return of a portfolio is the weighted combination of the
assets' returns. By combining different assets whose returns
are not perfectly positively correlated, MPT seeks to reduce
the total variance of the portfolio return [7].

MPT reduces risk of portfolio through the portfolio effect,
which may be stated as follows: the risk of a portfolio is
always less than or equal to sum of each asset’s risk (3). Let
Y denote a portfolio composed of assets Xi. Then, �� � ∑ ���� , 	�� � ∑ ∑ ���	��	���� 	� 	 �∑ 	��� �� !"#"	$ � ∑ ��� 	and	���()	*!"	+,##"-.*(,/	 +,"00(+("/*	1"* ""/	��	./2	��31 � ��� � 1� (3)

The degree of risk reduction is a function of a correlation
coefficient (���)—the smaller ��� is, the lower the risk is (cf.
Figure 1.) In other words, one has to avoid from putting
highly positively correlated assets into the same portfolio.

In this study we apply the portfolio effect to resource
assignment problem in a cloud computing system in order to
reduce the standard deviation of the required resource. From
(2), a reduction in the standard deviation also reduces the
amount of required resource. The goal is then to do a VM to
PM assignment such that the sum of standard deviations for
all PMs is minimized. Note that this is a reasonable problem
formulation since by minimizing the total amount of required
resource for the given QoS level, fewer PMs can be utilized;
hence, energy cost can be reduced.

Figure 1. Effect of correlations between portfolio’s assets on a portfolio’s
risk (standard deviation)

We illustrate the portfolio effect applied to resource
management by the following example (cf. Figure 2.)
Consider four applications and two physical machines (PM1

and PM2.). For simplicity sake, we assume applications are
uncorrelated. The case on the left assigns the 1st and 2nd
applications to PM1 and the other two to PM2. Once a
collection of VMs are assigned to a PM, the standard
deviation of the required resource for that PM is computed as
the square root of the sum of variances of assigned
applications. The total standard deviation of the left case is
31.6 (� √15� � 5� � √15� � 5� .) On the other hand, the
case on the right assigns the 1st and 4th applications to PM1
and the other two to PM2. In this case, the total standard
deviation is 28.3 (� √15� � 15� � √5� � 5�), which is
smaller. As discussed before, the second case will require
less resource to meet the same QoS level, and hence, it is
more desirable.

Figure 2. Comparison of different resource allocation cases

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

st
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
iz

ed
)

correlation coefficient (ρij
)

stdev vs. correlation coefficient

σX
1
+σX

2

σX
1
+X

2

From the above discussion, we conclude the following:
1. It is desirable to assign applications that are least

(positively) correlated to the same PM.
2. Applications must be well deployed on PMs to

maximize the portfolio effect.
It is well known that the performance drops dramatically

when CPUs are almost fully utilized (close to 100%
utilization) [8]. Hence, the target CPU utilization level
should be appreciably lower than 100%, e.g. 80%. We
assume that the resource capacity of the CPUs is set based on
this target CPU utilization level.

Our target system is a virtualized cloud computing
system. This is not because the proposed solution is only
applicable to virtualized systems; Instead it is because the
proposed solution can easily be implemented and applied
under virtualized systems—live migration [9], which
decreases the performance overhead of virtual machine
migration, and performance isolation [10], which makes
effective resource management easier, are supported in
virtualized environments.

C. Problem statement - bin-packing optimization problem

There are M physical machines (PMs) and N virtual
machines (VMs.) We assume that the amount of resource
required by VMs are random variables (RVs) with known
means and standard deviations. In this paper, we only
consider CPU resource. The work may be extended to deal
with multiple resource type. We leave it as the future work.

Our objective is to find the optimal assignment ("67) of
VMs to PMs so as to minimize the total amount of assigned
resource while meeting the target QoS.

To provide a precise problem formulation, we need to
give some definitions and notation. �6 : CPU resource required by the nth VM (n = 1,2,…,N.)

This is a RV (similar to an asset) with mean and
variance of ��8 and 	�8� ��� : Correlation coefficient between �� and �� "67 : Assignment variable. It is 1 if the nth VM is
assigned to the mth PM, and 0 otherwise $7 � ∑ "67 ∙ �6:6;< : Total CPU resource demand on the
mth PM. This is a RV (similar to a portfolio) #7 : CPU resource capacity of the mth PM (m = 1,2,…,M) 07 � =1								(0	$7 	� 0				0								,*!"# ()"		

The minimum resource assignment (MRA) problem may
be formulated as follows. >(/2	"67	*,	?(/(?(@"	 ∑ 07 ∙ #77

). *.		 B∀/,?						"67 ∈ �0, 1
														∀/											 ∑ "67E7;< � 1										∀?											��$7 � #7
 	� 0.95
(4)

If PMs are homogenous, the objective is simply to
minimize the number of active PMs (∑ 077 	.) However, our
target system is comprised of heterogeneous PMs, thus our
objective function is the sum of total required resource for all
active PMs (those to which at least one VM has been
assigned.) Note that the above formulation assumes that
resource capacity of a PM will be fully utilized as soon as the
PM becomes active. It implicitly drives a solution to have

fewer active PMs as possible. As shown in (2), the last
condition of (4) can be re-written as follow: ∀?			��G � �	�G 	� 	 #7

 !"#"	� � 	 H1.7					(0	$7	()	2()*#(1J*"2					/,#?.--K4.4					,*!"# ()"																		
(5)

The above problem is variation of the bin-packing
optimization problem, which is known to be a NP-hard
problem [6]. Several heuristic algorithms have been
presented in the literature to solve this problem, including the
first fit decreasing (FFD) and best fit decreasing (BFD)
algorithms. The solution should be scalable because there
can be tens of thousands of VMs and thousands of PMs in a
cloud system [11]. In this paper, we present a hierarchical
resource management solution. The algorithms used as parts
of this solution are explained in section III, and we will show
that the proposed solution outperforms FFD and BFD in
terms of our objective function (4) in section IV. The
improvement is possible because the proposed solution
effectively maximizes the portfolio effect by considering
correlation between required resources of applications.

The proposed solution is composed of a cloud-level
resource manager and cluster-level resource managers. We
introduce additional definitions and notation. MN : Set of indices m of the PMs that belong to the cth

cluster (c = 1, 2,…,C) O6N : Assignment variable. It is 1 if the nth VM is
assigned to the cth cluster; otherwise 0 (c = 1,2,…,C) PN � ∑ O6N ∙ �6:6;< : Total CPU resource demand on the
cth cluster *N � ∑ #77∈QR : CPU resource capacity of the cth cluster

A cloud-level resource manager deploys VMs to clusters.
A cluster can be defined as a group of PMs, which are
connected to each other through a network switch and are
sharing their power supply. Now we have a new
optimization function. The summation of the means is
independent of the assignment variables (06N), so the new
objective is to minimize the sum of standard deviations of
the clusters.

S(/	T ��UR � �	UR�V
N;< 	≡ S(/	T 	URV

N;< 	
). *.		 B∀/, +											06N ∈ �0, 1
∀/											 ∑ O6NVN;< � 1∀+			�UR � X	UR 	� 	 *N

(6)

After the cloud-level resource manager deploys VMs to
clusters, cluster-level resource managers deploy VMs to
PMs. Note that cluster-level resource managers are
independent of each other, i.e., they work in parallel.
Resource allocation problem of cluster-level resource
managers is the same as problem (4), but its size is much
smaller.

III. HIERARCHICAL RESOURCE MANAGEMENT SOLUTION

In this section we introduce main idea and algorithms for
the hierarchical resource management solution. The
proposed solution is composed of two resource managers,
cloud-level and cluster-level resource manager. First the

cloud-level resource manager assigns VMs to clusters, and
then the cluster-level resource manager allocates VMs to the
PMs in the cluster. Modern data centers consist of many
clusters, and the number of PMs in a cluster is bounded
because of capacity of network switches and power supply
capacity limitations: larger data centers or cloud computing
systems have more clusters, but typically not bigger clusters.
The key advantage of the proposed solution is that it converts
a large problem into number of small independent problems.
The size of small problems is bounded, and these problems
can be solved in parallel, thus, there is an opportunity to
apply more sophisticated and elaborate solution approaches
to these problems, something which is not possible for the
original (flat) problem because of its size.

A. Cloud-level Resource Manager

The cloud-level resource manager assigns VMs to
clusters. Some VMs may be correlated with each other. For
example, multiple VMs may be spawned off by the same
application and VMs may correspond to different tiers of a
multi-tiered application, etc. We can imagine two typical
cases: all VMs are uncorrelated or some VMs are correlated
each other. Because the uncorrelated case is simpler, we
analyze and solve this case first in order to get some useful
intuition, and then present another algorithm for the other
case where some VMs are correlated each other.

1) Case1: uncorrelated (��� � 0	(0	(Y Z)
In this section we present the Portfolio-based Resource

Allocation algorithm I (PBRAuncorr), which is for the case that
resource requirement of VMs (Xn) is uncorrelated. Main idea
of the algorithm is based on the following proposition.

Proposition: Let us say we have N balls with weights σn
(n = 1, 2, … , N) and K bins. The size of the kth bin is ck and
total size of all bins is the same as the number of balls
(∑ +[\[;< �].) The balls are sorted by their weight in non-
increasing order (� � 	�	0,#	(^ Z.) The bins are also sorted
by their size (ck) in non-increasing order (+� � +� 	0,#	(^ Z.)
Set M[is the set of balls that are put into the kth bin. Cost is
defined as:

+,)* ∶�T` T 	6�a8∈Qb
\
[;< (7)

The cost is minimized if the bin of bigger size contains
the heavier (or the same weight) balls: 0,#		c ∈ M� 	./2		d ∈ M� 			(^ Z� 	c � 	d (8)

Proof: We first think about a simple case that there are
only two bins (K = 2.) It will be generalized later. The initial
deployment of balls is: M< � e	<, 	�, … , 	Ngh	./2		M� � e	Ngi<, 	Ngi�, … , 	:h

The cost of the initial deployment is:

+,)* � j∑ 	6�Ng6;< �j∑ 	6�:6;Ngi<

Now, each set is split into two subsets. M< � Mk ∪ Mm	and	M� � MV ∪ Mn
Assume that the size of set Mk is the same as that of	MV.

The cost can be rewritten as follow:

+,)* � √vk � vm �pvV � vn , !"#"	v∗ � ∑ 	6�a8∈Q∗
Note that there is couple of inequalities between sets: vk � vV 	./2	vm � vn
This is because any member of Mk is greater than

members of MV and any member of Mm is greater than
members of	Mn. In addition, the size of Mk is equal to that of MV and the size of Mm is greater than or equal to that of	Mn.

If set Mk is swapped for set	MV, the new cost is: +,)*r � pvV � vm � √vk � vn
For easy comparison of the cost, we check if the

difference of cost squared is positive or negative. +,)*r� 3 +,)*� � 2�pvV � vm�vk � vn� 3 pvk � vm�vV � vn�� vV � vm�vk � vn� 3 vk � vm�vV � vn� � vk 3 vV�vm 3 vn� 	� 0
 Hence,	+,)*r� 3 +,)*� � 0	and	+,)*r 	� 	+,)* and this

means the initial deployment (8) is the optimal solution in
terms of minimum cost.

This result can be generalized. For the case of more than
two bins (K > 2), we can convert any swaps among a number
of bins into a sequence of swaps between two bins. Hence,
the proposition is true for the general case. □

Note that the above proposition is not perfectly fit to our
problem. Capacity of bins is defined as the number of balls it
can have, so the capacity is independent of the types of balls.
However, in our problem, the number of VMs that can be
assigned to a cluster depends on the resource requirements of
the VMs. Nevertheless, simulation results in section IV show
that the proposed algorithm, which is based on the above
proposition, produces high quality results.

Pseudo code of Portfolio-based Resource Allocation
Algorithm I (PBRAuncorr) is shown below. Its main structure
is similar to the First Fit Decreasing (FFD) algorithm.
Portfolio-based Resource Allocation Algorithm I (PBRAuncorr)
Inputs: 	*N	, ��8 	, 	�8 	, ./2	���
Output: gnc
1: sort clusters C by *N in non-increasing order
2: sort VMs �6by 	�8 in non-increasing order
3: for all clusters C do
4: for all unassigned VMs �6 do
5: gnc = 1 // assign �6 to C
6: resource = ∑ O�N ∙ ���� � � ∙ ∑ ∑ O�N ∙ O�N ∙ ��� ∙ 	�� ∙ 	����
7: if resource > tc then
8: gnc = 0 // cancel the assignment
9: end if
10: end for
11: end for

Figure 3. Portfolio-based Resource Allocation Algorithm I (uncorrleated)

At the beginning, we sort clusters and VMs in non-
increasing order (lines 1 and 2 in Figure 3.) Note that VMs
are sorted by their standard deviations, not by their means.
For each cluster the algorithm pre-assigns the VM with
largest standard deviation among all unassigned VMs (lines 4
and 5.) It calculates the total amount of resource that the
cluster is supposed to provide (line 6.) If it is greater than the
capacity of the cluster, the assignment is canceled (line 7 and
8.) We repeat the above steps until either all VMs are

assigned or all clusters are full. Note that the equation in line
6 can be simplified as: ∑ O�N ∙ ���� � � ∙ ∑ O�N ∙ 	���� (9)

This is because correlation coefficient ��� is zero for	(Y Z ,
that is, Xi‘s are uncorrelated.

2) Case2: correlated
Dealing with the correlated case requires very high

amount of computing resources because complexity of
correlation calculation is square of the number of VMs.
Finding the optimal solution takes huge amount of time and
makes the scheme is non-scalable. Hence, we present a
heuristic approach to solve the problem.

The main idea is that a VM is assigned to a cluster one at
a time and the best VM is selected in a greedy manner.
Suppose there are N VMs in a cluster (� � ∑ �6	:6;<) and we
are going to assign a VM to the cluster. If a VM is deployed
to the cluster, variance of the cluster becomes: 	�i�tug� � 	�� � 2�∑ �6: ∙ 	�8:6;< �	�tug � 	�tug�	 v"/.-*K ∶� ∑ �6: ∙ 	�8:6;<

(10)

If there are a few candidates �:i< for whom the standard
deviations 	�tug are similar to each other, the VM with least
penalty (10) is the best choice that gives rise to the smallest
increase in standard deviation.

Portfolio-based Resource Allocation algorithm II
(PBRAcorr) is nearly identical to PBRAuncorr except for a few
lines (lines 5 through 8 in Figure 4.) It considers the first H
VMs as candidates for allocation. Because the list of VMs is
sorted by standard deviations of the VMs, standard deviations
of the candidates are similar to each other. Hence, PBRAcorr
subsumes the correlated case by choosing the VM with least
penalty (10) among the candidates.

Determining proper H is important for good performance
of the algorithm. If H is 1, PBRAcorr becomes almost
identical to PBRAuncorr. On the other hand, PBRAcorr is very
different from PBRAuncorr if H is equal to N. Hence, it is
important to choose a proper value for H. Intuitively, a large
value for H is reasonable if many VMs are correlated.
However, it is not so simple, and it will be discussed at the
next section IV.

B. Cluster-level Resource Manager

The cluster-level resource manager deploys VMs that are
given by the cloud-level resource manager on PMs of the
cluster. Its job is conceptually equivalent to the job of the
cloud-level resource manager: assign VMs to clusters/PMs.
Thus, we use the same algorithms (PBRAcorr and PBRAuncorr)
for implementation of the cluster-level resource manager:
the only difference is clusters in the algorithms are replaced
by PMs. However, more elaborate algorithms e.g., minimum
bin slack (MBS) heuristic [12] may also be used. Because
the size of problems given to the cluster-level resource
manager is bounded, we have more liberty to choose more
complex (but yielding better results) algorithms.

The algorithms implicitly reduce the energy cost by
utilizing the minimum number of PMs. The algorithms start
from sorting its PMs by their capacity in non-increasing
order, and assigning as many as VMs to each PM. Hence, the
algorithms effectively solve (4).

There may be no feasible solution. If the manager cannot
deploy some VMs, it lets the cluster-level resource manager
know which VMs are not assigned. The cluster-level
resource manager will reassign the VMs to other clusters.
These steps are repeated until either all VMs are assigned or
all clusters are full.
Portfolio-based Resource Allocation Algorithm II (PBRAcorr)
Inputs: 	*N	, ��8 	, 	�8 	, ./2	���
Output: gnc
1: sort clusters C by *N in non-increasing order
2: sort VMs �6by 	�8 in non-increasing order
3: for all clusters C do
4: while true then
5: for the first H unassigned VMs �6 do
6: find �6 of which penalty is minimal (10)
7: where penalty = ∑ O�N ∙ ��6 ∙ 	��� 	
8: end for
9: gnc = 1 // assign �6 to C
10: resource = ∑ O�N ∙ ���� � � ∙ ∑ ∑ O�N ∙ O�N ∙ ��� ∙ 	�� ∙ 	����
11: if resource > tc then
12: gnc = 0 // cancel the assignment
13: break // break while loop
14: end if
15: end while
16: end for

Figure 4. Portfolio-based Resource Allocation Algorithm II (corrleated)

IV. SIMULATION RESULTS

A. Simulation setup

For the simulation we needed the following data:
i) capacity of PMs, ii) list of PMs in clusters, iii) means and
standard deviations for resource requirements of VMs, and iv)
correlation coefficients among various VMs. We generate the
data randomly as follows:

• Number of VMs (N), PMs (M), and clusters (C)
• Resource requirements of VMs: mean and standard

deviation of	��/, 	�8 (�wx8 , 	wx8 , �ax8 , ./2		ax8)

• Capacity of PMs: mean and standard deviation of
total resource amount

• yzc{�|	: (# of correlated VMs) / (# of total VMs)
• y}�~�: # of correlated VMs in a group
It is randomly decided which PMs are placed in which

clusters. Because we have heterogeneous VMs, their means
(���) and standard deviations (��) are randomly generated
from the given information (�wx8 , 	wx8 , �ax8 , ./2		ax8 .) A
correlation matrix is created based on yzc{�| and	y}�~�. Note
that yzc{�| � 0 means all VMs are uncorrelated whereas yzc{�| � 0.5 means half of VMs are correlated. Furthermore,
if, for example, we have 10 correlated VMs and	y}�~� � 5,
there is going to be two groups, and each of the two groups
has five VMs in it. VMs in a group are correlated only with
the VMs in the same group.

Making a valid correlation coefficient matrix ����� is
important. We use the hypersphere decomposition [13]
method, which is a relatively simple method for generating a
valid correlation matrix.

B. Comparing algorithms

To assess the quality of solutions generated by the
proposed algorithms, we compare our solution with some
other well-known algorithms:

• SA–use simulated annealing [14] algorithm. It does not
guarantee to find the global optimal point, but it finds a
near-optimal solution given a slow enough cooling
schedule. This method may generate different solutions
each time, so we run the SA six times and pick the best
result. SA results may be treated as the result to beat.

• random–do assignments randomly. If a solution is worse
than random, it means quality of the solution is quite
poor. Lower gap between results of SA and random
means there is less gain to be had from any optimization.
We run random algorithm ten times and report the
average of these runs.

• FFD and BFD–use first fit decreasing and best fit
decreasing algorithms. Both are well-known and
commonly used heuristics for solving the bin-packing
problem. FFD sorts Xn by its resource requirements
(�� � �	�) in a non-increasing order, and assigns Xn to
the first cluster that is available. BFD is similar to FFD,
but it assigns Xn to the cluster with the minimum
remaining capacity among the cluster of which capacity
is greater than (�� � �	�). None of these two heuristics
takes advantage of the portfolio effect. More precisely,
they treat the resource requirements of VMs not as RVs
but as constant values equal to	�� � �	�. They simply
add or subtract these constant values in order to
calculate the required resource. This is equivalent to
assuming that all VMs are fully correlated (∀(, Z	��� � 1),
which is a very conservative approach.

• FFDpf and BFDpf – They are identical to FFD and BFD
except that they consider the portfolio effect.

C. Cloud-level Resource Manager

The objective of the cloud-level resource manager is to
minimize the sum of standard deviations of clusters (6),
which will be called cost in this section. Lower cost means
better quality of the solution. There are 300 VMs (N = 300),
which is relatively small number of VMs. This is because SA
requires huge amount of time for large problem sizes. We
first investigate the quality of the algorithms by comparing
with the near optimal (SA’s results) for small problem size,
and then compare results of the algorithms except SA for
larger number of VMs in section D.

Figure 5. depicts normalized costs of the algorithms. For
a fair comparison, we generate eight different test cases
based on the same data and run simulations. Note that even
based on the same data, the results can be different because
the data is randomly generated in each case (see IV-A.) Both
PBRAcorr and PBRAuncorr produce excellent results that are
even better than the results of SA (Figure 5. a.) Note that
results of PBRAcorr and PBRAuncorr are almost identical when
VMs are uncorrelated (yzc{�| � 0.) This is because penalty
(10) is always zero for H candidate VMs. When half of the
VMs are correlated (yzc{�| � 0.5), PBRAcorr produces better
result (less cost) than PBRAuncorr, and is still better than SA
for six test cases (Figure 5. b.)

Quality of the algorithms can be affected by yzc{�| and	y}�~� , thus we run multiple simulations for
different combinations of yzc{�| and 	y}�~� . Comparison
among the algorithms under different 	y}�~� values is shown
in Figure 6. 	yzc{�| is 0.9 for all cases, which means 270 VMs
out of 300 VMs are correlated. For larger	y}�~� , the cost
difference between random and SA decreases, which means
cost reduction from optimization decreases. This is because
if 	y}�~� is sufficiently enough, we can easily put positively
correlated VMs into different clusters; hence the cost will
decrease a lot. On the other hand, if too many VMs are
correlated with each other, it is difficult to avoid assigning
correlated VMs to the same PM. Hence, there are small
improvements obtained from the algorithms.

Figure 5. Comparison among algorithms (N = 300, H=30)

Figure 6. Size of correlated group vs. cost (yzc{�|= 0.9, N=300, H =30)

If 	y}�~� is small enough, the quality of PBRAcorr and

PBRAuncorr is not influenced much by yzc{�| (Figure 7.)
PBRAcorr produces better results than PBRAuncorr and cost of
both algorithms increases a little bit for higher	yzc{�|. This
shows that the proposed algorithms produce high quality
solutions if size of correlated group is small enough. The
statement is also valid even if there are many correlated VMs.

Figure 7. Ratio of correlated VMs vs. cost (y}�~�= 10, N=300, and H=30)

As mentioned at the previous section, choosing a proper
H is important for higher quality of PBRAcorr (Figure 4.) If

1 2 3 4 5 6 7 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

cases

co
st

 (
n

o
rm

a
li

ze
d

)

(a) C
ratio

=0

1 2 3 4 5 6 7 8

1

1.2

1.4

1.6

1.8

cases

(b) C
ratio

=0.5, C
size

=10

SA

random

PBRA
uncorr

PBRA
corr

10 20 30 40 50 60 70 80
0.8

1

1.2

1.4

1.6

1.8

co
st

 (
n

o
rm

a
li

ze
d

)

size of correlated group (C
size

)

SA

random

PBRA
uncorr

PBRA
corr

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

co
st

 (
n

o
rm

a
li

ze
d

)

ratio of correlated VMs (C
ratio

)

SA

random

PBRA
uncorr

PBRA
corr

H is 1, PBRAcorr is nearly identical to PBRAuncorr. On the
other hand, PBRAcorr becomes very different from PBRAuncorr

when H is N (the number of VMs.) Note that there are two
reasons for cost reduction: the first one comes from the
proposition presented in section III.A and the second is due
to avoiding the assignment of highly correlated VMs to the
same cluster. The best H minimizing the cost is decided
depending on which source of cost reduction is dominant:
when the first source (proposition) is dominant, smaller H is
better choice and vice versa.

The results of PBRAcorr for variety of H values are
reported in Figure 8. It is expected that the best H is not the
same under different patterns of correlation: How many VMs
are correlated and how big the group of correlation is? We
categorize correlation patterns into four cases and run
simulations for each case:

• Mid 	yzc{�|(0.5), small y}�~�(10) – Figure 8. a
• Mid 	yzc{�|(0.5), large y}�~�(100) – Figure 8. b
• High 	yzc{�|(0.9), small y}�~�(10) – Figure 8. c
• High 	yzc{�|(0.9), large y}�~�(100) – Figure 8. d

Figure 8. H vs. cost for four cases (N=300)

yzc{�| = 0.5 means that half of VMs are correlated; hence
there are two sources of cost reduction. Depending on which
source is dominant, the best H value is chosen. For
small	y}�~� (Figure 8. a), it is easier to avoid putting highly
correlated VMs into the same cluster. In addition, bigger H
means more candidate VMs are investigated; hence, cost
saving from the second source becomes greater. However, at
the same time, cost saving from the first source (proposition)
keeps decreasing for bigger H. Thus, the best H is around 50
(Figure 8. a.) How about bigger y}�~� with the same	yzc{�|?
(Figure 8. b) As shown in Figure 6. , the amount of cost
saving from putting correlated VMs in separate clusters
becomes smaller for bigger	y}�~�. Thus, cost saving from the
first source is dominant. Because cost saving from the
second source is rather small, the best H is around 10. When yzc{�| is close to 1.0, that is most of all VMs are correlated, it
is highly probable that the second source of cost saving is
dominant (Figure 8. c and d) When 	y}�~� is small (Figure 8.
c), there is more cost saving as H increases, and amount of
cost saving of this case is largest among the four cases.

When both yzc{�| and y}�~� are large, PBRAcorr always
produces better result, but there is neither big difference in
cost nor a clear relationship between H and cost saving
(Figure 8. d.)

Based on the above discussion, we get some insight for
choosing the proper H. First of all, relatively bigger H is
promising for the case of small	y}�~� (Figure 8. a and b.) For
the last case (Figure 8. d), it does not matter if we choose any
value of H, but higher H increases the computational
overhead. Hence, we need to pick as small H as possible.
Consequently, small H is good for the case of large 	y}�~�
(Figure 8. b and d.)

D. Overall performance comparisons

We have shown that the proposed algorithms are simple
and work well for cluster-level resource allocation. Their
results are very close to or even better than the SA results.
What cluster-level resource managers do is very similar to
what the cloud-level resource manager does: assign VMs to
PMs. Hence, we apply the same algorithms (PBRAuncorr and
PBRAcorr) for cluster-level resource managers. However, the
high quality of each level does not necessarily guarantee the
high quality of the overall solution. In this section, we will
compare the quality of the final solution generated by
different algorithms and verify that the proposed algorithms
produce better quality solutions. In addition to this, we run
the simulation for a large number of VMs, and show if the
proposed scheme is scalable or not.

Comparison among the algorithms with different
numbers of VMs is reported in Figure 9. It is seen that costs
of FFD and BFD are much larger than those of all others.
This is because FFD and BFD do not consider the portfolio
effect and thus tend to overbook the resource. A reason for
this big difference is that 	�8is set to be larger than	��8 in
this study, which magnifies the portfolio effect. Nevertheless,
the experiment suggests that the portfolio effect has to be
considered. Figure 9. (a-2 and b-2) plots the same results as
Figure 9. (a-1 and b-1) except that results of BFD and FFD
are excluded for better visual clarity. Because PBRAuncorr and
PBRAcorr are nearly the same for uncorrelated VMs, their
results look almost identical. The difference in cost among
the four algorithms is very small (less than 2 %) (Figure 9.
(a-2).) Interestingly, PBRAcorr produces the best result for the
other case where many VMs are correlated (Figure 9. b-2.)
This result shows PBRAcorr outperforms all other heuristics
when many VMs are correlated (up to 10% cost reduction
compared to FFD.)

One of the most important features of a solution for
clouding computing is scalability. Hence, the relationship
between execution time of the algorithms and problem size is
very important. Execution time of the proposed algorithm is
defined as follow: ���� � �N�|�� �max	�N��}{�z�
where �N�|�� 	and �N��}{�z are execution time of the cloud-
level resource manager and cluster-level resource managers,
respectively. The cluster-level resource managers are
running in parallel; hence, their longest execution time is
used. As shown in Figure 10. , the trends of two cases
(correlated and uncorrelated) are very similar: execution time

0 20 40 60 80 100
0.92

0.94

0.96

0.98

1

1.02

(a) C
ratio

=0.5 , C
size

=10

co
st

 (
n

o
rm

a
li

ze
d

)

0 20 40 60 80 100
0.85

0.9

0.95

1

(c) C
ratio

=0.9 , C
size

=10

co
st

 (
n

o
rm

a
li

ze
d

)

H

0 20 40 60 80 100
0.98

1

1.02

1.04

1.06

1.08

(b) C
ratio

=0.5 , C
size

=100

PBRA
uncorr

PBRA
corr

0 20 40 60 80 100
0.97

0.98

0.99

1

1.01

1.02

(d) C
ratio

=0.9 , C
size

=100

H

of FFD and BFD is the smallest while the execution time of
PBRAcorr is the largest. Execution times of the other three
algorithms (FFDpf, BFDpf, and PBRAuncorr) are similar. Note
that y axis is plotted with a logarithmic scale; thus, the plots
clearly show the proposed algorithms are scalable. In
addition to this, the execution time of PBRAcorr becomes
close to those of the other portfolio-based algorithms (FFDpf,
BFDpf, and PBRAuncorr) as the number of VMs increases.

Figure 9. Quality comparison among algorithms (yzc{�|= 0 and 0.9)

The results show that the proposed algorithms (PBRAcorr
and PBRAuncorr) outperform the well-known heuristic
algorithms (FFD and BFD.) PBRAcorr produces the best
results among the algorithms for correlated VMs. The
important fact is that the proposed scheme is distributed
whereas other algorithms are centralized. Because the
problem size of cluster-level resource manager is much
smaller, we have the opportunity to apply more sophisticated
algorithms with less concern about their computational
complexity. Hence, the fact that solution of the proposed
scheme is better than the existing heuristics is meaningful
even when the difference between qualities of solutions is
not so big.

Figure 10. Running time comparison among algorithms (yzc{�|= 0 and 0.9)

V. CONCLUSIONS

With increasing energy cost of cloud computing systems,
necessity of energy aware resource management techniques
has been growing. This paper proposed a hierarchical
resource management scheme which is scalable and
produces high quality solutions. Resource requirements were
modeled as random variables and correlation among the RVs
were considered. The proposed solution outperforms well-
known heuristic algorithms when VMs are correlated with
each other. The solution achieves up to 10% cost reduction
compared to FFD and BFD.

ACKNOWLEDGMENT

This work is sponsored by a grant from the National
Science Foundation.

REFERENCES

[1] A. Gandhi, et al. Optimal power allocation in server farms. in
Proceedings of the eleventh international joint conference on
Measurement and modeling of computer systems.

[2] R. Raghavendra, et al. No "power" struggles: coordinated
multi-level power management for the data center. in
Proceedings of the 13th international conference on
Architectural support for programming languages and
operating systems.

[3] S. Srikantaiah, et al. Energy aware consolidation for cloud
computing. in Proceedings of the 2008 conference on Power
aware computing and systems.

[4] M. Stillwell , et al. Resource Allocation Using Virtual Clusters.
in Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid.

[5] D. Wilcox, et al. Probabilistic Virtual Machine Assignment. in
CLOUD COMPUTING 2010, The First International
Conference on Cloud Computing, GRIDs, and Virtualization.

[6] P. Billingsley, Probability and Measure2012: John Wiley & Sons.
[7] A. Rudd and H.K. Clasing, Modern portfolio theory: the principles of

investment management1988: Andrew Rudd.
[8] M. Pedram and I. Hwang. Power and Performance Modeling in

a Virtualized Server System. in Proceedings of the 2010 39th
International Conference on Parallel Processing Workshops.

[9] C. Clark, et al. Live migration of virtual machines. in
Proceedings of the 2nd conference on Symposium on Networked
Systems Design \& Implementation - Volume 2.

[10] P. Barham, et al., Xen and the art of virtualization, in
Proceedings of the nineteenth ACM symposium on Operating
systems principlesACM: Bolton Landing, NY, USA.

[11] B. Botelho. Virtual machines per server: A viable metric for hardware
selection? . 2008; Available from:
http://itknowledgeexchange.techtarget.com/server-farm/virtual-
machines-per-server-a-viable-metric-for-hardware-selection/.

[12] J.N.D. Gupta and J.C. Ho, A new heuristic algorithm for the
one-dimensional bin-packing problem. Production Planning
and Control, 1999. 10(6): p. 598-603.

[13] R. Rebonato and P. Jäckel, The most general methodology for
creating a valid correlation matrix for risk management and
option pricing purposes. Journal of Risk, 2000.

[14] S. Kirkpatrick, et al., Optimization by Simulated Annealing.
Science, 1983. 220(13): p. 10

0 2000 4000 6000 8000 10000
0.5

1

1.5

2

2.5

3

3.5

4

(a-1) C
ratio

=0

co
st

 (
n

o
rm

a
li

ze
d

)

the number of VMs

0 2000 4000 6000 8000 10000
0.5

1

1.5

2

2.5

3

3.5

4

(b-1) C
ratio

=0.9

co
st

 (
n

o
rm

a
li

ze
d

)

the number of VMs

0 2000 4000 6000 8000 10000
0.9

0.95

1

1.05

1.1

(a-2) C
ratio

=0

the number of VMs

0 2000 4000 6000 8000 10000
0.9

0.95

1

1.05

1.1

(b-2) C
ratio

=0.9

the number of VMs

PBRA
uncorr

PBRA
corr

BFD

BFD
pf

FFD

FFD
pf

0 2000 4000 6000 8000 10000
10

5

10
6

10
7

10
8

(a) C
ratio

=0

ex
ec

u
ti

o
n

 t
im

e
(m

il
li

se
co

n
d

)

the number of VMs

0 2000 4000 6000 8000 10000
10

5

10
6

10
7

10
8

(b) C
ratio

=0.9

the number of VMs

PBRA
uncorr

PBRA
corr

BFD

BFD
pf

FFD

FFD
pf

