To appear in IEEE Trans. on VLSI Systems, 2008

Predictive-Flow-Queue Based Energy Optimization
for Gigabit Ethernet Controllers

Hwisung Jung, Student member, IEEE, Andy Hwang, and Massoud Pedram, Fellow, IEEE

Abstract - This paper presents an energy-efficient packet
interface architecture and a power management technique for
gigabit Ethernet controllers, where low-latency and
high-bandwidth are required to meet the pressing demands of
very high frame-rate data. More specifically, a
predictive-flow-queue (PFQ) based packet interface architecture
is presented, which adjusts the operating frequency of different
functional blocks at a fine granularity so as to minimize the total
system energy dissipation while attaining performance goals. A
key feature of the proposed architecture is the implementation of
a runtime workload prediction method for the network traffic
along with a continuous frequency adjustment mechanism, which
enables one to eliminate the latency and energy penalties
associated with discrete power mode transitions. Furthermore, a
stochastic modeling framework based on Markovian decision
processes and queuing models is employed, which make it possible
to adopt a precise mathematical programming formulation for the
energy optimization under performance constraints.
Experimental results with a designed 65nm gigabit Ethernet
controller show that the proposed interface architecture and
continuous frequency scaling result in system-wide energy savings
while meeting performance specifications.

Index Terms — Energy optimization, gigabit Ethernet
controllers, predictive-flow-queue, semi-Markov process,
workload prediction

I. INTRODUCTION

ngoing advances in computer networks and hardware
designs have resulted in the introduction of multi-gigabit
Ethernet links. Commensurate with this trend, the network
interface cards (NICs) are becoming ever more complex in
order to satisfy the high-functionality and high performance
demands of today’s applications. For example, hardware
support for manageability features such as ASF (Alert
Standards Format) and DMWG (Desktop and Mobile Work
Group) are being integrated into the NIC to provide system
management capabilities [1], which in turn necessitates more
processors to be included in the NICs. A close look at today’s
high-speed NICs (a.k.a., gigabit Ethernet controllers) reveals
that these controllers must also conserve power since excessive
power dissipation creates many problems, from increased

operational cost to reduced hardware reliability.
A multi-gigabit Ethernet controller must be able to support

Manuscript submitted to the IEEE Transactions on Very Large Scale
Integration Systems in Oct. 2007. A preliminary version of this work was
published in the 2007 Proc. of Asia and South Pacific-Design Automation
Conference [52]. Much of the formulation, discussions, and results presented
here are different from that preliminary paper.

high frame-rate data processing and low-latency access for the
frame data. However, these trends also are translated into
higher power density, higher operating temperature, and
consequently lower system reliability. The power consumption
of the gigabit Ethernet controller increases rapidly with the
increase in link speed. In addition, as the Ethernet port density
of a server system increases for a given form-factor, designers
of the gigabit Ethernet controller must resort to more
energy-efficient architectures as they attempt to add more ports
to the server system. For example, the Sun Blade server
consumes around 55W power for a Network Express module
which includes 20 ports [2]. Typically the power number for
the gigabit Ethernet controllers ranges from 2 to 3W per port,

depending on the link speed [3][4].

Power saving in gigabit Ethernet controllers has been
commonly achieved by transitioning to more advanced
semiconductor process technologies, (e.g., using 65nm and
45nm technology nodes) and/or by utilizing low power design
techniques (e.g., using clock gating and static voltage scaling
techniques). However many opportunities for reducing energy
dissipation at the system level exist. For example, modern
circuit design technologies allow a number of different clock
and voltage domains to be specified on the same chip. As a
result, significant power saving can be achieved if, at runtime
and under the control of a power management unit, suitable
operating voltage and frequency values are assigned to various
functional blocks (FBs) inside an Ethernet controller to trade
performance for lower power dissipation.

As more and more of the FBs inside an Ethernet controller
(e.g., MAC, PHY, PCI-E) are being designed to support
multiple power-performance modes (i.e., different supply
voltage and clock frequency settings), it is becoming possible
to realize full chip energy saving by employing advanced
system-level power management strategies. This solution,
however, requires development of dedicated means and
methods for realizing runtime power management policies. In
particular, the following issues must be considered when
utilizing a dynamic power management policy which changes
the voltage-frequency settings of different FBs in order to
minimize energy dissipation while attaining a performance
goal:

i) Typically a lot of performance is sacrificed in order to
achieve lower power dissipation; this is especially a
concern for demanding applications such as the Ethernet
controller,

ii) There is a significant latency and energy dissipation
overhead associated with the mode transition, e.g., the
overhead of acquiring the lock in a phase locked loop (PLL)
once a new frequency target is set or the overhead of

To appear in IEEE Trans. on VLSI Systems, 2008

DC-DC conversion to change the supply voltage level [6],

and
iii) The power management routine, which is likely residing in

the operating system (OS), can itself become a heavy duty
task, which can consume sizeable computational and
energy resources since it has to continually monitor the
system workload, make decisions about the next set of
voltage-frequency settings for the various FBs, and

communicate the decision to the appropriate hardware [7].

In this paper, we propose a predictive-flow-queue (PFQ)
based packet interface architecture to minimize the energy
dissipation of a gigabit Ethernet controller. Generally, 802.3
Medium Access Control (MAC) [8] sub-layer offers an
Ethernet level flow control mechanism among a pair of
full-duplex end points, while routing certain classes of network
traffic, which are generated, processed, and terminated at the
specific processor inside the gigabit Ethernet controller. In the
proposed architecture, the packet interfaces inside MAC and
between MAC and Direct Memory Access (DMA) engine are
targeted for energy-saving opportunities. A dynamic frequency
adapter, which provides a continuously varying frequency
based on a workload prediction technique, is utilized to achieve
energy saving without much overhead. The proposed
architecture is modeled with semi-Markov chain (SMC) [9] and
queuing models to enable formulation of a mathematical
program for optimizing the total system energy dissipation
under performance constraints.

In this paper, we shall only utilize a dynamic frequency
scaling (DFS) technique to minimize the power consumption of
the system. This is because dynamic voltage scaling (DVS)
technique, although it can provide a near cubic reduction in
power dissipation, tends to incur a large transition time
overhead. This overhead can be on the order of tens of
microseconds, for example from the specification for the AMD
Athlon chip [10]. In the 80200 XScale processor chip, the
latency for switching the CPU voltage is 6 microseconds [11].
For systems where execution is blocked during a transition
(which is common in many existing commercial processors
including the AMD Athlon chip), this translates into tens of
thousands of lost execution cycles. Another related problem is
transition energy overhead, which can actually cause the
system’s energy consumption to increase if DVS is not used
judiciously.

The transition time overhead for frequency scaling is much
shorter, i.e., frequency change can indeed take effect in one
cycle. For example, IBM researchers recently introduced a
dynamic power management technique called PowerTune [12]
which uses a single PLL driving divider circuitry to produce
multiple frequencies for the PowerPC 970 family. This allows
the PLL to stay locked at a given frequency while the processor
core frequency is dynamically scaled from initial frequency
level of f'to f/2, f/4, and f/64 within one cycle without phase
shift. When the processor switches frequency, PowerTune
switches back and forth between the old (lower) and new
(higher) frequencies, resulting in more cycles of the new
frequency. This reduces the bounce noise and allows the
packages to effectively react to the change in current.
PowerTune differs from other work (e.g., the power
management solution for the PowerPC 750 [13]) in that it

allows system-wide dynamic frequency scaling without
stopping the core. System wide control of clock frequency
achieves excellent power savings as reported. PowerTune is
closest to what we propose here, except that our design allows
for continuous frequency adjustment, and not simply switching
among a small number of frequency levels.

As another case study, we can mention the Intel’s
Montecito design [14], which attempts to tap unused power by
dynamically adjusting the processor voltage and frequency
setting to ensure the highest frequency within temperature and
power constraints [15]. The chip is capable of changing its
supply voltage level in 12.5mV increments. However, it takes
100ms to respond in the voltage control loop to a request for
voltage change by an on-chip microcontroller, which runs a
real-time scheduler to support multiple tasks - calibrating an
on-chip ammeter, sampling temperature, performing power
calculations, and determining the new voltage level. In the
Montecito design, the supply voltage throughout the chip
(which is affected by current-induced droops and DC voltage
drops) is constantly monitored with 24 voltage sensors, and a
frequency level is selected to match the lowest voltage reported
by any sensor. A digital frequency divider provides the selected
frequency, in nearly 20-MHz increments and within a single
cycle, without requiring the on-chip PLLs to resynchronize
[16].

Another difficulty with dynamic voltage scaling is the fact
that the amount of load current change after mode transition can
be significant. Even specialized DC-DC converters cannot
completely avoid the instantaneous output voltage drop (loss of
output regulation) due to a sudden and dramatic change in the
load current demand. For example, the DC-DC converter of
[17], which uses a reactance switching technique for
fast-response load regulation, encounters about 150mV of
voltage deviation from a target output voltage of 3.3V when the
load changes from 1 to 30A. This supply voltage droop may
last 100’s of microseconds.

Note that we are not arguing against DVFS in general.
Instead what we are stating is that for the target application (i.e.,
the Gigabit Ethernet Controller), given the current state of the
art in DC-DC conversion and voltage control loop response
time, the overhead of voltage scaling is too high, and hence, we
resort to frequency scaling only.

The remainder of this paper is organized as follows. Section
I provides a brief background of Ethernet controller and
related work while section III describes the details of proposed
PFQ-based architecture. In section IV, we present a workload
prediction technique. Section V provides an analysis of the
system based on MDP and queuing models and a performance
optimization formulation. Experimental results and conclusion
are given in section VI and section VII.

II. PRELIMINARIES

A. Background on Ethernet Controller

The main purpose of an Ethernet controller is to transport
network traffic between the host system and the physical
Ethernet links. Sending and receiving the network traffic over
local interconnect, i.e., the PCI-E bus [19], is handled by the
Ethernet controller and device driver in the host operating

To appear in IEEE Trans. on VLSI Systems, 2008

system. In general, the Ethernet controller typically has a DMA
engine to transfer data between the host system memory and the
network interface memory. In addition, the Ethernet controller
includes a MAC unit to implement the link level protocol for
the underlying network, and uses a signal processing engine to
implement the physical (PHY) layer of the network stack
(where the 802.3 frame format is supported).

To satisfy the high-functionality of today’s network
applications, enterprise-class Ethernet controllers must handle
other classes of network streams, e.g., remote management
traffic, which is required to terminate at the host computer, and
not necessarily at the host operating system [1]. Management
technology essentially allows IT administrators to remotely
access a user’s system, i.c., via the network that the system is
connected to, and perform necessary provisioning,
maintenance, and repairs. Hence, an additional CPU-memory
sub-system is required to handle the management bound traffic.
This sub-system is fundamentally independent of the Ethernet
side functionalities. More specifically, remote management
and/or fast message transfer may be accomplished through a
remote direct memory access (RDMA) engine [20] which
allows data to move directly from the memory of one host
system to that of another without involving either one’s
operating system, thereby realizing high-throughput and
low-latency in data transfer. In addition, the latest Ethernet
controllers include an integrated IP security encryption engine
(IPSec) [21] to secure internet protocol communications. Fig. 1
shows a simplified block diagram of the Ethernet controller,
where the statistics functional module provides relevant
information about the packet flows.

Buff TXBUF
ulier
CrPU manager @

“—» RXBUF

® .
£ ® OO OE ® 2
B GbE | Ethernet PCLE g
%‘Ej “ PHY | MAeén © Control DMA —» UF ” E‘
& o

@ O ®O =

Fig. 1. Simplified block diagram of an Ethernet controller.

To understand the functionality of Ethernet controller
inside, the process of receiving a packet over the network is
explained next (see Fig. 1 where various steps are shown near
the blocks that execute them). In step (a), the Ethernet
controller receives a data stream from the selected physical
layer interface. It performs address checking, Cyclic
Redundancy Check (CRC), and Carrier Sense Multiple Access
/ Collision Detection (CSMA/CD) functions [8] in step (b). In
step (c), the Ethernet controller calculates checksum and parses
Transport Control Protocol / Internet Protocol (TCP/IP)
headers. This is followed by the classification of the frame
based on a set of matching rules in step (d). In step (e), the
Ethernet controller strips the Virtual Local Area Network
(VLAN) tag, and then temporarily places the packet data and
header into a pre-allocated receive buffer (i.e., RXBUF) in step

(f). After that, the Ethernet controller completes the buffer
descriptors, which contain information about the starting
memory address and the length of the data packets, in step (g).
Finally, in step (h), the PCI-E interface initiates the DMA
transfer of the packet data and descriptors to the host memory
by interrupting the device driver.

Sending packets is analogous to receiving them except that
the device driver first creates the buffer descriptors for the
packets to be transmitted. Next, the Ethernet controller
completes the buffer descriptor for the data packets in step (i) of
Fig. 1. In step (j), the packets are stored into the temporary
buffer (i.e., TXBUF) via the DMA. The Ethernet controller
updates the frame descriptor with checksum, VLAN tag, and
header pointers in step (k), and executes CSMA/CD functions
to transmit the frame in step (1). Finally, data is formatted to the
selected physical layer interface in step (m). Details about the
Ethernet controller architecture and the processes of traffic
management, RDMA, and IPSec are omitted for brevity.
Interested readers may refer to [20]-[22] for additional
information.

B. Related Work

Dynamic voltage and frequency scaling (DVFS) has been the
subject of many investigations [23]-[29]. In the following, we
provide a quick review of some the work which is most directly
related to ours.

An application-level power management technique was
presented in [23], where the authors described an operating
system interface that can be used by applications to achieve
energy savings. In this approach, an application is allowed to
specify its desired voltage-frequency value, and the operating
system ensures that the application will run under that setting.
The research work in [24] considered a DVFS managed
processor executing packet producing tasks and a
power-managed network interface. The authors introduced an
approach for minimizing the energy consumed by the network
resource through careful selection of voltage-frequency
settings for the processor. A key consideration was to
dynamically balance the processor and network energy
dissipations.

The authors in [25] described a method of profile-based
power-performance optimization by DVFS scheduling in a
high-performance PC cluster. The authors divide an application
program’s execution into several regions (CPU-intensive or
communications-intensive) and choose the best
voltage-frequency setting for the processors to execute each
region according to the profile information about the execution
time and power dissipation of a previous trial run. The authors
consider the latency and energy dissipation overhead of
changing voltage-frequency settings. The work in [26]
investigated software techniques to direct run-time power
optimization. The authors targeted network links, the dominant
power consumer in parallel computer systems, allowing DVFS
instructions extracted during static compilation to coordinate
link voltage and frequency transitions for power savings during
the application execution. Concurrently a hardware online
mechanism measures network congestion levels and adapts
these off-line voltage-frequency settings to optimize network
performance.

To appear in IEEE Trans. on VLSI Systems, 2008

The authors of [27] present a compiler-driven approach to
optimize the power consumption in communication links by
using DVFS. In this approach, an optimizing compiler analyzes
the data-intensive application code and extracts the data
communication pattern among parallel processors. This
information along with network topology is used for
identifying the link access patterns. The link access patterns
and inherent data dependence information are used to
determine optimal voltage-frequency settings for the
communication links at any given time frame. In [28], the
authors presented a DVFS technique for a soft real-time system
where the voltage-frequency setting is updated at
variable-length (instead of fixed-length) intervals. The
proposed voltage-frequency setting method is based on the
notion of an effective deadline for a task, which is predicted
adaptively and is used to provide fast tracking for abrupt
workload changes. In [29], the authors described a DVFS
technique targeted at non-real-time applications running on an
embedded system. This approach makes use of runtime
information about the external memory access statistics in
order to perform CPU voltage and frequency scaling. The
proposed DVFS technique relies on dynamically constructed
regression models that allow the CPU to calculate the expected
workload and slack time for the next time frame and, thus,
adjust its voltage and frequency in order to save energy, while
meeting soft timing constraints.

All of the above techniques perform DVFS, where the
performance overhead of such DVFS mechanisms is rather
high. For example, the authors in [26] assume that no network
traffic (i.e., packets) can cross the link during the power-mode
transitions, resulting in 20 to 100 bus cycle penalty each time a
voltage-frequency scaling is executed. Furthermore since the
voltage-frequency commands are issued by the operating
system, the time interval between two successive commands is
high. For example, reference [29] invokes a power
management kernel, which is a part of the OS code, to change
the voltage-frequency setting every 50ms (corresponding to a
Linux time quantum).

Little attention has been paid to doing DVFS by using
purely hardware-based mechanisms. This is clearly a promising
direction since hardware-based DVFS mechanisms produce
low latency and energy dissipation overheads. They can thus be
invoked much faster (i.e., two successive adjustments to
voltage and frequency can be made with a much shorter interval
in between).

III. PROPOSED ARCHITECTURE

In this section, we present details of Predictive Flow Queue
(PFQ) based power management architecture, which is
comprised of a performance monitor, a power manager, and a
dynamic frequency adapter. We also describe our
energy-efficient packet interface architecture.

A. PFQ-based Power Management Architecture

Defragmenting/filtering packets of various communication
protocols inside the Ethernet controller is a particularly
complex and demanding task. Thus, the Ethernet controller
needs many FBs and specialized hardware units that efficiently
process and transfer data between the local interconnect and the

network [30].

The PFQ architecture for the most part provides a first-in
first-out (FIFO) mechanism between the state machines
realizing various FBs. Each state machine essentially reacts to
the content of its corresponding PFQ to initiate and direct the
processing activities of the state machine as depicted in Fig. 2,
where we assume that each FB has three number of active state
(e.g., Si1, S,, and S3) which is controlled by dynamic frequency
scaling (DFS) values. A FB is shut down (power gated) when it
is in sleep mode. In contrast, the FB is assigned the lowest
allowed frequency when it is in idle mode. The content of PFQ
includes pointers that are used to indicate where the frame data
is located within the temporary buffers. When the PFQ is empty,
the state machine has no work to perform and is in its idle state.

Frequency

active Power active
—
Adapter

Performance
monitor
[
/\% ()
— ™
T) me||||

functional block 1 functional block 2

Dynamic

Fig. 2. Concept of predictive-flow-queue (PFQ).

Attempting to greedily respond to the workload changes so
as to provide an optimal DFS value can result in significant
energy and delay overheads associated with the power-mode
transitions. To solve this problem, a software component,
which accurately predicts the required performance level of the
system has been incorporated into the power management
systems [31][28]. Although these prediction methods help
reduce the energy/delay overheads, they suffer from a few
disadvantages, that is, i) a software-oriented prediction
algorithm increases the computational complexity of the power
manager that resides in the driver or the OS, and ii) when using
a Phase-Lock Loop (PLL) to effect a frequency change, the FB
may be stalled during the lock time of the PLL. Consequently,
use of the PLL to realize the DFS setting commanded by the
power manager may result in a sizeable performance penalty.

The main advantage of the proposed PFQ-based power
management architecture is that we predict the workload level
for the next time step while processing the incoming traffic and
ramp up (or down) the operating frequency in a continuous
manner until the target operating frequency value is achieved.
As aresult, there is never a need for stalling the FB. The details
of the power management architecture which include a
performance monitor, a power manager and a dynamic
frequency adapter, are explained next.

1) Performance Monitor

The performance monitor profiles and analyzes characteristics
of the workload by examining the corresponding PFQ. The
service time behavior of each FB is captured in the form of the
service time distribution for the FB when it is in the active
mode. Similarly, the input request behavior (i.e., workload) of
each FB is modeled by the request interarrival time distribution
at the corresponding input queue. In our problem setup, the
PFQ of each FB is represented by the G/M/1 queuing model,
whereby the interarrival times are arbitrarily distributed and the
service times are exponentially distributed [32]. The

To appear in IEEE Trans. on VLSI Systems, 2008

justification for adopting this model is that the PFQ receives
different and arbitrary sizes of frame data or frame descriptors
with different link speeds whereas the corresponding FB
executes its function with a fixed speed.

2) Power Manager

The main goal of the power manager is to determine and
execute a power management policy (i.e., one that maps
workloads to power state transition commands so as to
minimize the total system energy dissipation under a
performance constraint) based on the information provided by
the performance monitor. The power manager performs
workload prediction and policy optimization. Details of the
proposed workload prediction technique are explained in
section IV while the performance optimization formulation,
required to implement a workload-frequency mapping table, is
discussed in section V.

3) Dynamic Frequency Adapter

When the workload of an FB changes greatly and frequently,
the task of deciding what frequency value to assign to the FB
becomes increasingly difficult. Furthermore, the conventional
PLL-based frequency scaling techniques waste energy when
they change the frequency values. To overcome these
shortcomings, we present a workload-aware dynamic
frequency adapter (DFA) to generate a continuously varying
frequency for each FB.

Dynamic
Frequency
Adapter

Vol Power

H 1

. manager

[
H Performance
i .
[monitor
|
|
|
i

! FB
workload clock
PFQ

workload

|
- |
time

Increase frequency moderately target frequency value

O e N s N s M o O o M M

time

Increase frequency aggressively 1 target frequency value

'4
[1 [1 [nanooooofanoontn

time

(b)

clock

Fig. 3. Continuous frequency adjustment at a slow pace (a) or fast pace (b).

One benefit of using a variable frequency is that the DFA
enables each FB to remain operational even when its frequency
is being adjusted. The DFA is able to increase (or decrease) the
operating frequency value at a slow or fast rate with the help of
the performance monitor, depending on how slow or fast the
workload is changing and what the user preferences are (cf.
Fig. 3). The procedure for continuously adjusting the frequency
is explained next.

The power manager examines the workload of each FB at
decision epoch’ n+1 for the time interval ranging from decision
epoch n to nt+1, and subsequently, sets the frequency value of
each FB for the next time ranging from #n+1 to next decision
epoch at time n+2 (see below for an explanation of the
frequency prediction algorithm). Assume that a mapping table
for selecting an optimal operating frequency as a function of

! Any regular or interrupt-based power management decision time instance is
called a decision epoch.

the present workload (i.e., required performance) has been
provided. If the workload change is fast (slow), the interval
during the frequency adjustment is performed will be shortened
(lengthened) to improve the DFA responsiveness. In the
proposed framework, determining which frequency level to use
in what time interval is implemented in hardware.

The proposed DFA method is implemented in hardware
inside the Ethernet controller chip. In this way, we also control
noise and manage signal integrity. This is because if the
variable clock signal is produced outside the chip, jitter (which
is caused by several factors, e.g., crosstalk, power supply noise)
will pose a significant challenge to board designers who must
prevent sudden functional failures of the chip. In other words,
by implementing the DFA inside the chip, we can reduce the
impact of jitter on the chip’s performance [33].

reset —
decision_epoch —»
]

clock
sequencer

start pulse

pulse
generator

variable
frequency

i
i
current_rate —p rate

predict_rate —T» decoder

T

Speci‘al . pulse width
funf:tlon —p{ register counter modulator
register

i
1

1

1

1

1

1

width i
controller !
comparator i

|

|

1

1

1

1

1

1

1

H

1

|

|

|

i

Fig. 4. Block diagram of the proposed dynamic frequency adapter module.

current_rate rate
predict_rate decoder

1. decide start pulse width
(current operating frequency)

2. decide target pulse width

Special
(target operating frequency)

function
register L . i
3. decide increasing/decreasing

pulse width
current operating frequency target operating frequency
| |
A\ v
start pulse pulse pulse pulse target pulse
width width width width width
(= 6u) (=5u) (=4u) (=3u) (=2u)
H v | H v | H v | i ; | H ¢ |
' H H H H H H 1 H H
Zanable | | | | | | ,—l ,—l ,—l ’time

Yy

Fig. 5. Procedure for generating a variable frequency.

The block diagram of the DFA is depicted in Fig. 4 and is
explained next. At each decision epoch, the power manager
inputs values of the current and predicted frequencies to the
DFA block, which translates these two values into a start pulse
width and a target pulse width. The frequency adjustment is
achieved by steadily changing the frequency from its start value
toward the target value (see the register setting technique
illustrated in Fig. 5). In our design, the frequency is increased
when the pulse width is lowered. For example, the DFA
generates a variable frequency between a minimum frequency
set by a start pulse width of 6usec and a maximum frequency
set by a pulse width of 2usec. The DFA uses a digital PWM
(Pulse Width Modulator) [34] by means of a fast-clocked
counter, which is loaded by input digital code (i.e.,
current_rate and predict rate signals) at the beginning of the
process. The variable frequency signal is input to a clock buffer

To appear in IEEE Trans. on VLSI Systems, 2008

(not shown in the figure) before it is supplied to any functional
block. The DFA changes the frequency faster than a
conventional PLL since it eliminates the lock-time of feedback
loop of standard PLLs. Detailed functional simulation results
(cf. Fig. 19) will be reported in section VI.

B. PFQ-based Packet Interface Architecture

We apply the proposed PFQ-based power management
architecture to the packet interface modules inside the Ethernet
controller, which includes interfaces between MAC and DMA.
In this paper, we consider the packet interface between MAC
and DMA (without involving IPSec and management function)
to capture energy-saving opportunities by using the proposed
architecture since this interface amply exhibits the competing
requirements of low-latency and high-bandwidth processes. In
general, the frame data is provisionally stored in memory
buffers before being sent to local interconnect or network,
while the control data is processed by a series of FBs, each
requiring low-latency as shown in Fig. 1 (see steps (d), (e), and
(g) in the packet receive path). Thus, this architecture targets
the control dominated tasks rather than the storage and
forwarding of the frame data. The event-queue mechanism of
the PFQ enables multiple operating frequencies for the FBs,
satisfying the low-latency control data access and the
high-bandwidth frame data access. The interested reader should
refer to the research work in [35] if interested in the
DMA/PCl-related packet interfaces.

Dynamic Dynamic
Performance | | Frequency Performance | | Frequency
monitor Adapter monitor Adapter
l"a"yi"g frequency lvarying frequency
o
g | LAN |
&> Traffic x> ig—[m—p QP ——> PFQ) DI _
é Receive filter | % N
by LT-FIFO \
SR , SP
1 3
¥ ¥
=
2 H
time ; N time ,:

Fig. 6. Adaptation of PFQ-based power management structure to packet
receive path.

Fig. 6 illustrates the adaptation of PFQ-based power
management architecture to the packet receive path. For
example, considering LT-FIFO (which receives control data of
the LAN Traffic), the performance monitor observes the
contents of PFQ (i.e., LT-FIFO); subsequently, the dynamic
frequency adapter adjusts the operating frequency of the
corresponding FB (i.e., QP) under the power manager’s
direction. Control blocks such as the Queue Placement (QP)
and the Data Initiator (DI) interact with the RISC processor or
the buffer manager for the packet receive path, while
transferring memory buffer pointers to the ensuing PFQ so as to
advance the sequence of tasks. The LAN traffic receive filter
and the QP block are considered as the service requestor (SR)
and the service provider (SP), respectively. Note that when the
QP block is considered as a SR, then the DI block will play the
role of a SP. In the following, details of the packet interface are
described.

1) Packet Receive Interface

Fig. 7 shows the complete configuration of energy-efficient
packet interface architecture based on the proposed PFQ.
Detailed power management modules, which include the
performance monitors, power manager, and dynamic frequency
adapters, are omitted to simplify the figure. The RX-MAC
determines exactly what type of in-bound traffic is routed to a
host system through a series of packet receive control blocks,
where a programmable filter placed in the receive MAC layer is
responsible for filtering and tagging the in-bound traffic. The
receive filters have special features to analyze and classify the
incoming packets. The received packets, appearing in the form
of a 64-bit word stream, are en-queued into the RX-FIFO,
where MAC applies a programmed set of filters to such
streams.

While the frame data is en-queued in the RX-FIFO, the
control data (i.e., receive buffer descriptors) which are obtained
by matching and filtering, are en-queued into a LT-FIFO,
where these FIFOs have PFQ-based power management
structure. Note that the receive buffer descriptors are used to
keep track of packets being received from the Ethernet
interface, where the packet receive interface is responsible for
placing the received packets in the temporary memory buffer
(i.e., RXBUF) along with an associated buffer descriptor. The
receive buffer descriptor, which includes information about the
starting address, end status, and packet length, is updated by
hardware in order to indicate to the driver or the OS where the
received packets are located. Hence, for every complete frame
that resides in the RX-FIFO, there is a corresponding receive
buffer descriptor bearing the filtering results in the LT-FIFO.

; control
LAN i »
¥ Traffic H> PFQ III : PFQ| | | DI PFQ | ——»| Receive
2 Receive filter| | DMA
= LT-FIFO
& [
é receive buﬂer,"v l l
RXMAC descriptor
PFQ [.; ” RXBUF
\ /
RX-FIFO frame data Buffer frame data
2 , manager .
E c " < N,
ohl TXMAC <= < < » TXBUF
= TX-FIFO

FU Transmit
DMA

control

Fig. 7. The configuration with PFQ for packet interface architecture.

When a new frame starts filling the RX-FIFO, the MAC
requests buffers (i.e., temporary space) from the RXBUF for
the frame data (before it is sent to the host system via a receive
DMA) and starts placing the in-bound frame into these buffers.
At the end of the frame, the MAC pops the LT-FIFO, and takes
appropriate actions based on the contents of the FIFO entries.
As shown in Fig. 7, the frame data, which is stored in the
RX-FIFO, is transferred to the temporary RXBUF via a buffer
manager, and the control data used as a pointer to indicate the
buffer location of its corresponding frame data is processed
through the QP and DI control blocks. The QP and DI control
blocks are used to monitor several indicators (e.g., diagnostics)
during the reception of a packet and to update the information

To appear in IEEE Trans. on VLSI Systems, 2008

of buffer descriptor.

2) Packet Transmit Interface

The configuration of packet transmit interface is simpler than
that of the receive interface. In order to transmit a packet
through the MAC, the host system needs to construct the packet
in the TXBUF. At the same time, the control data (i.e., transmit
buffer descriptors) are configured by the driver or the OS in
order to indicate to the packet transmit interface where the
packets that are to transmitted are located in the TXBUF.
Information such as the starting address, packet length, and
VLAN tag is included in the transmit buffer descriptors. Next
the MAC commits the frame by en-queuing the frame data into
TX-FIFO, while the Frame Updater (FU) modifies the frame
header with the VLAN tag and checksum fields. After the
frame is transmitted, the MAC requests the buffer manager to
de-allocate the list of buffers for the freshly transmitted packet.
Simply speaking, the packet transmit interface is responsible
for transmitting packets to the Ethernet link by reading the
associated transmit buffer descriptors and the packet from the
local temporary memory buffer (i.e., TXBUF). Note that the
FPQ-based power management architecture is not applied to
the packet transmit interface since the power manager already
has knowledge about the rate of transmitting traffic, which
enables a DFS technique to be easily performed based on this
information alone.

IV. WORKLOAD PREDICTION-BASED FREQUENCY
ADJUSTMENT TECHNIQUE

We present a frequency adjustment technique based on
workload prediction for FPQ-based architecture, which is
formulated as an initial value problem (IVP) [36]. We also
describe our workload-driven dynamic frequency adjustment
design.

A. 1IVP-based Workload Prediction

Assume that power manager of the PFQ-based architecture is
able to monitor the current workload of the traffic at the
decision epochs ¢, ..., t, where t,.; = t,+T. Let w(f) denote the
workload (i.e., the arrival rate of traffic) of a target FB at time ¢
and let f'be a function providing the operating frequency for the
FB in every interval [, #;+;]. Then, an initial value problem
(IVP) may be defined to predict w(¢) as follows:

ow/lot=f(t,w), wt)=w)

where t € [t, t; + T], and w; denotes the workload at the
beginning of the current interval. The [IVP limits the solution by
an initial condition, which determines the value of solution at
all future time ¢ in the current interval [36]. Although f'can be
any general function, in practice, we assume a linear function
form: f=aw(f)+b where a and b are appropriately calculated
slope and offset coefficients. Since the initial workload value is
specified by the power manager, it is possible to integrate (1) to
obtain w(¢) in the interval [¢, #+;]. The standard solution
method for the IVP is to approximate the solution of the
ordinary differential equation by calculating the next value of w,
i.e., w(t+h) as the summation of the present value w() plus the
product of the size of a time step 4 and an estimated slope w'(¢)
ie.,

w(t +h) = w(t)+h-w'(t))

where the smaller this time step / is, the more accurate the
results will be. The difference between different ODE solvers is
in how they approximate w’(f) and whether and how they
adaptively adjust 4.

—==— Euler method

—— dth-order Runge-Kutta method

U5 | —s— ath order Adams Predictor Correctar
Exact solution

w (workload level)

time step

Fig. 8. Evaluation of various IVP solutions.

Considering the accuracy and overhead, we have evaluated
a number of methods for solving the IVP, which include the
Euler’s method, the 4" order Runge-Kutta method, and the
4™ order Adams predictor-corrector method (cf. Fig. 8). In this
figure, we assume that w(0) = 0.3 as an initial value. The time
step size is defined as & = T/K, where the time interval [¢;, ¢; + T
is divided into K equal-length segments. It is clearly seen that
the Euler method, the simplest approach for solving the IVP,
shows low accuracy (i.e., high error) in predicting the workload
value, where the error is defined as the difference between the
exact values and the computed approximates. However, the
4™ order Runge-Kutta method exhibits low error and consistent
stability in predicting the workload value. The 4™-order Adams
predictor-corrector method is also accurate, but has higher
computational complexity.

0.34 | —=— Predict(h:10)

—— Predict(h:2)

—— Predict(h:5)
Exact solution

w (workload level)

Fig. 9. Trade-off between the performance and time step /.

Fig. 9 shows the trade-off between the accuracy and time
step & in terms of performance of the workload prediction

To appear in IEEE Trans. on VLSI Systems, 2008

technique, where time (the x-axis) is defined in terms of
successive time steps. In this evaluation, the 4™-order
Runge-Kutta method is used with an initial value of w(0) =0.3.
Determination of the time step size is crucial since although a
small time step increases the computational overhead, it also
improves accuracy, i.e., the 4™order Runge-Kutta method
requires four evaluations per time step A but its accuracy is
improved. We use various values for time step size & (= 2, 5,
and 10), where T is fixed, while monitoring the error in
predicting the workload values. The time step of size 2
indicates great accuracy, but increases computational efforts by
the software (due to more computations in the same interval),
whereas step size of 10 exhibits lower computational efforts
with lower accuracy. In our problem setup, we have empirically
observed that a time step size of 5, which exhibits around 13%
error, provides a reasonable trade-off point, where the time step
size of 2 consumes around 4% and 9% increased CPU time
compared to the size of 5 and 10, respectively, based on our
simulations. Notice that the time steps of size 2 and 10 present
around 4% and 60% error, respectively.

To make the workload prediction technique more suitable
for online implementation, an efficient one-step method known
as the midpoint method [36] is utilized to solve the IVP.
Specifically, at time instance ¢, we predict the workload value
for time ¢ + &, based on the value at time ¢ + A/2, which is
obtained by using the midpoint method, as depicted in Fig. 10.
First, the current workload at time ¢ is monitored by the
performance monitor and a frequency value is read from a
pre-characterized workload-frequency mapping table (cf.
Section V) by the power manager. Note that we do not use the
predicted value for time ¢, which was previously computed at
time ¢ — &, because we can achieve the exact frequency value at
time ¢. Next, the workload value at time 7 + //2 is estimated by
using a moving average method, for example, if the window
size of the moving average calculator is 2, then, w"*(¢ + 1/2) =
1/2-(W™*(£) + w™*(¢h)). This workload value is subsequently
used as the midpoint estimate of the workload in the upcoming
period. In particular, it is used along with w™*°(¢) to compute
w"™(¢ + h) by applying the IVP.

1. Compute w™*“ (¢)

» 2. Estimate w?™* (¢ + h/2)

A 3 Predict wP (¢ + h)

Workload

>
—
8]

i«

ot 4ttt s

Decision epochs

Fig. 10. Workload prediction technique based on the midpoint method and
IVP.

The advantage of this prediction method is that we do not
attempt to predict w”™(+ + &) directly by using a moving
average method only. Instead, we estimate the workload value
for a nearer time in the future (which should provide higher
accuracy) and use that value to initially estimate the rate of
workload change in the upcoming period, followed by finally
computing w"%(z + /) by solving the IVP.

B. Workload-Driven Frequency Adjustment

In our problem setup, mapping from a workload (i.e., the
arrival rate of traffic) level to a corresponding optimal
frequency value is performed based on prior (offline)
simulations, as explained in section V. Since an Ethernet
controller includes a number of FBs which run at different
frequency values, the power manager must first predict the
workload for each FB. Next, by utilizing a pre-characterized
workload-frequency mapping table the DFA assigns the
optimal frequencies to the corresponding FB.

The decision about the frequency adjustment interval is
made based on the difference between w™*'(r) and w*™(¢ + h).
For example, if wP™(z + k) >> w™(1) (W1 + h) << w™*()),
then the dynamic frequency adapter (DFA) will increase
(decrease) the frequency quickly. On the other hand, the DFA
increases (decreases) the frequency slowly if wP™%(z + &) is only
a little larger (smaller) than w™*“(¢). Fig. 11 shows the flow of
dynamic frequency adjustment technique, where /P(¢ + £) is
the frequency value obtained from the predicted workload and
the workload-frequency mapping table for the two cases where
Wt + h) > or >> w™*(f). In Fig. 11, we have omitted the
case of W"(z + h) < or << w™*!(¢), which can be handled in a
similar way. Note that when w"™ (¢ + 1) = w™*(¢), the current
frequency value is maintained. It is worthwhile to mention that
the DFA is capable of handling the throughput and power
budget. If there is a target throughput, for example, the DFA
will slowly increase the frequency up to a target frequency
value that results in just-enough throughputs and the minimum
power dissipation.

A
Performance |

Monitor Unit i
L P]
O
Y
] Determine the
mapping current optimal
frequency
v
Estimate w(t + 4/2) by midpoint method Dynamic
Manager

Predict w(t +) by solving IVP

v
mapping

Determine the
next optimal
frequency

1
1
1
1
1
1
1
1
:
1
1
1
1
1
;
1
¥ Power !
;
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1

wered(t + hr) > wesact(r)

Increase freq. to reach fPred(z + i) | V&S

attime ¢+ h

Increase freq. to reach fPred(z + h) Dynamic

! at time ¢ + h/2 no Frequency
' Adapter
i

Fig. 11. The flow of dynamic frequency adjustment method.

To appear in IEEE Trans. on VLSI Systems, 2008

V. ANALYSIS AND PERFORMANCE OPTIMIZATION

In this section, we first analyze the model of PFQ-based system,
and then provide energy optimization formulation to find an
optimal frequency values under performance constraints, used
to implement a workload-frequency mapping table.

A. Model of PFQ-based Functional Block

Generally, network traffic is modeled as a sequence of arrivals
of discrete packets, which enables the interarrival times to be
treated a random process. In our formulation, the PFQ, which
provides a queue mechanism, can be represented by the G/M/1
queuing model, where interarrival times are arbitrarily
distributed and service times are exponentially distributed.

A general distribution is assumed for the interarrival times
because an exponential distribution would underestimates the
occurrence probability of a large request interarrival time and
so it does not adequately model the request arrival time in the
idle periods [38]. Furthermore, a widely used Poisson process
model, whose traffic is characterized by assuming that the
packet interarrival times are independent and exponentially
distributed with some rate parameter, has limitations in
capturing the traffic burstiness which characterizes the data
traffic, since traffic burstiness is related to short-term
auto-correlations between the interarrival times [39][40]. In
particular, the Ethernet traffic exhibits statistically self-similar
behavior [41], which is characterized by bursts, where the
burstiness of the traffic exists over a wide range of time scales.
As illustrated in [42], G/M/1 queuing model can be used to
model a network with self-similar arrival times. The service
time behavior is captured by a given service time distribution
for the functional module when it is in the active modes.
Similarly, the input request behavior is modeled by some
interarrival time distribution.

Consider a FB with its dedicated PFQ inside the Ethernet
controller, where the PFQ follows a first come, first served
(FCFS) strategy. Let data packets (or bursts) arrive in the PFQ
at time points ¢,, for n =0, 1, ..., . The interarrival time of
tasks (i.e., packets or bursts), i, = #,+; — ¢, is assumed to be
independent and identically distributed (i.i.d.) [43] according to
an arbitrary distribution function F, (density function f;). Let 4
denote the mean arrival rate of tasks. The mean interarrival time
is thus equal to 1/4. We assume that the service times of the FB,
Ts, are exponentially distributed with a mean value of 1/
Evidently, x, which is the service rate of the FB, is a function of
operation frequency of the FB. Then, the state of the G/M/1
model at time # can be described by the pair (x;, 7;), where x; is
the number of tasks in the PFQ and FB at time ¢, and r, is the
residual interarrival time (i.e., the expected time remaining for
the arrival of next packet). The two-dimensional process {(x,,
r), t > 0} is a Markov chain, which follows the Markovian
property [44], but requires complex analysis to compute the
transition probabilities in the state space. Therefore, we resort
to an embedded semi-Markov chain (SMC) model, which is
simpler to analyze and yet sufficient for the purpose of power
management technique in the context of PFQ-based FBs, as
detailed next.

Definition 1 [45]: If two-dimensional process {(x;, r;), ¢ > 0}
is a Markov chain, then {x;, > 0} will be a semi-Markov chain.

Note that the time spent in a particular state in the SMC (i.e., the
sojourn time or the time difference between successive packet
arrivals) follows an arbitrary probability distribution, which is a
more realistic assumption than an exponential distribution used
in the conventional Markov process model [9]. To specify the
state probabilities of this SMC, we first consider the
probability, a,(f), that n tasks are served by the FB during the
sojourn time,
an(t)zrwe””fa(t)dt, n=0,1,...,0 (3)
o n!
where f,(f) is the probability density function of interarrival
time which is arbitrarily distributed. Notice that (3) follows
from the fact that the number of service completions by the FB
within the sojourn time constitutes a Poisson process since the
time between successive services by the FB is exponentially
distributed. Then, the equilibrium probability, ¢,, of being in a
state where there are n tasks in the PFQ and FB just before a
new task arrives is calculated as:

q,=(1- o)o' ,n=0,1,..o 4)

where 0 < o < 1 is the unique real solution of one-sided
Laplace-Stieltjes transform (LST) of the interarrival time
distribution function [32], which is in turn calculated as:

o= 210 c'a,
=X e oyt)

= [Te o £yt

Let Ty and T represent the mean waiting time and the mean
service time of the tasks in the PFQ and FB, respectively. The
mean response time, Ty, of the FB is the expected time that the
tasks spend waiting in the PFQ plus the time taken for
processing in the FB. Ty is calculated as:

B 1

ull-o)
The time spent waiting in the PFQ is calculated by subtracting
the service time T from the response time, yielding

(6a)

R

1
Ty =Ty-——=—2

u ul-o)

(6b)

With regard to the performance efficiency, we consider the
utilization of the FB, i.e., how much of the computational
resource provided by the FB is exploited by the application.
More precisely the utilization ratio, u, is defined as:
E[BP] 2
e ———— (7)
E[BP]+E[IP] u
where E[BP] denotes the expected duration of the busy period
(when there is at least one task, and thus the FB is busy) of the
FB, while E[/P] denotes the expected duration of its idle period
(when there are no tasks, and hence, the FB is idle). Without
presenting the proof, we simply state the following [32],

E[BP]+ E[IP] =

8
A(1- o) ®

Thus, considering the proportion of idle time, we can calculate

To appear in IEEE Trans. on VLSI Systems, 2008

E[BP] and E[IP] as follows:

E[BP] = ;, E[IP] = _Htr)
u(l-o) Ap(l- o)

TABLE I shows the simulated results for the G/M/1 PFQ
model, assuming that the interarrival times are generally
distributed with arrival rate (0 < A < 1), and 75 = 1/ =1 for
simplicity.

TABLEI
SIMULATION RESULTS FOR PREDICTIVE-FLOW-QUEUE MODEL

Arrival rate (A)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
g 0.056 0.139 0.270 0.416 0.569 0.724 0.868
Ty 1.060 1.162 1.369 1.712 2.320 3.622 7.597
Ty 0.060 0.162 0.369 0.712 1.320 2.622 6.597
E[BP] 1.059 1161 1.369 1.712 2.320 3.623 7.576
E[IP] 2471 1742 1.369 1.141 0.994 0.906 0.842

B. Energy Optimization Formulation

The proposed framework relies on a workload-frequency
mapping table, which will provide the optimum frequency
assignment for a FB based on the workload that the FB
encounters online. To construct this workload-frequency
mapping table, we formulate the energy optimization problem
as a mathematical program. More precisely, mapping from a
workload (i.e., the arrival rate of tasks) to a corresponding
optimal frequency value, which affects the service time, Ts, and
waiting time, Ty, is performed by solving an offline energy
optimization problem. Assuming that an operating frequency
value, f, is given, the energy dissipation of a FB and
corresponding PFQ can be computed as
ene = E[BP]- pow , . +T, - pow

FB-PFQ A_PFQ

+ E[IP]-(pow, ., + pow, ...)

1 o
= ow +

- pow (10)
u(1-o)

_ pOWA _PFOQ

u(1-o)

-1
=gy P TP

Here pow, rz and pow, prp denote the expected power
consumptions for the FB and corresponding PFQ in the active
mode, respectively, whereas pow; pp and pow; ppo denote the
expected power consumptions of these two components in the
idle mode. Note that pow, pro (i.€., memory power) is affected
by an operating frequency, besides the arrival rate of tasks, as
illustrated in Fig. 12. This figure shows the power consumption
of the PFQ (i.e., pow, prp) in the active mode for write/read
operations in terms of the normalized arrival rate of packet. In
this simulation, we set the packet size to 64bytes, and set the
operating supply voltage to 1.20V. For example, when the
arrival rate of the traffic is 0.8 (normalized), the operating
frequency for PFQ is around 10 times greater than the case of

10

when the arrival rate is 0.08.

ae g : |
0.40 E |
[Tatal power (Wiite @ 1.20%)

0085 : I Total power (Read @ 1.20%)
i i i

o 200 400 BOO 800
Fower (uW)

Arrival rate (narmalized)

Fig. 12. Power consumption of the predictive-flow-queue in 65nm technology.

After determining the relevant parameters, we set up a
mathematical program to solve the performance optimization
problem as a linear program. The goal is to minimize energy
consumption of the FB and PFQ, given a data packet arrival
rate, by choosing an optimal service rate, y, corresponding to a
frequency assignment for the FB. The results are used to fill in
various entries of the workload-frequency mapping table.

mmgnlze eneFB_PFQ

s.t. T, + TS < TL,B

>
U=1u,

(11)

Note that Ty is an upper bound on the execution time of tasks
going through the FB and its PFQ, and u, 3 is a lower bound on
the utilization of FB, which is provided by the user or
application. This linear program is solved by using a standard
mathematical program solver (i.e., MOSEK [46]). Although
the formulation describes energy optimization for a single FB,
system-wide energy minimization can be achieved easily in the
same manner.

e : : : : :

—a— TUEI=3'D‘ uLB=D.3
| —a—: TUE=4.D‘ uLE|=D.11

Optimal service rate

1
0.z 0.3 0.4 0.5 0.6 0.7 0.5
Arrival rate of tasks

Fig. 13. Optimal service rate as a function of task arrival rates for different
combinations of performance constraints.

Fig. 13 shows the results of proposed mathematical
programming model with various performance constraints (i.e.,
Typ and u;p), where the goal is to find an optimal service rate
which minimizes the energy dissipation of the FB and
corresponding PFQ. For example, based on data given in

To appear in IEEE Trans. on VLSI Systems, 2008

TABLE I, for the performance constraints 7y = 3.0 and u;3 =
0.3 and task arrival rate of 0.6, the energy-optimal service rate
is 0.77. Additional experiments for various scenarios are
reported in section VI.

The entries of the workload-frequency mapping table
correspond to various combinations of workloads and
performance constraints. Fig. 14 illustrates the mapping
process from workloads to an optimal operating frequency. In
this figure, the mapping table is achieved through extensive
offline simulation during design time, considering performance
characteristics of each FB provided by the user or application.
For example, when a power manager predicts the workload for
the near future, an optimal frequency value for the next
decision epoch is selected and provided to the dynamic
frequency adapter which will continuously change the
operating frequency from its present value to the target value.
Note that mapping from workload to operating frequencies is
achieved by a simple linear function while considering the
maximum and minimum operating frequencies that can be
applied to the FB in question.

workload performance optimal operating
(arrival rate) constraints service rate frequency (MHz)
(0.0 0.1) Typ Uy i !
[0.1 0.2) | 100
[02 0.3) : : [02 03) 120
[0.3 0.4) : : [03 0.4) 130
0.4 0.5 0.4 0.5
L) 4.0 44 V7 EO : 06; > 140
0.5 0.6 .5 0.
L) 4.0 4.5 160
[0.6 0.7) [0.6 0.7) 180
[0.7 0.8) : ! [0.7 0.8) 200
[0.8 0.9) ' E : 220
[0.9 1.0) i !
[— H Pre-characterized mapping table A
1 | Power !
' | manager ! Dynamic
i [Performance | } Frequency
i X [Adapter
1 | monitor !

Fig. 14. Mapping of workloads to optimal operating frequency values for each

VI. EXPERIMENTAL RESULTS

In the experimental setup, we applied the proposed PFQ-based
power management architecture to a gigabit Ethernet controller,
where the Ethernet controller is implemented with TSMC
65nmLP library. Note that, as mentioned before, we considered
a part of packet interface between MAC and DMA to capture
power-saving opportunities by using the proposed architecture,
as shown in Fig. 15.

Power
manager

Dynamic
Frequency
Adapter

Dynamic
Frequency
Adapter Adapter

Lo l
~ Tl Pl - Il

Dynamic
Frequency

3 8 8
] g g
: £ .
E 5)
& ~ I

g
g
8

monitor

RX Traffic

11

Fig. 15. Adaptation of PFQ-based power management structure with dynamic
frequency scaling technique.

Gigabit Ethernet Performance analyzer

Switch (12 port) e
L e

System under test _-_. e
EEET R [E2
/' \ / [SmartBits 2000]

Packet sniffer

- MS Windows XP Pro

I
| -Intel P314GHz | ! - Intel P4 3.2GHz :
I - Memory 256Mb i ! - Memory 1Gb i
i - MS Windows server | i - Hyperthreading disabled {
| - Ethereal i ! i

Fig. 16. Performance test configuration.

In the first experiment, we characterize the performance of
designed Ethernet controller by obtaining the throughput for
data streams with different packet sizes. The performance test
setup is configured as shown in Fig. 16. In this setup, the packet
sniffer is mainly used for the purpose of collecting traces and
debugging, whereas the performance analyzer (SmartBits 2000
[47]) is used to generate various packet streams with the fixed
inter-packet gap of 0.096us. TABLE Il reports the performance
characteristics of the implemented Ethernet controller obtained
by measuring the throughput for various data streams.

TABLE 11
PERFORMANCE CHARACTERISTICS OF ETHERNET CONTROLLER
Packet size Service rate Inter-arrival Arrival rate Service
(bytes) (pkt/sec) time (sec) (pkt/sec) time (sec)
1518 84819 12.20E-6 81699 11.71E-6
1024 124936 8.28E-6 120656 8.00E-6
512 245100 4.19E-6 238549 4.08E-6
256 317400 2.14E-6 466417 3.15E-6
128 325200 1.12E-6 892857 3.07E-6
64 338000 0.60E-6 1644736 2.95E-6
T T T T T -
- Real-trace data q418
0.7 mmemmmmme s mm o e
I e 116
—B— tiean serice time

Mumber of tasks
o [=]
om ol

o
.

Mean service time

03--

0.4 0.54 0.a3 0.91 0.96 0.99
Arrival rate

Fig. 17. Evaluation of the G/M/1 model for the predictive flow queue.

The second experiment was designed to evaluate the
efficacy of our modeling technique for the PFQ, as represented
by a G/M/1 queuing model. We characterize the network traffic
in terms of the arrival rate based on our G/M/1 queuing model
and compare these results with both the actual trace data from

To appear in IEEE Trans. on VLSI Systems, 2008

real-application, i.e., obtained data from SmartBits 2000 (see
TABLE 1I), and those achieved by the conventional M/M/1
queuing model (which assumes an exponential distribution for
interarrival times). Fig. 17 shows that the G/M/1 model for the
PFQ gives more accurate performance results compared to the
conventional model. In this figure, all values are normalized to
the real-trace data.

12

to the performance constraints 7yp =5 and u;p =0.5)
demonstrate that the energy optimization technique, achieved
by solving mathematical program described in (11), results in
up to 19.51% and 56.41% energy savings for active and idle
modes, respectively.

TABLE IV
ENERGY SAVINGS BASED ON OPTIMIZATION TECHNIQUE (NORMALIZED)

TABLE III X Total energy Ontimal polic Savings
NORMALIZED ENERGY DISSIPATION VALUES FOR VARIOUS WORKLOADS Workload: arrival rate (typical) pumat poney €
UNDER DIFFERENT COMBINATIONS OF SUPPLY AND THRESHOLD VOLTAGES QP DI DMA active idle active idle active idle
Arival o QP DI DMA 0.8 0.7 0.6 90.26 2.9E-3 72.65 13E3 19.51% 54.72%
rate
Encive Brate EBacive Erae Eacive Biae 07 06 05 6423 40E3 5189 17E3 1921% 56.41%
100 1564 44E4 4187 O99E-4 6480 19E-4 06 07 08 1774 41B3 9521 19E3 19.04% 53.25%
Vthh 1.08 22.46 1.4E-4 48.89 3.3E4 75.58 4.2E-4 05 06 07
. . . X _ 0, 0,
120 2848 95ES 5892 53E-4 9320 4.1BE-4 807 3583 6716 21E3 1915% 38.10%
0.8
100 1558 9.3B4 4181 19E3 6491 7.1E3
Finally, we investigated the energy-efficiency of the
Vihl 108 1846 23E-4 4899 52E4 7512 19E3 . . -
proposed PFQ-based interface architecture. In particular for
120 2253 33E4 5882 85E4 9314 29E3 . . .
this experiment we apply the proposed technique to QP, DI,
1.00 9.99 49E-4 2672 1IE4 4137 22E3 DMA and their corresponding PFQs in Fig. 15. We assumed
VB 108 1182 1784 3110 37E4 4826 41E4 that the workload (i.e., the arrival rate) changes dynamically
07 120 1433 LIE-4 3814 59B-4 5945 48B4 from 0.1 to 0.9. For comparison purpose, we implemented a
1.00 099 10E3 2672 21E4 4143 80E3 couple of power management policies (denoted by PM1 and
Vihl 108 1177 25E4 3116 67E-4 4831 22E3 PM2 and described below) as representatives of the
120 1428 37E4 3824 95E-4 5945 32E3 conventional methods, similar to [49][50][51]. We use three set
of frequency values to simplify the experimental setup (F; <F,
1.00 735 60E-4 1975 12E4 3056 24E-3 . .
<F; in terms of operating frequency values).
Vthh 1.08 8.71 1.6E-4 23.07 4.2E4 35.72 4.7E-4 . . X . X
120 1063 12E4 2861 69E4 4395 S53E3 PM1: Utilize dynamic frequency scaling technique, while
0.6 accounting for a 100us power-mode transition overhead; the
1.00 735 11E-3 1986 23B-4 3056 82E-3 . N
frequency assignment policy is as follows.
Vihl 1.08 866 3.1E-4 2307 67E-4 3567 2.9E-3 . .
- Use the lowest F; value when 0.1 < the arrival rate < 0.3, i.e.,
1.20 10.63 4.4E-4 28.61 9.5E-4 43.85 3.7E-3

In the third experiment, we set the performance constraints
on the Typ and u;3 (e.g., Typ = 5 and u;3 = 0.5) as in (11) to
evaluate the proposed energy optimization technique based on
mathematical programming models. The solution of the
performance optimization problem produces an optimal
frequency level for the FB. Different arrival rates (1) of traffic
are used to generate the multiple rows in TABLE III, which
represents the normalized energy dissipation for various FBs
(e.g., QP, DI, and DMA) in the active and idle modes, where
we use (10) to calculate optimal energy dissipation. In this
table, we report energy dissipation values for each FB for each
possible combination of supply voltage (e.g., 1.00V, 1.08V,
and 1.20V) and (high and low) threshold voltages, available
with the TSMC 65nmLP library. To achieve power values, we
generated and utilized SAIF (Switching Activity Interchange
File) based on RTL simulation of the system with the Synopsys
Power Compiler [48].

We next investigate various scenarios corresponding to
different workloads for each FB as reported in TABLE IV. We
performed static timing analysis with the Design Compiler [48]
to assign low threshold voltage transistors in the logic gates on
the timing critical paths, while using high threshold voltage
transistors in all other logic gates. We fixed the supply voltage
to 1.20V. Experimental results in this table (which correspond

low workload.
- Likewise, use F, and F; values when 0.3 < the arrival rate <
0.6 and 0.6 < the arrival rate < 0.9, respectively.

PM2: The same as PM1 except that frequency change is
avoided when the same frequency changes occur consecutively.
More precisely, let F' denote the value of frequency at time i.
-Set F*' =F' if the predicted F"*' value is the same as F"' value.
(e.g., the sequence of frequency assignments Fj3, Fy, F; is
modified to F;, Fy, F).
Next, we randomly generated dynamic workloads with 50, 100,
500, and 1000 decision epochs at fixed intervals (to simplify
the simulation setup) and applied the above-mentioned
conventional power management policies and the proposed
technique to the PFQ-based architecture. The simulation results
in Fig. 18, which corresponds to the case of 50 decision epochs,
show that the proposed technique achieves energy savings
compared to the conventional methods. Note that the
percentages of frequency change suppressions by PM2 are
12%, 11%, 14%, and 12% for the cases of 50, 100, 500, and
1000 decision epochs, respectively.

Results in TABLE V, which also reports the characteristics
of the workload distribution (e.g., Low indicates that 0.1 < the
arrival rate < 0.3), demonstrate that, compared to the PMI
policy, our approach (column PFQ in the table) achieves power
and energy savings of up to 13.8% and 12.2%, respectively.

To appear in IEEE Trans. on VLSI Systems, 2008

Note that the overhead of implementing the DFA block inside
the Ethernet controller is insignificant in terms of the area and
power dissipation because the DFA block consumes less than
ImW of power and requires a small number of gates i.e., fewer
than 200 standard cells. To implement the DFA block in
hardware, we used a digital PWM architecture similar to that
reported in [34]. Furthermore, the overhead of accessing the
pre-characterized mapping table to provide the target frequency
is also negligible in our specific system in terms of performance
and memory size, because the operating frequency is rather low
(e.g., below 200MHz), which is enough for the power manager
to select the target frequency from the small mapping table and
send it to the corresponding dynamic frequency adaptor at each
decision epoch.

100 p----

1 —8— PM1 —&— :PM2 —&— :The proposed technigque |""_

s}
[}

B0 f--p-4--

A0 M-

Energy dissipation (normalized)

20

. . .
5 10 18 20 25 30 38 40 45 a0
decision epochs

Fig. 18. Evaluation of the proposed energy-efficient PFQ-based architecture.

TABLE V
POWER AND ENERGY SAVINGS OF THE PFQ-BASED ARCHITECTURE

Workload Average Power Power saving Energy saving

No. of decision distribution (mW) over over

epoch Low Mid High PMI PM2 PFQ PMI PM2 PMI PM2
50 17 22 1 128 112 109 131% 3.6% 118% 9.7%
100 29 47 24 132 116 113 136% 29% 119% 9.5%
500 142 214 144 133 118 116 12.9% 32% 11.9% 102%
1000 326 376 208 134 117 115 138% 3.0% 122% 9.8%

We provide in Fig. 19 the functional gate-level simulation
results for dynamic frequency adapter (DFA) block (e.g., signal
CORE _CLK of control block is dynamically adjusted by
DFA), to wverify the implementation of the proposed
architecture. This figure shows that the control data (e.g.,
receive buffer descriptors C0002 and C0604) are transferred to
the control blocks from the EMAC via PFQs, while performing
a packet receive process, whereas the frame data is directly
moved to DMA from the EMAC through the temporary
memory buffer.

VII. CONCLUSION

A predictive-flow-queue based energy-efficient packet
interface architecture for the gigabit Ethernet controller design
was presented, where we used a dynamic frequency adjustment

13

technique to minimize the energy dissipation during
power-mode transitions. We described a systematic approach
for workload prediction and system modeling techniques based
on the initial value problem and stochastic processes so as to
achieve mathematical programming formulation for optimizing
energy dissipation. The proposed architecture achieves
high-throughput frame data and low-latency control data
processes while conserving the system power consumption.
Experimental results with the 65nm gigabit Ethernet controller
design have demonstrated that the proposed architecture results
in significant energy savings for various workloads under
demanding performance constraints.

REFERENCES
[1] ASF (Alert Standard Format) and DMWG (Desktop and Mobile Work
Group) document. http://www.dmtf.org.
[2] Sun Blade 8000 Modular System. http://www.sun.com/servers/blades.
[3] P. Willmann, H. Kim, S. Rixner, and V.S. Pai, “An Efficient
Programmable 10 Gigabit Ethernet Network Interface Card,” Proc. of

Symposium on High-Performance Computer Architecture, Feb. 2005, pp.
96-107.

[4] Intel 82547 Gigabit Ethernet Controller. http://www.intel.com.

[5] L. Benini, and G. De. Micheli, Dynamic Power Management: Design
Techniques and CAD Tools, Kluwer Academic Publishers, 1998.

[6] D.Li, Q. Xir, and P. H. Chou, “Scalable Modeling and Optimization of
Mode Transitions based Decoupled Power Management Architecture,”
Proc. of Design Automation Conference, Jun. 2003, pp. 119-124.

[71 Y-H, Lu and G. De Micheli, “Comparing System-Level Power
Management Policies,” I[EEE Design & Test of Computers, Vol. 18, Issue
2, pp. 10-19, Mar-Apr. 2001.

[8] IEEE 802.3 Tutorials. July 2005. http://www.ieee802.0rg/802_tutorials.

[91 M.L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Publisher, New York, 1994.

[10] Mobile AMD Athlon 4 Processor Model 6 CPGA Data Sheet Rev:E. Tech.

Rep. 24319, Advanced Micro Devices. 2001.
www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/
24319.pdf .

[11

—

Intel 80200 Processor Based on Intel XScale Microarchitecture,
http://developer.intel.com/design/iio/manuals/273411.htm .

[12] C. Lichtenau, et al., “PowerTune: Advanced Frequency and Power
Scaling on 64b PowerPC Microprocessor,” Int’l Solid-State Circuits
Conference Dig. Tech. Papers, Feb. 2004.

[13] S. Geissler et al., “A Low-Power RISC Microprocessor Using Dual PLLs
ina 0.13um SOI Technology with Copper Interconnect and Low-k BEOL
Dielectric,” Int’l Solid-State Circuits Conference Dig. Tech. Papers, pp.
148-149, Feb. 2002.

[14] C. McNairy and R. Bhatia, “Montecito: A Dual-Core, Dual-Thread
Itanium Processor,” IEEE Micro, Vol. 25, Issue 2, Mar.-Apr. 2005, pp.
10-20.

C. Poirier et al., “Power and Temperature Control on a 90 nm Itanium
Architecture Processor,” Int’l Solid State Circuits Conf. Dig. Tech.
Papers, 2005, pp. 304-305.

[16] T. Fischer et al., “A 90 nm Variable Frequency Clock System for a
Power-Managed Itanium Architecture Processor,” Int’l Solid State
Circuits Conf. Dig. Tech. Papers, 2005, pp. 294-295.

[17] T. Senanayake, T. Ninomiya, and H. Tohya, “Fast-Response Load
Regulation of DC-DC Converter By means of Reactance Switching,”
Proc. of Conf. on Power Electronics Specialists, Jun. 2003,
pp.1157-1162.

[18] B. Zhai, D. Blaauw, D. Sylvester, and K. Flaunter, “Theoretical and
Practical Limits of Dynamic Voltage Scaling,” Proc. of Design
Automation Conference, Jun. 2004, pp. 863-873.

[19] PCI-Express Document. http://www.pcisig.com/specification.

[15

—

[20] RDMA Consortium. http://www.rdmaconsortium.org.

[21] The Internet Engineering Task Force. http://www.ietf.org/rfc/rfc2401.

To appear in IEEE Trans. on VLSI Systems, 2008

14

[22] NetXtreme™ Gigabit Ethernet Controller. http://www.broadcom.com. [37] Ian W.C. Lee, and Abraham O. Fapojuwo, “Stochastic processes for

[23] X.Liu, P. Shenoy, and M. Corner, “Chameleon: Application Level Power computer. I?etwork traffic modeling,” Journal of Computer
Management with Performance Isolation,” Proc. of Int’l Multimedia Communication, Vol. 29, Issue 1, pp. 1-23, Dec. 2005.

Conference, Nov. 2005, pp.839-848. [38] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven

[24] B. Mochocki, D. Rajan, X.S. Hu, C. Poellabaucer, K. Otten, and T. Power Managemf:nt,” IEEE Trans. on Computer Aided Design of
Chantem, “Network-Aware Dynamic Voltage and Frequency Scaling,” Integrated Circuits and Systems, Vol. 20, Issue 21, pp. 840-857, Jul.
Proc. of Real Time and Embedded Technology and Application 2001.

Symposium, Apr. 2007, pp.215-224. [39] R.Jainand S. Routhier, “Packet Trains — Measurements and a New Model

[25] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi, for Computer Network Traffic,” [EEE Journal on Selected Areas in
“Profile-based Optimization of Power Performance by using Dynamic Communications, Vol. 6, Issue 6, pp. 986-995, Sep. 1986.

Voltage Scaling of a PC cluster,” Proc. of Parallel and Distributed [40] W. Willinger and V. Paxson, “Where Mathematics Meets the Internet,”
Processing Symposium, Apr. 2006, pp.8-16. Notices of the American Mathematical Society, Vol. 45, No. 8, pp.

[26] V. Soteriou, N. Eisley, and L. Peh, “Software-directed power aware 961-970, 1998.
interconnection networks,” ACM Trans. on Architecture and Code [41] E. A. Smith, “Understanding performance issues in IP networks,” BT
Optimization, Vol. 4, Issue 1, Mar., 2007. Technology Journal, Vol. 24, No. 4, pp. 167-178, Oct. 2006.

[27] F.Li, G. Chen, and M. Kandemir, “Compiler-directed voltage scaling on [42] Y. G. Kim and P. S. Min, “On the prediction of average queuing delay
communication links for reducing power consumption,” Proc of Int’l with self similar traffic,” Proc. of Global Telecommunications
Conference on Computer-Aided Design, Nov. 2005, pp.456-460. Conference, Dec. 2003, pp. 2987-2991.

[28] M. Najibi, et al., “Dynamic Voltage and Frequency Management Based [43] S. K. Bose, Introduction to Queuing Systems, Kluwer Publishers, 2001.
on Variable Update InFervaIs ff)r Frequency Setting,” Proc. of Int'l [44] 1. Adan, A. G. Kok, and J. Resing, “A multi-server queuing model with
Conference Computer Aided Design, Nov. 2006, pp. 755-760. locking,” European Journal of Operational Research, Vol. 116, pp.

[29] K. Choi, R. Soma, and M. Pedram, "Fine-grained dynamic voltage and 249-258, 1999.
frequency scaling for precise energy and performance trade-off based on [45] J. Yackel, “A Characterization of Normal Markov Chains,” Proc. of the
the ratio of off-chip access to on-chip computation times." IEEE Trans. American Mathematical Society, Vol. 19, No. 6, pp. 1464-1468, Jul.
on Computer Aided Design, Vol. 24, No. 1, Jan. 2005, pp.18-28. 1967.

[30] N. L. Binkert, L. R Hsu, and A. G. Saidi, “Performance Analysis of [46] MOSEK Optimization Solver. http:/www.mosek.com.

Syste‘m Overheads in T.CP/,IP Worklf)ads, Proc. of Conf. on Parallel [47] SmartBit2000, Performance Analyzer. http://www.spirentcom.com.
Architectures and Compilation Techniques, Sep. 2005, pp.218-230. 48] s C ler D ts. htp://
[31] C. Isci, M. Martonosi, and A. Buyuktosunoglu, “Long-term Workload YROPpsys LOmprer Locumen ‘S' D: WWW‘SVH?‘DSVS'COIH'
Phase: Duration Predictions and Application to DVFS,” IEEE Micro, Vol. [49] Q. Wu, P. Jf*a“& M. Mal‘tonom, gnd DW Cl.ark, Vo}tage and Frequen(;y
25, No. 5, pp.39-51, Sep-Oct. 2005 Control with Adaptive Reaction Time in Multiple-Clock Domain
B T) . . 0 Processors,” Proc. of 11™ Symposium on High-Performance Computer
[32] S. M. Ross, Introduction to Probability Models, Academic Press, 8 g
o Architecture, Feb. 2005, pp. 178-189.
edition, Dec. 2002, [50] P. Choudhary and D. Marculescu., “Hardware Based F Nolt
e . — . . Choudhary and D. Marculescu., “Hardware Based Frequency/Voltage

[33] }/1\113‘1/1/ Liv, .Slgnal Integrity and Clock System Design,” White paper. Control of Voltage Frequency Island Systems,” Proc. of Int’l Conf. on
http:/www.1dt.com. Hardware/Software Co-design and System Synthesis, Oct. 2006, pp.

[34] A.Syed, E. Ahmed, D. Maksimovic, and E. Alarcon, “Digital Pulse Width 34-39.

Ig/llodulat(?r ?rch}ti[ef:turis, 5(;32 of 46(/;309’1{.1 690;1 Annual IEEE Power [51] R. Jejurikar and R. Gupta, “Dynamic Voltage Scaling for System-wide
ectronics Specialists. Jun. » PP- N :) Energy Minimization in Real-time Embedded Systems,” Proc. of

[35] Y. Hoskote, et al., “A TCP Offload Accelerator for 10Gb/s Ethernet in International Symposium on Low Power Electronics and Design, Aug.
90nm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11, pp. 2004, pp. 78-81.

258-270, Nov. 2003.)))) [52] Hwisung Jung, Andy Hwang, and Massoud Pedram,

[36] J. R. Do'rmand, Numerical Mefh({ds Jor Differential Equations: A “Flow-Through-Queue based Power Management for Gigabit Ethernet
Computational Approach, CRC Publisher, Feb. 1996. Controllers,” Proc. of Asia and South Pacific-Design Automation

Conference, Jan. 2007, pp. 571-576.
— MACR RQPQ DATA coaco o002) EEN
EMAC| MACR RQPQ WR [
L RDE_MA WR DATA WNMEE*TB’ ook o b bhfacaszh seopIarp 4D noooaona b »
j BN e rnnmnmannmninnnmaunnarmmnnen
Control) ™op"ROIQPATA canoz Snine i Ycosoa
L ree roo e] 1l
[curent rate 4 ‘\ ""‘ﬁ—a:mdat; B
s T LT LT U IR AR ysuot AT AR
pra] ™ I A \/
no_clks 10
no_pclks a1 ‘\‘
— predict_rate] \
— =<
DMvA| DVAW_FTQ DATA DUUUOOUTTTIUTUTIUNI0 Y eoo02
L DW_PCI_DATA Lajeltle (8l a elaila ouUuuuougy uuouuuun ﬁm’mbhs 32 E‘F X)

Fig. 19. The simulation result for the proposed DFA which adjusts the clock frequency of the control block.

