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Abstract - This paper presents an energy-efficient packet 

interface architecture and a power management technique for 
gigabit Ethernet controllers, where low-latency and 
high-bandwidth are required to meet the pressing demands of 
very high frame-rate data. More specifically, a 
predictive-flow-queue (PFQ) based packet interface architecture 
is presented, which adjusts the operating frequency of different 
functional blocks at a fine granularity so as to minimize the total 
system energy dissipation while attaining performance goals. A 
key feature of the proposed architecture is the implementation of 
a runtime workload prediction method for the network traffic 
along with a continuous frequency adjustment mechanism, which 
enables one to eliminate the latency and energy penalties 
associated with discrete power mode transitions. Furthermore, a 
stochastic modeling framework based on Markovian decision 
processes and queuing models is employed, which make it possible 
to adopt a precise mathematical programming formulation for the 
energy optimization under performance constraints. 
Experimental results with a designed 65nm gigabit Ethernet 
controller show that the proposed interface architecture and 
continuous frequency scaling result in system-wide energy savings 
while meeting performance specifications. 
 

Index Terms — Energy optimization, gigabit Ethernet 
controllers, predictive-flow-queue, semi-Markov process, 
workload prediction  

I. INTRODUCTION 
ngoing advances in computer networks and hardware 
designs have resulted in the introduction of multi-gigabit 
Ethernet links. Commensurate with this trend, the network 

interface cards (NICs) are becoming ever more complex in 
order to satisfy the high-functionality and high performance 
demands of today’s applications. For example, hardware 
support for manageability features such as ASF (Alert 
Standards Format) and DMWG (Desktop and Mobile Work 
Group) are being integrated into the NIC to provide system 
management capabilities [1], which in turn necessitates more 
processors to be included in the NICs. A close look at today’s 
high-speed NICs (a.k.a., gigabit Ethernet controllers) reveals 
that these controllers must also conserve power since excessive 
power dissipation creates many problems, from increased 
operational cost to reduced hardware reliability. 

A multi-gigabit Ethernet controller must be able to support 
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high frame-rate data processing and low-latency access for the 
frame data. However, these trends also are translated into 
higher power density, higher operating temperature, and 
consequently lower system reliability. The power consumption 
of the gigabit Ethernet controller increases rapidly with the 
increase in link speed. In addition, as the Ethernet port density 
of a server system increases for a given form-factor, designers 
of the gigabit Ethernet controller must resort to more 
energy-efficient architectures as they attempt to add more ports 
to the server system. For example, the Sun Blade server 
consumes around 55W power for a Network Express module 
which includes 20 ports [2]. Typically the power number for 
the gigabit Ethernet controllers ranges from 2 to 3W per port, 
depending on the link speed [3][4]. 

Power saving in gigabit Ethernet controllers has been 
commonly achieved by transitioning to more advanced 
semiconductor process technologies, (e.g., using 65nm and 
45nm technology nodes) and/or by utilizing low power design 
techniques (e.g., using clock gating and static voltage scaling 
techniques). However many opportunities for reducing energy 
dissipation at the system level exist. For example, modern 
circuit design technologies allow a number of different clock 
and voltage domains to be specified on the same chip. As a 
result, significant power saving can be achieved if, at runtime 
and under the control of a power management unit, suitable 
operating voltage and frequency values are assigned to various 
functional blocks (FBs) inside an Ethernet controller to trade 
performance for lower power dissipation.  

As more and more of the FBs inside an Ethernet controller 
(e.g., MAC, PHY, PCI-E) are being designed to support 
multiple power-performance modes (i.e., different supply 
voltage and clock frequency settings), it is becoming possible 
to realize full chip energy saving by employing advanced 
system-level power management strategies. This solution, 
however, requires development of dedicated means and 
methods for realizing runtime power management policies. In 
particular, the following issues must be considered when 
utilizing a dynamic power management policy which changes 
the voltage-frequency settings of different FBs in order to 
minimize energy dissipation while attaining a performance 
goal: 
i) Typically a lot of performance is sacrificed in order to 

achieve lower power dissipation; this is especially a 
concern for demanding applications such as the Ethernet 
controller,  

ii) There is a significant latency and energy dissipation 
overhead associated with the mode transition, e.g., the 
overhead of acquiring the lock in a phase locked loop (PLL) 
once a new frequency target is set or the overhead of 
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DC-DC conversion to change the supply voltage level [6], 
and  

iii) The power management routine, which is likely residing in 
the operating system (OS), can itself become a heavy duty 
task, which can consume sizeable computational and 
energy resources since it has to continually monitor the 
system workload, make decisions about the next set of 
voltage-frequency settings for the various FBs, and 
communicate the decision to the appropriate hardware [7]. 
In this paper, we propose a predictive-flow-queue (PFQ) 

based packet interface architecture to minimize the energy 
dissipation of a gigabit Ethernet controller. Generally, 802.3 
Medium Access Control (MAC) [8] sub-layer offers an 
Ethernet level flow control mechanism among a pair of 
full-duplex end points, while routing certain classes of network 
traffic, which are generated, processed, and terminated at the 
specific processor inside the gigabit Ethernet controller. In the 
proposed architecture, the packet interfaces inside MAC and 
between MAC and Direct Memory Access (DMA) engine are 
targeted for energy-saving opportunities. A dynamic frequency 
adapter, which provides a continuously varying frequency 
based on a workload prediction technique, is utilized to achieve 
energy saving without much overhead. The proposed 
architecture is modeled with semi-Markov chain (SMC) [9] and 
queuing models to enable formulation of a mathematical 
program for optimizing the total system energy dissipation 
under performance constraints. 

In this paper, we shall only utilize a dynamic frequency 
scaling (DFS) technique to minimize the power consumption of 
the system. This is because dynamic voltage scaling (DVS) 
technique, although it can provide a near cubic reduction in 
power dissipation, tends to incur a large transition time 
overhead. This overhead can be on the order of tens of 
microseconds, for example from the specification for the AMD 
Athlon chip [10]. In the 80200 XScale processor chip, the 
latency for switching the CPU voltage is 6 microseconds [11]. 
For systems where execution is blocked during a transition 
(which is common in many existing commercial processors 
including the AMD Athlon chip), this translates into tens of 
thousands of lost execution cycles.  Another related problem is 
transition energy overhead, which can actually cause the 
system’s energy consumption to increase if DVS is not used 
judiciously.  

The transition time overhead for frequency scaling is much 
shorter, i.e., frequency change can indeed take effect in one 
cycle.  For example, IBM researchers recently introduced a 
dynamic power management technique called PowerTune [12] 
which uses a single PLL driving divider circuitry to produce 
multiple frequencies for the PowerPC 970 family. This allows 
the PLL to stay locked at a given frequency while the processor 
core frequency is dynamically scaled from initial frequency 
level of f to f/2, f/4, and f/64 within one cycle without phase 
shift. When the processor switches frequency, PowerTune 
switches back and forth between the old (lower) and new 
(higher) frequencies, resulting in more cycles of the new 
frequency. This reduces the bounce noise and allows the 
packages to effectively react to the change in current. 
PowerTune differs from other work (e.g., the power 
management solution for the PowerPC 750 [13]) in that it 

allows system-wide dynamic frequency scaling without 
stopping the core. System wide control of clock frequency 
achieves excellent power savings as reported. PowerTune is 
closest to what we propose here, except that our design allows 
for continuous frequency adjustment, and not simply switching 
among a small number of frequency levels. 

As another case study, we can mention the Intel’s 
Montecito design [14], which attempts to tap unused power by 
dynamically adjusting the processor voltage and frequency 
setting to ensure the highest frequency within temperature and 
power constraints [15]. The chip is capable of changing its 
supply voltage level in 12.5mV increments. However, it takes 
100ms to respond in the voltage control loop to a request for 
voltage change by an on-chip microcontroller, which runs a 
real-time scheduler to support multiple tasks - calibrating an 
on-chip ammeter, sampling temperature, performing power 
calculations, and determining the new voltage level. In the 
Montecito design, the supply voltage throughout the chip 
(which is affected by current-induced droops and DC voltage 
drops) is constantly monitored with 24 voltage sensors, and a 
frequency level is selected to match the lowest voltage reported 
by any sensor. A digital frequency divider provides the selected 
frequency, in nearly 20-MHz increments and within a single 
cycle, without requiring the on-chip PLLs to resynchronize 
[16]. 

Another difficulty with dynamic voltage scaling is the fact 
that the amount of load current change after mode transition can 
be significant. Even specialized DC-DC converters cannot 
completely avoid the instantaneous output voltage drop (loss of 
output regulation) due to a sudden and dramatic change in the 
load current demand. For example, the DC-DC converter of 
[17], which uses a reactance switching technique for 
fast-response load regulation, encounters about 150mV of 
voltage deviation from a target output voltage of 3.3V when the 
load changes from 1 to 30A. This supply voltage droop may 
last 100’s of microseconds. 

Note that we are not arguing against DVFS in general. 
Instead what we are stating is that for the target application (i.e., 
the Gigabit Ethernet Controller), given the current state of the 
art in DC-DC conversion and voltage control loop response 
time, the overhead of voltage scaling is too high, and hence, we 
resort to frequency scaling only. 

The remainder of this paper is organized as follows. Section 
II provides a brief background of Ethernet controller and 
related work while section III describes the details of proposed 
PFQ-based architecture. In section IV, we present a workload 
prediction technique. Section V provides an analysis of the 
system based on MDP and queuing models and a performance 
optimization formulation. Experimental results and conclusion 
are given in section VI and section VII.  

II. PRELIMINARIES  

A. Background on Ethernet Controller 
The main purpose of an Ethernet controller is to transport 
network traffic between the host system and the physical 
Ethernet links. Sending and receiving the network traffic over 
local interconnect, i.e., the PCI-E bus [19], is handled by the 
Ethernet controller and device driver in the host operating 
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system. In general, the Ethernet controller typically has a DMA 
engine to transfer data between the host system memory and the 
network interface memory. In addition, the Ethernet controller 
includes a MAC unit to implement the link level protocol for 
the underlying network, and uses a signal processing engine to 
implement the physical (PHY) layer of the network stack 
(where the 802.3 frame format is supported). 

To satisfy the high-functionality of today’s network 
applications, enterprise-class Ethernet controllers must handle 
other classes of network streams, e.g., remote management 
traffic, which is required to terminate at the host computer, and 
not necessarily at the host operating system [1]. Management 
technology essentially allows IT administrators to remotely 
access a user’s system, i.e., via the network that the system is 
connected to, and perform necessary provisioning, 
maintenance, and repairs. Hence, an additional CPU-memory 
sub-system is required to handle the management bound traffic. 
This sub-system is fundamentally independent of the Ethernet 
side functionalities. More specifically, remote management 
and/or fast message transfer may be accomplished through a 
remote direct memory access (RDMA) engine [20] which 
allows data to move directly from the memory of one host 
system to that of another without involving either one’s 
operating system, thereby realizing high-throughput and 
low-latency in data transfer. In addition, the latest Ethernet 
controllers include an integrated IP security encryption engine 
(IPSec) [21] to secure internet protocol communications. Fig. 1 
shows a simplified block diagram of the Ethernet controller, 
where the statistics functional module provides relevant 
information about the packet flows. 
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Fig. 1.  Simplified block diagram of an Ethernet controller. 

To understand the functionality of Ethernet controller 
inside, the process of receiving a packet over the network is 
explained next (see Fig. 1 where various steps are shown near 
the blocks that execute them). In step (a), the Ethernet 
controller receives a data stream from the selected physical 
layer interface. It performs address checking, Cyclic 
Redundancy Check (CRC), and Carrier Sense Multiple Access 
/ Collision Detection (CSMA/CD) functions [8] in step (b). In 
step (c), the Ethernet controller calculates checksum and parses 
Transport Control Protocol / Internet Protocol (TCP/IP) 
headers. This is followed by the classification of the frame 
based on a set of matching rules in step (d). In step (e), the 
Ethernet controller strips the Virtual Local Area Network 
(VLAN) tag, and then temporarily places the packet data and 
header into a pre-allocated receive buffer (i.e., RXBUF) in step 

(f). After that, the Ethernet controller completes the buffer 
descriptors, which contain information about the starting 
memory address and the length of the data packets, in step (g). 
Finally, in step (h), the PCI-E interface initiates the DMA 
transfer of the packet data and descriptors to the host memory 
by interrupting the device driver.  

Sending packets is analogous to receiving them except that 
the device driver first creates the buffer descriptors for the 
packets to be transmitted. Next, the Ethernet controller 
completes the buffer descriptor for the data packets in step (i) of 
Fig. 1. In step (j), the packets are stored into the temporary 
buffer (i.e., TXBUF) via the DMA. The Ethernet controller 
updates the frame descriptor with checksum, VLAN tag, and 
header pointers in step (k), and executes CSMA/CD functions 
to transmit the frame in step (l). Finally, data is formatted to the 
selected physical layer interface in step (m). Details about the 
Ethernet controller architecture and the processes of traffic 
management, RDMA, and IPSec are omitted for brevity. 
Interested readers may refer to [20]-[22] for additional 
information. 

B. Related Work 
Dynamic voltage and frequency scaling (DVFS) has been the 
subject of many investigations [23]-[29]. In the following, we 
provide a quick review of some the work which is most directly 
related to ours.  

An application-level power management technique was 
presented in [23], where the authors described an operating 
system interface that can be used by applications to achieve 
energy savings. In this approach, an application is allowed to 
specify its desired voltage-frequency value, and the operating 
system ensures that the application will run under that setting. 
The research work in [24] considered a DVFS managed 
processor executing packet producing tasks and a 
power-managed network interface. The authors introduced an 
approach for minimizing the energy consumed by the network 
resource through careful selection of voltage-frequency 
settings for the processor. A key consideration was to 
dynamically balance the processor and network energy 
dissipations.  

The authors in [25] described a method of profile-based 
power-performance optimization by DVFS scheduling in a 
high-performance PC cluster. The authors divide an application 
program’s execution into several regions (CPU-intensive or 
communications-intensive) and choose the best 
voltage-frequency setting for the processors to execute each 
region according to the profile information about the execution 
time and power dissipation of a previous trial run. The authors 
consider the latency and energy dissipation overhead of 
changing voltage-frequency settings. The work in [26] 
investigated software techniques to direct run-time power 
optimization. The authors targeted network links, the dominant 
power consumer in parallel computer systems, allowing DVFS 
instructions extracted during static compilation to coordinate 
link voltage and frequency transitions for power savings during 
the application execution. Concurrently a hardware online 
mechanism measures network congestion levels and adapts 
these off-line voltage-frequency settings to optimize network 
performance.  
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The authors of [27] present a compiler-driven approach to 
optimize the power consumption in communication links by 
using DVFS. In this approach, an optimizing compiler analyzes 
the data-intensive application code and extracts the data 
communication pattern among parallel processors. This 
information along with network topology is used for 
identifying the link access patterns. The link access patterns 
and inherent data dependence information are used to 
determine optimal voltage-frequency settings for the 
communication links at any given time frame. In [28], the 
authors presented a DVFS technique for a soft real-time system 
where the voltage-frequency setting is updated at 
variable-length (instead of fixed-length) intervals. The 
proposed voltage-frequency setting method is based on the 
notion of an effective deadline for a task, which is predicted 
adaptively and is used to provide fast tracking for abrupt 
workload changes. In [29], the authors described a DVFS 
technique targeted at non-real-time applications running on an 
embedded system. This approach makes use of runtime 
information about the external memory access statistics in 
order to perform CPU voltage and frequency scaling. The 
proposed DVFS technique relies on dynamically constructed 
regression models that allow the CPU to calculate the expected 
workload and slack time for the next time frame and, thus, 
adjust its voltage and frequency in order to save energy, while 
meeting soft timing constraints. 

All of the above techniques perform DVFS, where the 
performance overhead of such DVFS mechanisms is rather 
high. For example, the authors in [26] assume that no network 
traffic (i.e., packets) can cross the link during the power-mode 
transitions, resulting in 20 to 100 bus cycle penalty each time a 
voltage-frequency scaling is executed. Furthermore since the 
voltage-frequency commands are issued by the operating 
system, the time interval between two successive commands is 
high. For example, reference [29] invokes a power 
management kernel, which is a part of the OS code, to change 
the voltage-frequency setting every 50ms (corresponding to a 
Linux time quantum). 

Little attention has been paid to doing DVFS by using 
purely hardware-based mechanisms. This is clearly a promising 
direction since hardware-based DVFS mechanisms produce 
low latency and energy dissipation overheads. They can thus be 
invoked much faster (i.e., two successive adjustments to 
voltage and frequency can be made with a much shorter interval 
in between). 

III. PROPOSED ARCHITECTURE 
In this section, we present details of Predictive Flow Queue 
(PFQ) based power management architecture, which is 
comprised of a performance monitor, a power manager, and a 
dynamic frequency adapter. We also describe our 
energy-efficient packet interface architecture. 
A. PFQ-based Power Management Architecture 
Defragmenting/filtering packets of various communication 
protocols inside the Ethernet controller is a particularly 
complex and demanding task. Thus, the Ethernet controller 
needs many FBs and specialized hardware units that efficiently 
process and transfer data between the local interconnect and the 

network [30]. 
The PFQ architecture for the most part provides a first-in 

first-out (FIFO) mechanism between the state machines 
realizing various FBs. Each state machine essentially reacts to 
the content of its corresponding PFQ to initiate and direct the 
processing activities of the state machine as depicted in Fig. 2, 
where we assume that each FB has three number of active state 
(e.g., S1, S2, and S3) which is controlled by dynamic frequency 
scaling (DFS) values. A FB is shut down (power gated) when it 
is in sleep mode. In contrast, the FB is assigned the lowest 
allowed frequency when it is in idle mode. The content of PFQ 
includes pointers that are used to indicate where the frame data 
is located within the temporary buffers. When the PFQ is empty, 
the state machine has no work to perform and is in its idle state. 
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Fig. 2.  Concept of predictive-flow-queue (PFQ). 

Attempting to greedily respond to the workload changes so 
as to provide an optimal DFS value can result in significant 
energy and delay overheads associated with the power-mode 
transitions. To solve this problem, a software component, 
which accurately predicts the required performance level of the 
system has been incorporated into the power management 
systems [31][28]. Although these prediction methods help 
reduce the energy/delay overheads, they suffer from a few 
disadvantages, that is, i) a software-oriented prediction 
algorithm increases the computational complexity of the power 
manager that resides in the driver or the OS, and ii) when using 
a Phase-Lock Loop (PLL) to effect a frequency change, the FB 
may be stalled during the lock time of the PLL. Consequently, 
use of the PLL to realize the DFS setting commanded by the 
power manager may result in a sizeable performance penalty. 

The main advantage of the proposed PFQ-based power 
management architecture is that we predict the workload level 
for the next time step while processing the incoming traffic and 
ramp up (or down) the operating frequency in a continuous 
manner until the target operating frequency value is achieved. 
As a result, there is never a need for stalling the FB. The details 
of the power management architecture which include a 
performance monitor, a power manager and a dynamic 
frequency adapter, are explained next. 

1) Performance Monitor 
The performance monitor profiles and analyzes characteristics 
of the workload by examining the corresponding PFQ. The 
service time behavior of each FB is captured in the form of the 
service time distribution for the FB when it is in the active 
mode. Similarly, the input request behavior (i.e., workload) of 
each FB is modeled by the request interarrival time distribution 
at the corresponding input queue. In our problem setup, the 
PFQ of each FB is represented by the G/M/1 queuing model, 
whereby the interarrival times are arbitrarily distributed and the 
service times are exponentially distributed [32]. The 
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justification for adopting this model is that the PFQ receives 
different and arbitrary sizes of frame data or frame descriptors 
with different link speeds whereas the corresponding FB 
executes its function with a fixed speed. 
2) Power Manager 
The main goal of the power manager is to determine and 
execute a power management policy (i.e., one that maps 
workloads to power state transition commands so as to 
minimize the total system energy dissipation under a 
performance constraint) based on the information provided by 
the performance monitor. The power manager performs 
workload prediction and policy optimization. Details of the 
proposed workload prediction technique are explained in 
section IV while the performance optimization formulation, 
required to implement a workload-frequency mapping table, is 
discussed in section V.  
3) Dynamic Frequency Adapter 
When the workload of an FB changes greatly and frequently, 
the task of deciding what frequency value to assign to the FB 
becomes increasingly difficult. Furthermore, the conventional 
PLL-based frequency scaling techniques waste energy when 
they change the frequency values. To overcome these 
shortcomings, we present a workload-aware dynamic 
frequency adapter (DFA) to generate a continuously varying 
frequency for each FB.  
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Fig. 3.  Continuous frequency adjustment at a slow pace (a) or fast pace (b). 

One benefit of using a variable frequency is that the DFA 
enables each FB to remain operational even when its frequency 
is being adjusted. The DFA is able to increase (or decrease) the 
operating frequency value at a slow or fast rate with the help of 
the performance monitor, depending on how slow or fast the 
workload is changing and what the user preferences are (cf. 
Fig. 3). The procedure for continuously adjusting the frequency 
is explained next.  

The power manager examines the workload of each FB at 
decision epoch1 n+1 for the time interval ranging from decision 
epoch n to n+1, and subsequently, sets the frequency value of 
each FB for the next time ranging from n+1 to next decision 
epoch at time n+2 (see below for an explanation of the 
frequency prediction algorithm). Assume that a mapping table 
for selecting an optimal operating frequency as a function of 
 
1 Any regular or interrupt-based power management decision time instance is 
called a decision epoch. 

the present workload (i.e., required performance) has been 
provided. If the workload change is fast (slow), the interval 
during the frequency adjustment is performed will be shortened 
(lengthened) to improve the DFA responsiveness. In the 
proposed framework, determining which frequency level to use 
in what time interval is implemented in hardware. 

The proposed DFA method is implemented in hardware 
inside the Ethernet controller chip. In this way, we also control 
noise and manage signal integrity. This is because if the 
variable clock signal is produced outside the chip, jitter (which 
is caused by several factors, e.g., crosstalk, power supply noise) 
will pose a significant challenge to board designers who must 
prevent sudden functional failures of the chip. In other words, 
by implementing the DFA inside the chip, we can reduce the 
impact of jitter on the chip’s performance [33].  
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The block diagram of the DFA is depicted in Fig. 4 and is 
explained next. At each decision epoch, the power manager 
inputs values of the current and predicted frequencies to the 
DFA block, which translates these two values into a start pulse 
width and a target pulse width. The frequency adjustment is 
achieved by steadily changing the frequency from its start value 
toward the target value (see the register setting technique 
illustrated in Fig. 5). In our design, the frequency is increased 
when the pulse width is lowered. For example, the DFA 
generates a variable frequency between a minimum frequency 
set by a start pulse width of 6usec and a maximum frequency 
set by a pulse width of 2usec. The DFA uses a digital PWM 
(Pulse Width Modulator) [34] by means of a fast-clocked 
counter, which is loaded by input digital code (i.e., 
current_rate and predict_rate signals) at the beginning of the 
process. The variable frequency signal is input to a clock buffer 
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(not shown in the figure) before it is supplied to any functional 
block. The DFA changes the frequency faster than a 
conventional PLL since it eliminates the lock-time of feedback 
loop of standard PLLs. Detailed functional simulation results 
(cf. Fig. 19) will be reported in section VI. 

B. PFQ-based Packet Interface Architecture 
We apply the proposed PFQ-based power management 
architecture to the packet interface modules inside the Ethernet 
controller, which includes interfaces between MAC and DMA. 
In this paper, we consider the packet interface between MAC 
and DMA (without involving IPSec and management function) 
to capture energy-saving opportunities by using the proposed 
architecture since this interface amply exhibits the competing 
requirements of low-latency and high-bandwidth processes. In 
general, the frame data is provisionally stored in memory 
buffers before being sent to local interconnect or network, 
while the control data is processed by a series of FBs, each 
requiring low-latency as shown in Fig. 1 (see steps (d), (e), and 
(g) in the packet receive path). Thus, this architecture targets 
the control dominated tasks rather than the storage and 
forwarding of the frame data. The event-queue mechanism of 
the PFQ enables multiple operating frequencies for the FBs, 
satisfying the low-latency control data access and the 
high-bandwidth frame data access. The interested reader should 
refer to the research work in [35] if interested in the 
DMA/PCI-related packet interfaces.  
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Fig. 6.  Adaptation of PFQ-based power management structure to packet 
receive path. 

Fig. 6 illustrates the adaptation of PFQ-based power 
management architecture to the packet receive path. For 
example, considering LT-FIFO (which receives control data of 
the LAN Traffic), the performance monitor observes the 
contents of PFQ (i.e., LT-FIFO); subsequently, the dynamic 
frequency adapter adjusts the operating frequency of the 
corresponding FB (i.e., QP) under the power manager’s 
direction. Control blocks such as the Queue Placement (QP) 
and the Data Initiator (DI) interact with the RISC processor or 
the buffer manager for the packet receive path, while 
transferring memory buffer pointers to the ensuing PFQ so as to 
advance the sequence of tasks. The LAN traffic receive filter 
and the QP block are considered as the service requestor (SR) 
and the service provider (SP), respectively. Note that when the 
QP block is considered as a SR, then the DI block will play the 
role of a SP. In the following, details of the packet interface are 
described.  

1) Packet Receive Interface 
Fig. 7 shows the complete configuration of energy-efficient 
packet interface architecture based on the proposed PFQ. 
Detailed power management modules, which include the 
performance monitors, power manager, and dynamic frequency 
adapters, are omitted to simplify the figure. The RX-MAC 
determines exactly what type of in-bound traffic is routed to a 
host system through a series of packet receive control blocks, 
where a programmable filter placed in the receive MAC layer is 
responsible for filtering and tagging the in-bound traffic. The 
receive filters have special features to analyze and classify the 
incoming packets. The received packets, appearing in the form 
of a 64-bit word stream, are en-queued into the RX-FIFO, 
where MAC applies a programmed set of filters to such 
streams.  

While the frame data is en-queued in the RX-FIFO, the 
control data (i.e., receive buffer descriptors) which are obtained 
by matching and filtering, are en-queued into a LT-FIFO, 
where these FIFOs have PFQ-based power management 
structure. Note that the receive buffer descriptors are used to 
keep track of packets being received from the Ethernet 
interface, where the packet receive interface is responsible for 
placing the received packets in the temporary memory buffer 
(i.e., RXBUF) along with an associated buffer descriptor. The 
receive buffer descriptor, which includes information about the 
starting address, end status, and packet length, is updated by 
hardware in order to indicate to the driver or the OS where the 
received packets are located. Hence, for every complete frame 
that resides in the RX-FIFO, there is a corresponding receive 
buffer descriptor bearing the filtering results in the LT-FIFO.  
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Fig. 7.  The configuration with PFQ for packet interface architecture. 

When a new frame starts filling the RX-FIFO, the MAC 
requests buffers (i.e., temporary space) from the RXBUF for 
the frame data (before it is sent to the host system via a receive 
DMA) and starts placing the in-bound frame into these buffers. 
At the end of the frame, the MAC pops the LT-FIFO, and takes 
appropriate actions based on the contents of the FIFO entries. 
As shown in Fig. 7, the frame data, which is stored in the 
RX-FIFO, is transferred to the temporary RXBUF via a buffer 
manager, and the control data used as a pointer to indicate the 
buffer location of its corresponding frame data is processed 
through the QP and DI control blocks. The QP and DI control 
blocks are used to monitor several indicators (e.g., diagnostics) 
during the reception of a packet and to update the information 
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of buffer descriptor. 

2) Packet Transmit Interface 
The configuration of packet transmit interface is simpler than 
that of the receive interface. In order to transmit a packet 
through the MAC, the host system needs to construct the packet 
in the TXBUF. At the same time, the control data (i.e., transmit 
buffer descriptors) are configured by the driver or the OS in 
order to indicate to the packet transmit interface where the 
packets that are to transmitted are located in the TXBUF. 
Information such as the starting address, packet length, and 
VLAN tag is included in the transmit buffer descriptors. Next 
the MAC commits the frame by en-queuing the frame data into 
TX-FIFO, while the Frame Updater (FU) modifies the frame 
header with the VLAN tag and checksum fields. After the 
frame is transmitted, the MAC requests the buffer manager to 
de-allocate the list of buffers for the freshly transmitted packet. 
Simply speaking, the packet transmit interface is responsible 
for transmitting packets to the Ethernet link by reading the 
associated transmit buffer descriptors and the packet from the 
local temporary memory buffer (i.e., TXBUF). Note that the 
FPQ-based power management architecture is not applied to 
the packet transmit interface since the power manager already 
has knowledge about the rate of transmitting traffic, which 
enables a DFS technique to be easily performed based on this 
information alone. 

IV. WORKLOAD PREDICTION-BASED FREQUENCY 
ADJUSTMENT TECHNIQUE 

We present a frequency adjustment technique based on 
workload prediction for FPQ-based architecture, which is 
formulated as an initial value problem (IVP) [36]. We also 
describe our workload-driven dynamic frequency adjustment 
design.  

A. IVP-based Workload Prediction 
Assume that power manager of the PFQ-based architecture is 
able to monitor the current workload of the traffic at the 
decision epochs t1, …, tn where ti+1 = ti+T. Let w(t) denote the 
workload (i.e., the arrival rate of traffic) of a target FB at time t 
and let f be a function providing the operating frequency for the 
FB in every interval [ti, ti+1]. Then, an initial value problem 
(IVP) may be defined to predict w(t) as follows: 

/ ( , ), ( )
i i

w t f t w w t w∂ ∂ = =  (1) 

where t ∈ [ti, ti + T], and wi denotes the workload at the 
beginning of the current interval. The IVP limits the solution by 
an initial condition, which determines the value of solution at 
all future time t in the current interval [36]. Although f can be 
any general function, in practice, we assume a linear function 
form:  f=aw(t)+b where a and b are appropriately calculated 
slope and offset coefficients. Since the initial workload value is 
specified by the power manager, it is possible to integrate (1) to 
obtain w(t) in the interval [ti, ti+1]. The standard solution 
method for the IVP is to approximate the solution of the 
ordinary differential equation by calculating the next value of w, 
i.e., w(t+h) as the summation of the present value w(t) plus the 
product of the size of a time step h and an estimated slope w’(t) 
i.e., 

( ) ( ) '( )w t h w t h w t+ = + ⋅  (2) 
where the smaller this time step h is, the more accurate the 
results will be. The difference between different ODE solvers is 
in how they approximate w’(t) and whether and how they 
adaptively adjust h. 
 

Fig. 8.  Evaluation of various IVP solutions. 

Considering the accuracy and overhead, we have evaluated 
a number of methods for solving the IVP, which include the 
Euler’s method, the 4th-order Runge-Kutta method, and the 
4th-order Adams predictor-corrector method (cf. Fig. 8). In this 
figure, we assume that w(0) = 0.3 as an initial value. The time 
step size is defined as h = T/K, where the time interval [ti, ti + T] 
is divided into K equal-length segments. It is clearly seen that 
the Euler method, the simplest approach for solving the IVP, 
shows low accuracy (i.e., high error) in predicting the workload 
value, where the error is defined as the difference between the 
exact values and the computed approximates. However, the 
4th-order Runge-Kutta method exhibits low error and consistent 
stability in predicting the workload value. The 4th-order Adams 
predictor-corrector method is also accurate, but has higher 
computational complexity. 

 

Fig. 9.  Trade-off between the performance and time step h. 

Fig. 9 shows the trade-off between the accuracy and time 
step h in terms of performance of the workload prediction 
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technique, where time (the x-axis) is defined in terms of 
successive time steps. In this evaluation, the 4th-order 
Runge-Kutta method is used with an initial value of w(0) = 0.3. 
Determination of the time step size is crucial since although a 
small time step increases the computational overhead, it also 
improves accuracy, i.e., the 4th-order Runge-Kutta method 
requires four evaluations per time step h but its accuracy is 
improved. We use various values for time step size h (= 2, 5, 
and 10), where T is fixed, while monitoring the error in 
predicting the workload values. The time step of size 2 
indicates great accuracy, but increases computational efforts by 
the software (due to more computations in the same interval), 
whereas step size of 10 exhibits lower computational efforts 
with lower accuracy. In our problem setup, we have empirically 
observed that a time step size of 5, which exhibits around 13% 
error, provides a reasonable trade-off point, where the time step 
size of 2 consumes around 4% and 9% increased CPU time 
compared to the size of 5 and 10, respectively, based on our 
simulations. Notice that the time steps of size 2 and 10 present 
around 4% and 60% error, respectively. 

To make the workload prediction technique more suitable 
for online implementation, an efficient one-step method known 
as the midpoint method [36] is utilized to solve the IVP. 
Specifically, at time instance t, we predict the workload value 
for time t + h, based on the value at time t + h/2, which is 
obtained by using the midpoint method, as depicted in Fig. 10. 
First, the current workload at time t is monitored by the 
performance monitor and a frequency value is read from a 
pre-characterized workload-frequency mapping table (cf. 
Section V) by the power manager. Note that we do not use the 
predicted value for time t, which was previously computed at 
time t – h, because we can achieve the exact frequency value at 
time t. Next, the workload value at time t + h/2 is estimated by 
using a moving average method, for example, if the window 
size of the moving average calculator is 2, then, wpred(t + h/2) = 
1/2·(wexact(t) + wexact(t–h)). This workload value is subsequently 
used as the midpoint estimate of the workload in the upcoming 
period. In particular, it is used along with wexact(t) to compute 
wpred(t + h) by applying the IVP. 
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Fig. 10.  Workload prediction technique based on the midpoint method and 
IVP. 

The advantage of this prediction method is that we do not 
attempt to predict wpred(t + h) directly by using a moving 
average method only. Instead, we estimate the workload value 
for a nearer time in the future (which should provide higher 
accuracy) and use that value to initially estimate the rate of 
workload change in the upcoming period, followed by finally 
computing wpred(t + h) by solving the IVP. 

B. Workload-Driven Frequency Adjustment 
In our problem setup, mapping from a workload (i.e., the 
arrival rate of traffic) level to a corresponding optimal 
frequency value is performed based on prior (offline) 
simulations, as explained in section V. Since an Ethernet 
controller includes a number of FBs which run at different 
frequency values, the power manager must first predict the 
workload for each FB. Next, by utilizing a pre-characterized 
workload-frequency mapping table the DFA assigns the 
optimal frequencies to the corresponding FB. 

The decision about the frequency adjustment interval is 
made based on the difference between wexact(t) and wpred(t + h). 
For example, if wpred(t + h) >> wexact(t) (wpred(t + h) << wexact(t)), 
then the dynamic frequency adapter (DFA) will increase 
(decrease) the frequency quickly. On the other hand, the DFA 
increases (decreases) the frequency slowly if wpred(t + h) is only 
a little larger (smaller) than wexact(t). Fig. 11 shows the flow of 
dynamic frequency adjustment technique, where f pred(t + h) is 
the frequency value obtained from the predicted workload and 
the workload-frequency mapping table for the two cases where 
wpred(t + h) > or >>  wexact(t). In Fig. 11, we have omitted the 
case of wpred(t + h) < or << wexact(t), which can be handled in a 
similar way. Note that when wpred(t + h) = wexact(t), the current 
frequency value is maintained. It is worthwhile to mention that 
the DFA is capable of handling the throughput and power 
budget. If there is a target throughput, for example, the DFA 
will slowly increase the frequency up to a target frequency 
value that results in just-enough throughputs and the minimum 
power dissipation. 
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V. ANALYSIS AND PERFORMANCE OPTIMIZATION 
In this section, we first analyze the model of PFQ-based system, 
and then provide energy optimization formulation to find an 
optimal frequency values under performance constraints, used 
to implement a workload-frequency mapping table.  

A. Model of PFQ-based Functional Block 
Generally, network traffic is modeled as a sequence of arrivals 
of discrete packets, which enables the interarrival times to be 
treated a random process. In our formulation, the PFQ, which 
provides a queue mechanism, can be represented by the G/M/1 
queuing model, where interarrival times are arbitrarily 
distributed and service times are exponentially distributed. 

A general distribution is assumed for the interarrival times 
because an exponential distribution would underestimates the 
occurrence probability of a large request interarrival time and 
so it does not adequately model the request arrival time in the 
idle periods [38]. Furthermore, a widely used Poisson process 
model, whose traffic is characterized by assuming that the 
packet interarrival times are independent and exponentially 
distributed with some rate parameter, has limitations in 
capturing the traffic burstiness which characterizes the data 
traffic, since traffic burstiness is related to short-term 
auto-correlations between the interarrival times [39][40]. In 
particular, the Ethernet traffic exhibits statistically self-similar 
behavior [41], which is characterized by bursts, where the 
burstiness of the traffic exists over a wide range of time scales. 
As illustrated in [42], G/M/1 queuing model can be used to 
model a network with self-similar arrival times. The service 
time behavior is captured by a given service time distribution 
for the functional module when it is in the active modes. 
Similarly, the input request behavior is modeled by some 
interarrival time distribution.  

Consider a FB with its dedicated PFQ inside the Ethernet 
controller, where the PFQ follows a first come, first served 
(FCFS) strategy. Let data packets (or bursts) arrive in the PFQ 
at time points tn, for n = 0, 1, …, ∞. The interarrival time of 
tasks (i.e., packets or bursts), in = tn+1 – tn is assumed to be 
independent and identically distributed (i.i.d.) [43] according to 
an arbitrary distribution function FA (density function fa). Let λ 
denote the mean arrival rate of tasks. The mean interarrival time 
is thus equal to 1/λ. We assume that the service times of the FB, 
TS, are exponentially distributed with a mean value of 1/μ. 
Evidently, μ, which is the service rate of the FB, is a function of 
operation frequency of the FB. Then, the state of the G/M/1 
model at time t can be described by the pair (xt, rt), where xt is 
the number of tasks in the PFQ and FB at time t, and rt is the 
residual interarrival time (i.e., the expected time remaining for 
the arrival of next packet). The two-dimensional process {(xt, 
rt), t ≥ 0} is a Markov chain, which follows the Markovian 
property [44], but requires complex analysis to compute the 
transition probabilities in the state space. Therefore, we resort 
to an embedded semi-Markov chain (SMC) model, which is 
simpler to analyze and yet sufficient for the purpose of power 
management technique in the context of PFQ-based FBs, as 
detailed next. 

Definition 1 [45]: If two-dimensional process {(xt, rt), t ≥ 0} 
is a Markov chain, then {xt, t ≥ 0} will be a semi-Markov chain. 

Note that the time spent in a particular state in the SMC (i.e., the 
sojourn time or the time difference between successive packet 
arrivals) follows an arbitrary probability distribution, which is a 
more realistic assumption than an exponential distribution used 
in the conventional Markov process model [9]. To specify the 
state probabilities of this SMC, we first consider the 
probability, an(t), that n tasks are served by the FB during the 
sojourn time, 
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where fa(t) is the probability density function of interarrival 
time which is arbitrarily distributed. Notice that (3) follows 
from the fact that the number of service completions by the FB 
within the sojourn time constitutes a Poisson process since the 
time between successive services by the FB is exponentially 
distributed. Then, the equilibrium probability, qn, of being in a 
state where there are n tasks in the PFQ and FB just before a 
new task arrives is calculated as: 
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where 0 < σ < 1 is the unique real solution of one-sided 
Laplace-Stieltjes transform (LST) of the interarrival time 
distribution function [32], which is in turn calculated as: 
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(5) 

Let TW  and TS represent the mean waiting time and the mean 
service time of the tasks in the PFQ and FB, respectively. The 
mean response time, TR, of the FB is the expected time that the 
tasks spend waiting in the PFQ plus the time taken for 
processing in the FB. TR is calculated as: 

1
(1 )RT

μ σ
=

−
 (6a) 

The time spent waiting in the PFQ is calculated by subtracting 
the service time TS from the response time, yielding 

1
(1 )W RT T

σ
μ μ σ

= − =
−

 (6b) 

With regard to the performance efficiency, we consider the 
utilization of the FB, i.e., how much of the computational 
resource provided by the FB is exploited by the application. 
More precisely the utilization ratio, u, is defined as: 

[ ]

[ ] [ ]

E BP

E BP E IP
u

λ

μ
≡

+
=  (7) 

where E[BP] denotes the expected duration of the busy period 
(when there is at least one task, and thus the FB is busy) of the 
FB, while E[IP] denotes the expected duration of its idle period 
(when there are no tasks, and hence, the FB is idle). Without 
presenting the proof, we simply state the following [32], 

1
[ ] [ ]

(1 )
E BP E IP

λ σ
+ =

−
 (8) 

Thus, considering the proportion of idle time, we can calculate 



To appear in IEEE Trans. on VLSI Systems, 2008 10

E[BP]  and E[IP]  as follows: 
1

[ ] , [ ]
(1 ) (1 )

E BP E IP
μ λ

μ σ λμ σ

−
= =

− −
 (9) 

TABLE I shows the simulated results for the G/M/1 PFQ 
model, assuming that the interarrival times are generally 
distributed with arrival rate (0 < λ < 1), and TS = 1/μ = 1 for 
simplicity.  

TABLE I                                                           
SIMULATION RESULTS FOR PREDICTIVE-FLOW-QUEUE MODEL 
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B. Energy Optimization Formulation 
The proposed framework relies on a workload-frequency 
mapping table, which will provide the optimum frequency 
assignment for a FB based on the workload that the FB 
encounters online. To construct this workload-frequency 
mapping table, we formulate the energy optimization problem 
as a mathematical program. More precisely, mapping from a 
workload (i.e., the arrival rate of tasks) to a corresponding 
optimal frequency value, which affects the service time, TS, and 
waiting time, TW, is performed by solving an offline energy 
optimization problem. Assuming that an operating frequency 
value, f, is given, the energy dissipation of a FB and 
corresponding PFQ can be computed as 
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Here powA_FB and powA_PFQ denote the expected power 
consumptions for the FB and corresponding PFQ in the active 
mode, respectively, whereas powI_FB and powI_PFQ denote the 
expected power consumptions of these two components in the 
idle mode. Note that powA_PFQ (i.e., memory power) is affected 
by an operating frequency, besides the arrival rate of tasks, as 
illustrated in Fig. 12. This figure shows the power consumption 
of the PFQ (i.e., powA_PFQ) in the active mode for write/read 
operations in terms of the normalized arrival rate of packet. In 
this simulation, we set the packet size to 64bytes, and set the 
operating supply voltage to 1.20V. For example, when the 
arrival rate of the traffic is 0.8 (normalized), the operating 
frequency for PFQ is around 10 times greater than the case of 

when the arrival rate is 0.08. 
 

Fig. 12.  Power consumption of the predictive-flow-queue in 65nm technology. 

After determining the relevant parameters, we set up a 
mathematical program to solve the performance optimization 
problem as a linear program. The goal is to minimize energy 
consumption of the FB and PFQ, given a data packet arrival 
rate, by choosing an optimal service rate, μ, corresponding to a 
frequency assignment for the FB. The results are used to fill in 
various entries of the workload-frequency mapping table.  

minimize   

s.t.   UB

LB

FB PFQ

W ST T T
u u

ene
μ −

+ ≤

≥
 (11) 

Note that TUB is an upper bound on the execution time of tasks 
going through the FB and its PFQ, and uLB is a lower bound on 
the utilization of FB, which is provided by the user or 
application. This linear program is solved by using a standard 
mathematical program solver (i.e., MOSEK [46]). Although 
the formulation describes energy optimization for a single FB, 
system-wide energy minimization can be achieved easily in the 
same manner. 
 

Fig. 13.  Optimal service rate as a function of task arrival rates for different 
combinations of performance constraints. 

Fig. 13 shows the results of proposed mathematical 
programming model with various performance constraints (i.e., 
TUB and uLB), where the goal is to find an optimal service rate 
which minimizes the energy dissipation of the FB and 
corresponding PFQ. For example, based on data given in 
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TABLE I, for the performance constraints TUB = 3.0 and uLB = 
0.3 and task arrival rate of 0.6, the energy-optimal service rate 
is 0.77. Additional experiments for various scenarios are 
reported in section VI. 

The entries of the workload-frequency mapping table 
correspond to various combinations of workloads and 
performance constraints. Fig. 14 illustrates the mapping 
process from workloads to an optimal operating frequency. In 
this figure, the mapping table is achieved through extensive 
offline simulation during design time, considering performance 
characteristics of each FB provided by the user or application. 
For example, when a power manager predicts the workload for 
the near future, an optimal frequency value for the next 
decision epoch is selected and provided to the dynamic 
frequency adapter which will continuously change the 
operating frequency from its present value to the target value. 
Note that mapping from workload to operating frequencies is 
achieved by a simple linear function while considering the 
maximum and minimum operating frequencies that can be 
applied to the FB in question. 
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Fig. 14. Mapping of workloads to optimal operating frequency values for each 
FB. 

VI. EXPERIMENTAL RESULTS 
In the experimental setup, we applied the proposed PFQ-based 
power management architecture to a gigabit Ethernet controller, 
where the Ethernet controller is implemented with TSMC 
65nmLP library. Note that, as mentioned before, we considered 
a part of packet interface between MAC and DMA to capture 
power-saving opportunities by using the proposed architecture, 
as shown in Fig. 15. 
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Fig. 15.  Adaptation of PFQ-based power management structure with dynamic 
frequency scaling technique. 
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Fig. 16.  Performance test configuration. 

In the first experiment, we characterize the performance of 
designed Ethernet controller by obtaining the throughput for 
data streams with different packet sizes. The performance test 
setup is configured as shown in Fig. 16. In this setup, the packet 
sniffer is mainly used for the purpose of collecting traces and 
debugging, whereas the performance analyzer (SmartBits 2000 
[47]) is used to generate various packet streams with the fixed 
inter-packet gap of 0.096us. TABLE II reports the performance 
characteristics of the implemented Ethernet controller obtained 
by measuring the throughput for various data streams. 

TABLE II                                                          
PERFORMANCE CHARACTERISTICS OF ETHERNET CONTROLLER                

 Packet size
(bytes)

Service rate
(pkt/sec)

Inter-arrival
time (sec)

Arrival rate
(pkt/sec) 

Service
time (sec)

1024
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256
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64
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4.19E-6

1.12E-6

0.60E-6

8.00E-6

81699

120656

238549

466417

892857

1644736

11.71E-6

4.08E-6

3.15E-6

3.07E-6
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Fig. 17.  Evaluation of the G/M/1 model for the predictive flow queue. 

The second experiment was designed to evaluate the 
efficacy of our modeling technique for the PFQ, as represented 
by a G/M/1 queuing model. We characterize the network traffic 
in terms of the arrival rate based on our G/M/1 queuing model 
and compare these results with both the actual trace data from 
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real-application, i.e., obtained data from SmartBits 2000 (see 
TABLE II), and those achieved by the conventional M/M/1 
queuing model (which assumes an exponential distribution for 
interarrival times). Fig. 17 shows that the G/M/1 model for the 
PFQ gives more accurate performance results compared to the 
conventional model. In this figure, all values are normalized to 
the real-trace data. 

TABLE III                                                          
NORMALIZED ENERGY DISSIPATION VALUES  FOR VARIOUS WORKLOADS 

UNDER DIFFERENT COMBINATIONS OF SUPPLY AND THRESHOLD VOLTAGES 
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In the third experiment, we set the performance constraints 
on the TUB and uLB (e.g., TUB = 5 and uLB = 0.5) as in (11) to 
evaluate the proposed energy optimization technique based on 
mathematical programming models. The solution of the 
performance optimization problem produces an optimal 
frequency level for the FB. Different arrival rates (λ) of traffic 
are used to generate the multiple rows in TABLE III, which 
represents the normalized energy dissipation for various FBs 
(e.g., QP, DI, and DMA) in the active and idle modes, where 
we use (10) to calculate optimal energy dissipation. In this 
table, we report energy dissipation values for each FB for each 
possible combination of supply voltage (e.g., 1.00V, 1.08V, 
and 1.20V) and (high and low) threshold voltages, available 
with the TSMC 65nmLP library. To achieve power values, we 
generated and utilized SAIF (Switching Activity Interchange 
File) based on RTL simulation of the system with the Synopsys 
Power Compiler [48]. 

We next investigate various scenarios corresponding to 
different workloads for each FB as reported in TABLE IV. We 
performed static timing analysis with the Design Compiler [48] 
to assign low threshold voltage transistors in the logic gates on 
the timing critical paths, while using high threshold voltage 
transistors in all other logic gates. We fixed the supply voltage 
to 1.20V. Experimental results in this table (which correspond 

to the performance constraints TUB =5 and uLB =0.5) 
demonstrate that the energy optimization technique, achieved 
by solving mathematical program described in (11), results in 
up to 19.51% and 56.41% energy savings for active and idle 
modes, respectively. 

TABLE IV                                                          
ENERGY SAVINGS BASED ON OPTIMIZATION TECHNIQUE (NORMALIZED)         
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Finally, we investigated the energy-efficiency of the 
proposed PFQ-based interface architecture. In particular for 
this experiment we apply the proposed technique to QP, DI, 
DMA and their corresponding PFQs in Fig. 15. We assumed 
that the workload (i.e., the arrival rate) changes dynamically 
from 0.1 to 0.9. For comparison purpose, we implemented a 
couple of power management policies (denoted by PM1 and 
PM2 and described below) as representatives of the 
conventional methods, similar to [49][50][51]. We use three set 
of frequency values to simplify the experimental setup (F1 < F2 
< F3 in terms of operating frequency values).  
PM1: Utilize dynamic frequency scaling technique, while 
accounting for a 100us power-mode transition overhead; the 
frequency assignment policy is as follows. 
- Use the lowest F1 value when 0.1 ≤ the arrival rate ≤ 0.3, i.e., 

low workload. 
- Likewise, use F2 and F3 values when 0.3 < the arrival rate ≤ 

0.6 and 0.6 < the arrival rate ≤ 0.9, respectively. 
PM2: The same as PM1 except that frequency change is 
avoided when the same frequency changes occur consecutively. 
More precisely, let Fi denote the value of frequency at time i. 
- Set Fi+1 = Fi, if the predicted Fi+1 value is the same as Fi-1 value. 

(e.g., the sequence of frequency assignments F3, F1, F3 is 
modified to F3, F1, F1).  

Next, we randomly generated dynamic workloads with 50, 100, 
500, and 1000 decision epochs at fixed intervals (to simplify 
the simulation setup) and applied the above-mentioned 
conventional power management policies and the proposed 
technique to the PFQ-based architecture. The simulation results 
in Fig. 18, which corresponds to the case of 50 decision epochs, 
show that the proposed technique achieves energy savings 
compared to the conventional methods. Note that the 
percentages of frequency change suppressions by PM2 are 
12%, 11%, 14%, and 12% for the cases of 50, 100, 500, and 
1000 decision epochs, respectively.  

Results in TABLE V, which also reports the characteristics 
of the workload distribution (e.g., Low indicates that 0.1 ≤ the 
arrival rate ≤ 0.3), demonstrate that, compared to the PM1 
policy, our approach (column PFQ in the table) achieves power 
and energy savings of up to 13.8% and 12.2%, respectively. 
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Note that the overhead of implementing the DFA block inside 
the Ethernet controller is insignificant in terms of the area and 
power dissipation because the DFA block consumes less than 
1mW of power and requires a small number of gates i.e., fewer 
than 200 standard cells. To implement the DFA block in 
hardware, we used a digital PWM architecture similar to that 
reported in [34]. Furthermore, the overhead of accessing the 
pre-characterized mapping table to provide the target frequency 
is also negligible in our specific system in terms of performance 
and memory size, because the operating frequency is rather low 
(e.g., below 200MHz), which is enough for the power manager 
to select the target frequency from the small mapping table and 
send it to the corresponding dynamic frequency adaptor at each 
decision epoch. 
 

Fig. 18.  Evaluation of the proposed energy-efficient PFQ-based architecture. 
 

TABLE V                                                          
POWER AND ENERGY SAVINGS OF THE PFQ-BASED ARCHITECTURE 
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We provide in Fig. 19 the functional gate-level simulation 
results for dynamic frequency adapter (DFA) block (e.g., signal 
CORE_CLK of control block is dynamically adjusted by 
DFA), to verify the implementation of the proposed 
architecture. This figure shows that the control data (e.g., 
receive buffer descriptors C0002 and C0604) are transferred to 
the control blocks from the EMAC via PFQs, while performing 
a packet receive process, whereas the frame data is directly 
moved to DMA from the EMAC through the temporary 
memory buffer.  

VII. CONCLUSION 
A predictive-flow-queue based energy-efficient packet 
interface architecture for the gigabit Ethernet controller design 
was presented, where we used a dynamic frequency adjustment 

technique to minimize the energy dissipation during 
power-mode transitions. We described a systematic approach 
for workload prediction and system modeling techniques based 
on the initial value problem and stochastic processes so as to 
achieve mathematical programming formulation for optimizing 
energy dissipation. The proposed architecture achieves 
high-throughput frame data and low-latency control data 
processes while conserving the system power consumption. 
Experimental results with the 65nm gigabit Ethernet controller 
design have demonstrated that the proposed architecture results 
in significant energy savings for various workloads under 
demanding performance constraints. 
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Fig. 19.  The simulation result for the proposed DFA which adjusts the clock frequency of the control block. 

 
 
 
 


