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Abstract—The emerging mobile cloud computing (MCC) 

paradigm has the potential to extend the capabilities of battery-

powered mobile devices. Lots of research work have been 

conducted for improving the performance and reducing the 

power consumption for the mobile devices in the MCC paradigm. 

Different from the previous work, we investigate the effect of the 

inter-charging interval (ICI) length on the mobile device control 

decisions, including the offloading decision of each service 

request and the CPU operating frequency for processing local 

requests. Generally, the length of an ICI is uncertain to the 

mobile device controller and only stochastic data are known. We 

first define the expected “performance sum” as the objective 

function, which essentially captures a desirable trade-off between 

performance and power consumption of the mobile device and 

accounts for the ICI length uncertainty. We prove that the best-

suited control decisions should change as time elapses to take into 

account the effect of ICI length variations. We propose a 

dynamic programming algorithm, which can derive the optimal 

control policy of the mobile device to maximize the expected 

performance sum. 

Keywords—mobile cloud computing; remote processing; 

dynamic voltage and frequency scaling 

I. INTRODUCTION 

Cloud computing is a new paradigm in which a cloud 
service provider owns and manages massive computation and 
storage resources and clients are able to access these resources 
from anywhere in world on their demand through the networks 
[1][2]. In cloud computing, computing and storage are being 
transformed to services that are commoditized and delivered in 
a manner similar to traditional utilities such as water, 
electricity, gas and telephony [3]. The cloud service provider 
can make profit by charging clients for accessing services, and 
clients can make use of the unlimited resources on the cloud to 
obtain advanced functionality and achieve higher performance. 

Due to their compactness, portability, and functionality, 
battery-powered mobile devices e.g., smart-phones and tablet-
PCs, have become one of the major computing platforms 
nowadays. However, mobile devices inherently have weak 
computing and storage resources compared to their “wall-
powered” counterparts due to the limited physical size and 
weight. At the same time, mobile devices are more power-
hungry because the increase in the volumetric energy density 
of rechargeable batteries has been much slower than the 

increase in the power demand of mobile devices. Thus, mobile 
devices have a relatively short battery life, which is the top 
concern of mobile device users. 

The newly emerging mobile cloud computing (MCC) 
paradigm offers an opportunity to extend the capabilities of 
mobile devices [4][5]. With the help of wireless 
communication elements such as 3G, WiFi, and 4G, the 
resource-limited mobile devices can shift the computing and 
storage requirements to the resource-unlimited cloud in the 
MCC paradigm in order to improve the performance of the 
mobile devices. Ra et al. [6] adopted an incremental greedy 
strategy for minimizing the completion time of applications 
executed on a mobile device in the MCC paradigm. 

More importantly, the MCC paradigm helps reduce the 
energy consumption of mobile devices by executing the 
computation-intensive applications remotely on the cloud 
servers [7], because these applications may consume a large 
amount of battery energy when executed locally in mobile 
devices. Remote application executions are enabled by the 
virtualization technique, which is referred to as computation 
offloading in the reference work [8][9]. A judicious strategy is 
required for computation offloading in the mobile devices. 
Reference [8] proposed a straightforward offloading decision 
strategy to minimize the energy consumption according to the 
computation-to-communication ratio and the networking 
environment. Reference [9] proposed MAUI, a system that 
dynamically controls the computation offloading at a fine-
grained level. In MAUI, the computation offloading problem is 
formulated and solved as an integer linear programming (ILP) 
problem. 

Generally, in the MCC paradigm there are a large number 
of mobile devices that can offload their computation for remote 
execution on the cloud servers. If all the mobile devices decide 
to offload their computation simultaneously, there may be 
potential congestion on the cloud servers and the 
communication links. Reference [10] provided a congestion 
game-based energy optimization approach, where each mobile 
device is a player and his strategy is to select one of the servers 
in the cloud to offload computation while minimizing the 
overall energy consumption. Reference [11] considered a more 
realistic scenario where the cloud resource manager dispatches 
service requests generated from mobile devices to different 
cloud servers, and proposed a two-stage nested game-based 
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Fig. 1. Conceptual structure for a mobile device in the MCC paradigm. 

formulation for the MCC paradigm. In this framework, each 
mobile device makes computation offloading decisions to 
minimize its power consumption as well as the service request 
response time, whereas the cloud computing controller 
allocates resources in each cloud server for service request 
processing in order to maximize the profit. 

In this paper, we consider a mobile device that executes an 
application and generates service requests. The service requests 
can be processed either locally in the CPU of the mobile device 
or remotely in the cloud servers. The control decisions for the 
mobile device include (i) determining whether or not a service 
request should be offloaded for remote processing, and (ii) 
determining the CPU operating frequency for processing local 
service requests. The performance of a service request can be 
defined as a decreasing function of the response time of that 
request, and is affected by the control decisions. Generally, 
when a mobile device achieves higher performance, the power 
consumption of the mobile device is also higher, thereby 
resulting in a shorter battery life. 

Different from the previous work, our control decisions 
judiciously take into account the effect of the inter-charging 
intervals (ICIs). The ICI is defined as the time interval between 
two consecutive battery charging phases. The ICI length 
significantly affects the best-suited control decisions. When the 
ICI length is short, there is no need to worry for the battery to 
run out of power, since the battery will get charged shortly. In 
this case, the mobile device had better work at a high 
performance mode without concerning too much about power 
consumption. On the other hand, when the ICI length is long, 
the mobile device should work at a low power mode. 
Otherwise, the battery might become depleted before it can get 
charged, i.e., the actual operating time of the mobile device is 
shorter than the ICI length. Unfortunately, the ICI lengths of a 
mobile device are uncertain and largely depend on factors such 
as the availability of charging equipments and the behavior of 
mobile device users. Typically, only the stochastic data about 
the ICI lengths are available for the mobile device controller 
based on characterization of previous ICI length values. It is a 
non-trivial problem of finding the best-suited control decisions 
of the mobile device based on stochastic ICI length data. 

Our objective is to maximize the expected value of the 
performance sum. Let   denote the total number of service 
requests that can be processed during an ICI.   is a random 
variable depending on the actual operating time of the mobile 
device. The performance sum is defined as the sum of the 
performance levels for all the   service requests. Let us 
consider two extreme cases: 

1) If the control decisions are made to maximize the 
performance for all the service requests, the battery might 
get depleted long before it gets charged again (i.e., the 
actual operating time of the mobile device is much shorter 
than the ICI length). This will result in a small   value, and 
hence, a small performance sum value as defined. 

2) If the control decisions are made to minimize the 
performance for all the service requests (for saving the 
battery energy), the battery might still store a relatively 
large amount of energy at the end of the ICI. In this case, a 
large portion of battery energy is not used during the ICI, 

and the performance sum will be also small because of the 
low performance. 

Therefore, the performance sum effectively captures a 
desirable trade-off between the performance and the power 
consumption. We maximize the expected value of the 
performance sum, because the ICI length is uncertain and only 
stochastic data are given.  

We will prove that the best-suited control decisions should 
change as time elapses to take into account the ICI length 
variations. In other words, potentially different control 
decisions should be made during the operation of the mobile 
device. We use the term control policy to denote the 
relationship between the control decisions and time. We 
propose a dynamic programming algorithm that derives the 
optimal control policy for the mobile device to maximize the 
expected performance sum, and prove that such optimal control 
policy will result in non-increasing performance (and power 
consumption) of the mobile device during battery discharging. 

II. SYSTEM MODEL 

A. Mobile Cloud Computing System 

We consider a mobile device as shown in Figure 1, which 
is connected to the cloud through RF components (e.g., WiFi, 
3G). The mobile device executes an application and generates 
service requests, which can be processed either locally in the 
CPU of the mobile device or remotely in the cloud through 
computation offloading. The service requests generated from 
the mobile device are assumed to follow a Poisson process 
with an average generating rate of  . The value of   is 
predicted based on the behavior of the application. The mobile 
device chooses to process each service request locally in the 
mobile device with probability  . According to the properties 
of the Poisson distribution [15], service requests that are 
generated from the mobile device and processed locally in the 
mobile device follow a Poisson process with an average rate of 
   . Service requests that are generated from the mobile 
device and offloaded to the cloud follow a Poisson process 
with an average rate of        . As long as a service request 
is dispatched to a server in the cloud, the server creates a 
dedicated virtual machine (VM) for that service request, loads 
the application executable and starts execution [14]. 

Let    denote the average service request processing rate 
in the CPU of the mobile device, where the superscript   
stands for “mobile”. A higher CPU execution frequency will 
result in a higher    value and a significant increase in power 
consumption of the CPU [13]. Let    denote the average 
service request sending rate in the RF components of the 
mobile device, where the superscript   stands for “sending”.    



is proportional to the wireless channel capacity from the 
mobile device to the access point [16]. Then according to the 
well-known formula in the M/M/1 queues [17], the average 
response time of the locally processed service requests is 
calculated as 

   
 

      
 (1) 

The average response time of the remotely processed service 
requests is calculated as 

          
 

          
     (2) 

where                   is the average sending time 
of a service request and     is the average round trip time 
(RTT) of a request in the cloud including the time for 
processing the request in the cloud and the time for sending the 
request back to the mobile device. Therefore, the average 
response time of a service request in the MCC framework is 
given by 

                   (3) 

Please note that   and    are the control decisions made by the 
mobile device controller. Then, we explicitly write      as a 
function of   and   , given by 

           
 

      
 

   

          
 

           

(4) 

When the mobile device is operating (turned ON), the 
power consumption of the mobile device consists of two parts, 
(i) power consumption of the CPU for processing local 
requests and (ii) power consumption of the RF components for 
sending requests to the cloud. Both the CPU power 
consumption and the RF components power consumption can 
be further separated into a dynamic power part (when the CPU 
or RF components are active) and a static power part (when the 
CPU or RF components are idle). The average dynamic power 
consumption in the CPU of the mobile device, denoted by 

    
   

, is proportional to the portion of time that the CPU is 

active, given by       . We calculate     
   

 as 
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where     
       

     is the dynamic power consumption when 

the CPU is processing requests with rate   .     
       

     is 

a superlinear function of    [13]. Similarly, the average 
dynamic power consumption in the RF components of the 

mobile device, denoted by    
   

, is calculated as 
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The (average) static power consumptions in the CPU and the 
RF components of the mobile device are denoted by     

    and 
   

   , respectively. Both     
    and    

    are constant values 
independent of    or  . The overall power consumption of the 
mobile device when it is turned ON is given by 
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Please note that Eqn. (7) only applies when the mobile device 

is turned ON. On the other hand, when the mobile device is 

turned OFF, we have          .  

B. Battery Model 

Let       denote the total charge of the battery when it is 

fully charged. We derive       by converting the nominal 
battery capacity given in     to the amount of charge in 
        as follows: 

                    (8) 

The energy stored in the battery when it is fully charged is 
given by 

                 (9) 

where      is the output voltage of the battery. 

We use   to denote the length of an ICI, which is a random 
variable. We have         , where      is the 
maximum value of  . The probability density function (p.d.f.) 
of the random variable  , denoted by       , is derived based 
on the characterization results of previous ICI length values. 
We divide      into   equal-length time intervals, each with 
length          . We assume that   is a large number. The 
 -th time interval is denoted by          , where       and 
       . The probability that     , denoted by      , can 
be calculated as 

                   ∫          
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The remaining energy stored in the battery at time   , 
denoted by         , can be calculated from 

        

 {
                                      

         
 

          ∑                   

 

   

       

(11) 

where      and       are the control decisions during the  -th 
time interval          . When             , i.e., the mobile 
device is turned OFF before the i-th time interval, we have 
                     . Please note that Eqn. (11) assumes a 
quasi-static model in which a sufficiently large number of 
service requests are generated and serviced during each time 
interval          . 

The operating time     of the mobile device, assuming an 
infinite long ICI length, can be calculated by solving the 
following equation 

            (12) 

Please note that the value of     depends on the control 
decisions for each time interval, i.e.,      and       for 
     . 



C. Expected Performance Sum 

The performance of the mobile device for processing a 
service request is defined as 

               (13) 

which is a decreasing function of the response time   of that 
service request. The expected value of the performance sum is 
defined as 

     ∑       (                     )
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Where      is the indicator function which equals to 1 when 
the boolean variable     and equals to 0 otherwise. In Eqn. 
(14),      is the (average) number of service requests 
generated and processed during time interval          , and 
                      is the average performance of the 
mobile device during time interval          . 

III. OPTIMAL CONTROL POLICY 

In this section, we propose a dynamic programming 
algorithm for deriving the optimal control policy of the mobile 
device, based on the stochastic data about the ICI lengths, to 
maximize the expected value of the performance sum. That is 
to say, we derive the optimal      and       values for each  -
th         time interval           to maximize the expected 
value of the performance sum defined in Eqn. (14). We call it 
the Optimal Control Policy (OCP) problem. Please note that 
      can only assume values from the set              
            , in which the elements are the service 
request processing rates corresponding to the   CPU operating 
frequency values, respectively. The stochastic data about ICI 
lengths are given in the form of probability density function 
      , and therefore the       values for       can be 
directly calculated from Eqn. (10). 

First, we consider a more general problem. It is described 
as follows: 

Given: (i) the number of discharging time intervals   and (ii) 
the amount of remaining battery energy   after the discharging 
process. 

Find: the      and       values for      . 

Maximize: 

     ∑      (                     )

 

   

 

                              

(15) 

Subject to: 

           (16) 

where          can be calculated using Eqn. (11). We call this 
problem the       problem. When     and    , the       
problem becomes the original OCP problem with the objective 
function stated in Eqn. (14). We find the optimal substructure 
property of the       problem as follows, implying the 
applicability of the dynamic programming algorithm [18]. The 

optimal substructure property can be easily proved using proof 
by contradiction. 

The optimal substructure property: Suppose that the       
problem has been optimally solved, and that the energy stored 
in the battery at time      is    in that optimal solution. This 
corresponds to the          problem. The optimal solution of 
the       problem contains within it the optimal solution of the 
         problem. 

In the following, we discuss how to find the optimal 
solution of the       problem from the optimal solutions of the 

         problems for           . For each   , we use 
the matrix entry                      to store the 
expected performance sum value (defined in Eqn. (15)) in the 
optimal solution of the          problem. We maximize the 
expected performance of the mobile device during time 
interval          , as described in the following: 

Given: the battery energy at time      is    and the battery 
energy at time    is  . 

Find: the      and       values. 

Maximize: 

           (                     ) (17) 

Subject to: 

                            (18) 

Please note that Eqn. (18) means the energy consumption 
during the  -th time interval should be equal to     . For 
each possible       value in the set             , we can 
calculate the corresponding      value from Eqns. (7) and (18), 
and subsequently calculate the expected performance (17). In 
this way we find the optimal      and       values in the  -th 
time interval, and we denote the corresponding maximum 
expected performance (Eqn. (17)) by                   in 
this time interval. 

Then we calculate                   as follows: 

                   

    
  

{
                    

                 
} 

(19) 

We also use matrix entry               to keep track of the 
optimal    value, i.e.,  

              

        
  

{
                    

                 
} 

(20) 

which is necessary in finding the optimal control variable 
values after we find                    . 

After we find the                     value, we 
have obtained the maximum expected value of the performance 
sum in the original OCP problem. Next, we determine the 
optimal amounts of stored energy in the battery at each time 
interval in a reverse chronological order. For example, the 
optimal amount of stored energy at the end of time interval 
    is given by                . We subsequently 
determine the optimal control decision values, i.e., the optimal 



 

Fig. 2. The three probability density functions. 
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     and       values for      . This process is called 
tracing back, and is the last step in dynamic programming [18]. 

Algorithm 1 provides the detailed procedure of the dynamic 
programming method to find the optimal solution of the OCP 
problem. In Algorithm 1, we need to discretize the battery 
stored energy into   levels. This discretization approach is 
necessary for effectively performing dynamic programming in 
the way of filling up the entries of a matrix. We perform 
Algorithm 1 at the beginning of the battery discharging process 
to determine the control policy during the whole discharging 
process in a one-shot manner. During its operation, the mobile 
devices executes the optimal      and       control decisions 
at each time slot until the battery is fully depleted or the battery 
gets charged again (whichever comes first.) Equivalently, the 
mobile device could also store the optimal control decisions as 
functions of the amount of energy stored in the battery, and 
perform optimal offloading and CPU execution rate control 
effectively. 

Algorithm 1: The dynamic programming-based optimal solution 

of the OCP problem for the mobile device. 

Input: The       values for      , and parameters related to the 

workload and mobile device characteristics e.g.,  ,      ,   ,      

Output: The optimal      and       values for       

Initialize                     for           

For (             do: 

For each          : 

For each           : 

Perform "availability check", i.e., checking whether it is 

possible for the battery energy to decrease from    to   in 

a single time interval 

If "not available": 

                   

Else 

Calculate                  by optimizing the 

objective function (17) subject to constraint (18) 

End 

End 

Calculate                   and               using 
(19) and (20) 

End 

End 

Perform tracing back using the              and          
matrices to the optimal      and       values for       

Return the optimal      and       values for       

 

In the optimal solution of the OCP problem, one important 
observation is: The average performance value      
                 is a non-increasing function, or equivalently,  
                 is a non-decreasing function, over all the 
time intervals      . We provide a brief proof as follows: 

Proof: We use proof by contradiction. Suppose that 
function                  is not a non-decreasing function 
over all time intervals. Then there must exist two consecutive 

time intervals   and     satisfying                  
                    . We exchange the control decisions 
             with                 , and it will result in 
the same            value but a higher expected value of 
performance sum as defined in Eqn. (15). This is because 
             . Hence we have proved this observation.      

IV. EXPERIMENTAL RESULTS 

In this section, we implement the dynamic programming 
algorithm to derive the optimal control policy for a mobile 
device in the MCC paradigm, based on the stochastic data 
about ICI lengths, to maximize the expected value of the 
performance sum. We also provide two baseline control 
policies: (i) The first baseline control policy chooses the 
highest CPU operating frequency (i.e.,          for 
     ), and chooses the      values such that the 
performance defined by Eqn. (13) is maximized. (ii) The 
second baseline control policy chooses the lowest CPU 
operating frequency (i.e.,          for      ), and 
chooses the      values such that the performance defined by 
Eqn. (13) is maximized. 

We use normalized values of most of the system 
parameters instead of their actual values. The mobile device 
has     CPU operating frequency levels. The average 
service request processing rates of the CPU under different 
operating frequencies are given by       ,       , 
      ,       ,       , and       . The average 
service request sending rate is       . The average RTT of 
a request in the cloud is          . The average service 
request generating rate is     . The constant      in the 
performance calculation Eqn. (13) is equal to     . The static 
power consumption of the mobile device is     

       
    

     . The dynamic power consumption of the CPU is set to 

be     
                      when it is processing requests, 

where         . The dynamic power consumption of the 

RF components is set as    
       

       when requests are 

being offloaded to the cloud. The energy storage in the battery 

when it is fully charged is         . 

We test our optimal control policy and the two baseline 
control policies on the three probability density functions of the 
ICI length as shown in Figure 2. In Table 1, we summarize the 
normalized expected value of the performance sum from the 
three control policies under different probability density 
functions and different   values. As can be seen from the 
results, our dynamic programming algorithm can effectively 
derive the optimal control policy for the mobile device with the 
stochastic ICI data to maximize the expected value of the 



TABLE I.  COMPARISON BETWEEN THE OPTIMAL CONTROL POLICY AND 

THE BASELINE POLICIES. 

 OPTIMAL BASELINE1 BASELINE2 

     

pdf 1 1 0.865 0.847 

pdf 2 1 0.847 0.861 

pdf 3 1 0.511 0.524 

     

pdf 1 1 0.884 0.865 

pdf 2 1 0.873 0.879 

pdf 3 1 0.527 0.531 

 

 
performance sum. The optimal control policy always 
outperforms the two baseline control policies with higher 
expected value of the performance sum. For the third 
probability density function in Figure 2, the expected value of 
the performance sum achieved by the optimal control policy is 
almost two times of that achieved by the baseline control 
policies. This is because the third probability density function 
has higher variance, and thus, the optimal control policy based 
on stochastic data will have higher benefit than baselines. 

 
Fig. 3. The CPU service request processing rate. 

 
Fig. 4. The power consumption of the mobile device. 

We plot the CPU service request processing rate during a 
discharging process in Figure 3. We can see that the mobile 
device chooses different    values (i.e., different CPU 
operating frequency values) during a discharging process. In 
Figure 4, we can observe that the power consumption of the 
mobile device is decreasing during a discharging process. 

V. CONCLUSION 

Mobile cloud computing paradigm shows significant 
potential for improving the performance and reducing the 
power consumption of the mobile devices. The mobile device 
control decisions, including the offloading decision of each 
service request and the CPU operating frequency for 
processing local requests, should be made according to the ICI 
lengths. However, the length of an ICI is uncertain to the 

mobile device controller and only stochastic data are known. 
We define the expected performance sum as the objective 
function, which is a desirable trade-off between performance 
and power consumption of the mobile device and accounts for 
the ICI length uncertainty. We proved that the optimal control 
decisions should change with time to take into account the 
effect of ICI length variations. We proposed a dynamic 
programming algorithm, which can derive the optimal control 
policy of the mobile device to maximize the expected 
performance sum. 
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