
Balancing On-Chip Network Latency in Multi-Application Mapping

for Chip-Multiprocessors

Di Zhu, Lizhong Chen, Siyu Yue, Timothy M. Pinkston, Massoud Pedram

Ming Hsieh Department of Electrical Engineering

University of Southern California

Email: {dizhu, lizhongc, siyuyue, tpink, pedram}@usc.edu

Abstract—As the number of cores continues to grow in chip

multiprocessors (CMPs), application-to-core mapping algo-

rithms that leverage the non-uniform on-chip resource access

time have been receiving increasing attention. However, exist-

ing mapping methods for reducing overall packet latency can-

not meet the requirement of balanced on-chip latency when

multiple applications are present. In this paper, we address the

looming issue of balancing minimized on-chip packet latency

with performance-awareness in the multi-application mapping

of CMPs. Specifically, the proposed mapping problem is for-

mulated, its NP-completeness is proven, and an efficient heu-

ristic-based algorithm for solving the problem is presented.

Simulation results show that the proposed algorithm is able to

reduce the maximum average packet latency by 10.42% and

the standard deviation of packet latency by 99.65% among

concurrently running applications and, at the same time, incur

little degradation in the overall performance.

Keywords—On-chip networks; chip-multiprocessors; applica-

tion mapping; balanced on-chip latency

I. INTRODUCTION

With tens to possibly hundreds of cores integrated in cur-
rent and future multiprocessor systems-on-chips (MPSoCs)
and chip-multiprocessors (CMPs) [12], networks-on-chips
(NoCs) have been proposed as the primary shared media for
providing high-performance and scalable communication [6].
Meanwhile, since a single application is unlikely to use up
all the computing resources on a many-core chip, multiple
applications can usually run concurrently on the system.
However, due to the topological layout of the cores (e.g., in
tile-based mesh topology), on-chip access latencies to cache
and memory controllers are not necessarily the same when
initiated from different source locations. It is important to
account for this on-chip delay characteristic when mapping
applications onto cores to optimize the system performance.

While the issue of application mapping has been receiv-
ing increasing attention in many-core chip designs, the prob-
lem of mapping multiple applications to CMPs presents sev-
eral new challenges. First of all, mapping techniques pro-
posed thus far are mainly for MPSoCs [11][13][14][20][21]
which, unfortunately, cannot be applied directly to CMPs
due to their inherent difference: In MPSoCs, the shared
cache/memory is clustered into some of the tiles while other
tiles contain heterogeneous IP blocks with specific function-
alities. In CMPs, the shared cache is distributed to all tiles,
each of which contains a homogeneous general-purpose pro-
cessor core and only some of which have a memory control-

ler. The task of application mapping in a MPSoC consists of
assigning caches, IP cores, and other customized blocks to
tiles, whereas the task of application mapping in a CMP con-
sisting of assigning the running threads to the fixed and ho-
mogeneous physical cores. Consequently, the latency model
on which the mapping algorithms are based for MPSoCs no
longer holds for CMPs.

Moreover, when mapping multiple applications to CMPs,
not only should the overall on-chip latency be reduced as in
the single application case, the mapping process should also
balance the average packet latency experienced by different
applications. That is, each application should expect near
equally minimized on-chip network latency as compared
with other applications when accessing resources (i.e., shared
cache and memory), regardless of where the threads of the
application are mapped [16]. Balancing minimized on-chip
latency in multi-application mapping is, in fact, much needed
in CMPs for three major reasons. First, at the user level, the
application-to-tile mapping should be transparent to end us-
ers to provide quality-of-service guarantees. This is particu-
larly important when multiple users pay for service in a
shared environment, as it is unacceptable if the imbalance of
latencies introduced in the mapping process results in service
agreement violations for one or more users. Second, at the
system level, many techniques in shared cache and memory
systems [8][9][22] have been proposed to provide equal or
differentiated services among applications, all of which as-
sume uniform on-chip latency. If the on-chip latencies
among different applications are not well balanced, the effec-
tiveness of these techniques will be severely affected, if usa-
ble at all. Third, at the on-chip network level, several archi-
tectural techniques have been proposed to augment the de-
sign of router arbitrators and network topologies to provide
on-chip latency balance, but at the cost of increased com-
plexity of routers [10] and additional traffic pattern re-
strictions [16]. If the NoC latency can be balanced early on at
the mapping stage, these hardware and software overheads
can be greatly mitigated or even entirely avoided.

Although balancing the on-chip latency is a desirable and
necessary feature, its realization in multi-application map-
ping is not straightforward. Balancing packet latencies
among applications is often conflict with minimizing overall
packet latency of all applications. On the one hand, mapping
methods which have minimization of the overall latency as
the sole objective are actually counter optimal in terms of
latency-balancing, as shown in Section II. On the other hand,
a mapping method is not useful if it focuses on balancing

latency but leads to greatly increased overall packet latency
of on-chip networks. In addition, it is observed that certain
core locations have low access latency for one type of traffic
(e.g., cache traffic) but have high access latency for another
type of traffic (e.g., memory controller traffic), which com-
plicates the design of an effective latency-balancing algo-
rithm. Indeed, the proposed balanced-latency mapping prob-
lem is proved to be NP-complete in Section III, indicating
that it is quite challenging to find an efficient solution.

In this paper, we address the important issue of achieving
balanced on-chip latencies with performance-awareness in
the multi-application mapping of CMPs. We use the metric
of min-max (i.e., minimizing the maximum of) average
packet latency of the applications as the objective function to
take into account both balanced and reduced latency aspects,
and propose an efficient heuristic-based algorithm called
sort-select-swap to find the effective mapping solutions. The
key idea is to first implement "coarse tuning" in the mapping
process by considering the dominant cache traffic, and then
conduct "fine tuning" by taking memory traffic into consid-
eration and performing sliding-window based swaps. The
main contributions of this paper are the following:

 Identifying the inability of traditional performance-
oriented mapping methods to provide balanced latency;

 Formulating the performance-aware latency-balancing
mapping problem for CMPs, and proving its NP-
completeness;

 Proposing an efficient heuristic-based algorithm with a
time complexity of where is network size.

The rest of this paper is organized as follows. Section II
provides more information on the background and the moti-
vation for implementing balanced latencies in NoC-based
application mapping. Section III formulates the mapping
problem for multiple applications and proves its NP-
completeness. Section IV describes the details of our pro-
posed algorithm. Section V presents the simulation results
and, finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATIONS

This section first summarizes the related work in applica-
tion mapping for NoCs, and then it describes the structure of
NoC-based CMPs and presents the latency models for shared
cache requests and memory controller requests. We highlight
that current performance-oriented mapping methods tend to
exacerbate the imbalance in the on-chip latencies experi-
enced by different applications. This motivates finding more
comprehensive mapping solutions that take the requirements
of balanced latency into account as well.

A. Related Work

As the number of cores continues to grow with increased
non-uniformity within the same chip, the importance of ap-
plication mapping has been rising rapidly. Earlier work on
application mapping mostly targets improving the mapping
effectiveness in NoC-based MPSoCs. Murali et al. focus on
overall latency minimization under minimum routing and
traffic splitting for SoCs [20]. Hu et al. address energy con-

sumption in the mapping task for tile-based MPSoC architec-
tures [13]. Hansson et al. present a combined mapping and
routing approach for MPSoCs [11]. Jang et al. take into con-
sideration heterogeneous MPSoC architectures and propose
efficient mapping solutions for various chip layouts [14].
These techniques assume MPSoC systems which have dif-
ferent characteristics than the targeted CMP systems consid-
ered in this work.

Recently, researchers have started to explore the mapping
problem in CMPs. Chen et al. present a set of comprehensive
mechanisms that optimize the mapping of an application
onto NoC-based CMPs under the assumption that only one
application is running on the chip at a time [3]. However,
with increasing number of cores, chip resources can be better
utilized if the chip has multiple applications running simulta-
neously. Murali et al. present an efficient method to map
multiple use-cases onto MPSoCs rather than CMPs [21]. In
contrast, our work aims to address the multi-application
mapping problem in CMPs to both optimize overall perfor-
mance and balance NoC latencies among the applications.

Many techniques have been proposed to provide quality-
of-service support for various system components including
cache, memory and on-chip networks [7][8][9][10][16][22].
This set of research has very different objectives than bal-
anced NoC latency and, therefore, are orthogonal and com-
plementary to our work. In fact, it is possible to integrate the
approach developed in this work with previous mechanisms
to further improve the service quality, which can be investi-
gated in the future.

B. NoC-based CMP Architecture

Figure 1 shows a typical example of 64-tile multiproces-
sor with mesh-based NoC structure. Each tile is comprised of
a processing core, a private L1 cache, and a slice of shared
L2 cache bank. The shared L2 cache is distributed among all
the tiles. In most commercial CMPs, when a data block is
fetched from memory, the L2 cache bank in which to place
the data is determined by hashing on the lower-order bits of
the data address [23]. Routers are interconnected to form a
mesh network, and tiles are connected to routers via a net-
work interface (NI). Each of the four tiles in the corners
(shown as four grey tiles in the figure) includes a memory
controller in addition to the regular core/cache structure.

8

29
29

6457

Router

N
I

L1

cache

Shared L2

cache

Core

1

Figure 1. 64-core NoC-based CMP architecture.

When the processing core has a data request, no further
packet is needed if the request hits in the private L1 cache.
Otherwise, two types of traffic can be generated depending
on where the data is located: cache traffic (data is still on-
chip) and memory controller traffic (data needs to be fetched
from off-chip main memory). Cache traffic includes the re-
questing packets from the processing core to an L2 cache
bank (this packet contains the address of the required data,
and is directed towards the tile that has the L2 cache bank to
which the address is hashed), the checking/forwarding pack-
ets from the L2 cache bank to other private L1 caches, and
the reply packets from L2 cache bank to the requesting pro-
cessing core. In all of these cases, either the source tile or the
destination tile is an L2 cache bank.

In the case of memory controller traffic, a requesting
packet from the processing core is forwarded to one of the
four memory controller tiles through the on-chip network. To
increase the efficiency, the forwarding follows the proximity
principle, i.e., the packet is sent to the nearest memory con-
troller tile out of the four tiles. Data are then fetched from the
main memory and returned to the memory controller after a
certain number of cycles.

C. Packet Latency Models

To explain the mesh-based NoC latency model, we first
introduce the tile numbering rule adopted in this paper. The
number of a tile is determined by:

 (1)

where are the row number and column number, respec-
tively, and is the number of tiles in a row. For example, the
29-th tile in Figure 1 (where) is located at the fourth
row (from the top), fifth column (from the left).

We derive the latency model based on [5] to calculate the
service latency of a packet generated at the -th tile and
heading for the -th tile:

 (2)

where is the number of hops before a packet reaches
its destination tile . The terms and are the per-hop
latency for the router and wire, respectively, is the aver-

age queuing latency per hop. Unlike off-chip networks with
pin limitations, on-chip networks typically have very wide
link-width (e.g., 128-bit or 256-bit) with multiple virtual
channels per link, so the queuing latency is usually very

small (0~1 cycles as observed in the simulation). The seriali-
zation latency, , is calculated as the ratio of the packet
length to the channel bandwidth, which is pre-determined for
a given packet format and NoC structure. Note that if the
destination tile to which the data address hashes happens to
be the same as the source tile, there is no serialization latency
since no network communication will be required. To avoid
deadlocks, dimension-order routing (i.e., XY routing) is used
to minimize design effort and implementation cost [5].

Tag Cache Index Block Offset
MSB LSB

Figure 2. Physical memory address breakdown.

As mentioned, the hashing for the shared L2 cache banks
uses lower bits of the data addresses (i.e., cache index) as
shown in Figure 2. For example, in a 16 MB L2 cache with a
block size of 64 bytes, the block offset is Bit 0 to Bit 5. The
next lowest 6 bits, Bit 6 to Bit 11, are the cache index used to
hash and decide which tile the cache line is placed. Hence,
any consecutive chunk of 64-byte physical address (i.e., one
cache line) is uniformly distributed across all the L2 cache
banks. This means that, for the cache traffic, the source tile
or the destination tile has statistically the same chance to be
any tile in the network (including itself). Therefore, for a

CMP with tiles, the average number of hops of
a cache traffic packet generated at the -th tile before arriv-
ing at its destination tile is calculated by:

 (3)

The value of is smaller for tiles in the center and
larger for tiles in the corners. For example, for a corner tile

(e.g., tile number 1) on the CMP shown in Figure 3,
 and for a central tile (e.g., tile number 28) . Con-
sequently, the threads mapped onto the central tiles have
smaller average L2 cache latency than the tiles closer to the
perimeter, as shown in Figure 3a), where darker areas indi-
cate tiles with larger packet latencies.

As also mentioned, memory controller packet forwarding
is based on the proximity principle. The whole chip is divid-
ed into four quadrants relative to its center. All packets gen-
erated by tiles in one quadrant are sent to the memory con-
troller in that quadrant. Therefore, the average number of
hops for a memory controller request packet generated
at the -th tile is calculated by:

 (4)

The average on-chip latency of memory controller access is
smaller for tiles closer to the corners, as shown in Figure 3b).

(a) L2 cache delay per packet (b) memory controller delay per packet

Figure 3. Packet latencies on an 8-by-8 mesh network.

With the above expression of and in combina-
tion with equation (2) for the latency model, two arrays
 and can be generated to estimate the on-
chip network latency of cache traffic and memory traffic
originating from the -th tile, respectively.

D. Imbalance in Traditional Algorithms

While on-chip latency balancing is an important design
aspect in CMPs, traditional application mapping algorithms
that target minimizing the overall packet latency of all the

applications are actually counter optimal in terms of latency-
balancing. This is because they map the applications with
higher data access rates to the tiles with smaller average on-
chip latencies, which is more beneficial in minimizing over-
all packet latency than mapping applications with less traffic
to those tiles. This increases the latencies of those low traf-
fic-load applications and results in significantly imbalanced
per-application average packet latencies (or APLs for short).

To illustrate this effect, we conduct evaluations on four
different configurations (i.e., sets) of input applications,
namely C1, C2, C3, and C4. Each configuration contains
four applications, each consisting of 16 threads. The applica-
tion traces are gathered from running the PARSEC 2.0
benchmarks [18] (detailed evaluation methodology can be
found in Section V.A). The mapping task is to map these
4x16 threads onto an 8-by-8 mesh network.

A large number (> 10
4
) of random mappings are generat-

ed first, and for each mapping we derive the maximum APL
among the applications (i.e., each application has an APL,
and the largest one among all applications is the max-APL)
as well as the standard deviation of the applications' APLs
(referred to as dev-APL). Larger max-APLs and dev-APLs
indicate worse imbalance among the four applications. We
then calculate the average of the max-APL and dev-APL for
all the random mappings. These two values are adopted to
denote the average level of latency balance between applica-
tions' APLs for a randomly generated mapping.

Global stands for a mapping method that optimizes the
overall network latency of all applications, i.e., reduces the
global APL (referred to as g-APL). The g-APL is the average
latency of all packets generated, calculated by the sum of all
the packet latencies divided by the total communication vol-
ume. Table 1 shows the g-APL, max-APL, and dev-APL
values for both the aforesaid random average result and
Global. It can be seen that although the g-APL is reduced by
4.78% through the Global method compared to the random
average, the max-APL is increased by 9.85% and the dev-
APL is three to four times that of the random result. This
means that the Global algorithm makes the APL of one or
more of the applications dramatically larger in order to re-
duce the global APL. Consequently, the Global mapping
reduces overall packet latency but at the cost of greatly exac-
erbating the imbalance among applications.

As an illustrating example, Figure 4 shows the Global
mapping results of the four applications in the C1 configura-
tion, each application containing 16 threads. The four appli-
cations are assigned with ID 1 to 4 in ascending order of total
communication rates (i.e., Application 1 has the lightest traf-
fic). Note that the memory controller traffic takes only a

small fraction of overall requests for each application, there-
by making the cache communication latency the dominant
factor of the application APLs. As we can see from the map-
ping results, the threads of Application 1 are assigned tiles
with the worst average L2-cache access time, resulting in an
APL of 25.15 cycles, which is 17.80% more than the overall
average APL of 21.35 cycles. This clearly demonstrates that
a mapping algorithm that aims to reduce overall packet la-
tency is, in fact, counter-optimal in terms of latency balanc-
ing among the multiple simultaneously running applications.

4

4

4

4

4

4

4

4

4

4

44

44

44

3

3

3

33

3

3 3

3 3

3

3 3

3

33

1

1

1

1

1

1 1 1

1 1

1

1

1

1

11

2

2

2 2

2

2

2

2

2

2 2 222

2

2
Figure 4. Global mapping results of C1.

III. ON-CHIP LATENCY BALANCING MAPPING

This section first analyzes various potential metrics for
latency balancing and illustrates that the max-APL should be
selected as the criterion in the proposed problem formula-
tion. We then state the formulation of the balanced latency
mapping problem and prove its NP-completeness.

A. Metrics of Latency Balancing

As mentioned before, latency balancing in multi-
application mapping strives to minimize the variation in av-
erage packet latency (APL) across applications while keep-
ing APL low, regardless of where the threads of the applica-
tions are mapped. Nevertheless, the overall performance, i.e.,
the global APL, should also be taken into consideration, oth-
erwise the mapping method will introduce large total latency.

Prior to the max-APL, we have investigated two other
popular metrics: the standard deviation and the ratio of min-
imum to maximum of the APLs [25]. Unfortunately, they
both suffer from one weakness if used as the objective func-
tion: optimizations based on these two objectives cannot
ensure overall network performance and may result in such a
solution that makes the APLs of each of the applications
equally large. The example below illustrates this.

0.4

0.1

0.1

0.4

0.1

0.4

0.4

0.10.2

0.3

0.2

0.3

0.30.3

0.2

0.2

0.1

0.4

0.4

0.1

0.4

0.1

0.1

0.40.2

0.3

0.2

0.3

0.30.3

0.2

0.2

(a) Both globally optimal and

equal APLs for each application

(b) Optimal in terms of

var-APL or min-to-max ratio

A1

A2

A3

A4

A1

A2

A3

A4

Figure 5. Comparison of two optimal mapping methods.

Assume that there are four applications, each with four
threads, totaling 16 threads to be mapped onto the 16 tiles of
a 4-by-4 mesh. Suppose the four threads of Application 1

TABLE 1. IMBALANCE EXACERBATION BY GLOBAL OPTIMIZATION.

g-APL (cycles) max-APL (cycles) dev-APL

Random Global Random Global Random Global

C1 22.63 21.35 22.76 25.15 0.534 2.09

C2 22.58 21.63 22.71 24.63 0.547 1.63

C3 22.70 21.55 22.77 25.15 0.535 1.88

C4 22.54 21.60 22.66 24.93 0.542 1.77

Avg 22.61 21.53 22.73 24.97 0.54 1.84

have an L2 cache access rate of 0.1, 0.2, 0.3, and 0.4, respec-
tively. The same are the thread access rates of Applications 2
to 4. For simplicity, suppose all the applications require zero
memory accesses. Assume =3, =1, and . An
optimal solution can be easily obtained as shown in Figure
5(a), which achieves the globally minimal APL as well as
equal APLs (10.3375 cycles) among Applications 1 to 4.
However, if we choose the standard deviation of the four
APL values or the min-to-max ratio as the objective, we find
that Figure 5(b) is also among the optimal mappings with
regard to the corresponding standard deviation and min-to-
max objectives: the standard deviation is zero and the min-
to-max ratio has a maximum value of 1. As can be seen, alt-
hough all the applications have the same APL, they experi-
ence equally bad latencies with an APL of 11.5375 cycles,
meaning that standard deviation and min-to-max cannot min-
imize overall packet latency while achieving balanced APL.

To avoid the drawbacks of the above two metrics as the
objective function, we adopt the max-APL, which uses the
maximum of all applications as the metric. By minimizing
the max-APL, both the global performance and the balance
among individual applications are taken into consideration,
as it prevents any of these applications from having a signifi-
cantly large latency. Note that although standard deviation
may not be suitable as objective function in designing an
algorithm, it can still be used as an evaluation metric for
mapping solutions to reflect the degree of balance.

B. Problem Statement

Suppose a given NoC-based CMP has tiles and a set of
applications where with a total number
of threads . Each thread is mapped to one tile on the chip

1
.

Assuming that the threads and tiles are indexed from to ,
the problem of application mapping is to find a permutation
 where denoting that the -th
thread is mapped to the -th tile.

There are two parameters regarding each thread of an ap-
plication: shared cache request rate when the requested data
is on-chip and memory controller request rate when the re-
quested data is off-chip. The request rate is defined by the
number of request packets per unit time. Let denote the

cache request rate of the -th thread, and denote the

memory controller request rate of the -th thread. For sim-
plicity, we define that -th application consists of the
threads indexed from to (and).
For each tile of the NoC, we consider and as
explained in Section II.C. Then, with a given mapping solu-
tion , the APL of application is calculated by

 (5)

1 If the number of threads is less than , we add pseudo
threads with zero memory controller traffic to those applications and solve

the same problem. A more generalization would be for multiple threads to
map to one tile. This is not considered in this paper.

where is the total packet latency caused by

cache accesses when thread is mapped to and, similar-

ly, is the total packet latency due to memory

controller accesses. Therefore, the problem of latency bal-
anced mapping is to minimize the maximum of each applica-
tion's APL:

 (6)

Formally, we formulate the On-chip latency Balanced
Mapping (OBM) problem as follows:

Given:
1) The number of tiles (or threads) ;
2) Application set , where , the -th appli-

cation consists of the threads indexed from to
 , where and ;

3) The L2 cache communication array , where
indicates the request rate of L2 cache of the -th thread;

4) The memory controller communication array ,
where indicates the memory controller request rate of

the -th thread; and
5) Arrays and , denoting the APLs from

the -th tile to the distributed L2 cache and to the
memory controller, respectively;

Find: Thread-to-tile mapping , where
 and

Minimize: the max-APL

 (7)

where is the APL of the -th application defined in (5).
Given router parameters in (2), and are de-
pendent on the position of the -th tile only.

C. NP-Completeness of OBM

Theorem: the formulated OBM problem is NP-complete
(NPC).

Proof: In order to prove the NP-completeness of OBM, we
first transform it into a decision problem:

Decision version of OBM (DOBM): With the conditions giv-
en in the previous Section III.B, does there exist a mapping
solution that makes the APL of each application no larger
than a given value ?

In order to prove the NP-completeness of DOBM, we
need to prove the following two statements:
1) ;
2) For a known NPC problem , we have .

We first prove that within polynomial time of calculation
we can verify whether a given mapping solution satisfies the
DOBM problem. It takes calculations to get the APLs
for all the applications, and there are applications requiring
 times of comparisons with the threshold value . The
total number of calculations is therefore ,
thus proving .

We next prove that a known NPC problem is polyno-
mial-ly reducible to DOBM. We adopt a well-known NPC

problem, the set-partition problem [4] as in our proof. It is
stated as follows: Given a set of numbers
 , does there exist two sets and with equal
size, satisfying such that

?

Assume we have a subroutine Y that solves DOBM, i.e.,
Y returns whether there exists such a mapping that the APLs
of all applications are no larger than . In order to solve the
above problem , we set up a DOBM problem of the follow-
ing form: Build an -tile chip such that the set of the APLs
of each tile's L2 cache accesses is equal to , i.e., is
equal to in the set-partition problem. Assume there are a
total of two applications with equal size, and , making
 . Then, assume .

In this simpler version of the DOBM problem, the APLs of
 and become

 (8)

We then call the subroutine Y to find if there exists a
mapping so that each application's APL is no larger
than , where

 (9)

Note that is constant for a given chip layout. If Y holds, i.e.,

 and , we have

 and

 . As

 ,

we conclude that

 . Therefore,

if Y holds, it means that

 (10)

 holds if and only if Y holds. The solutions to the two
subsets for are:
 (11)

Subroutine Y is called only once, proving .
Therefore the NP-completeness of DOBM is proved, and
equivalently the OBM problem is NPC. ■

IV. PROPOSED ALGORITHM

The NP-completeness of the OBM problem motivates us
to explore an efficient heuristic algorithm. Some of the pre-
vious research efforts on NoC mapping problems have tried
general neighborhood search algorithms such as simulated
annealing or genetic search [14][17], but these two algo-
rithms are too time-consuming to reach a satisfying solution.

Based on the characterizations of NoC-based CMPs, we
present an efficient heuristic algorithm called sort-select-
swap to solve the OBM problem. The key idea comes from
the fact that the majority of the on-chip network communica-
tion is shared cache traffic, i.e., the L2 cache request rate
is several times larger than the memory controller request
rate . Therefore we first implement coarse tuning by as-

signing the tiles to applications so that each application gets

almost the same number of tiles with larger cache latencies
and the same number of tiles with smaller cache latencies.
Then fine tuning is done by taking into account the on-chip
traffic to memory controllers and performing sliding-
window-based swaps.

During the process, the following optimization task is
common and necessary in both coarse and fine tuning to re-
duce imbalance: After selecting the tiles for each application,
we need to find a mapping method which properly assigns its
threads to these selected tiles, so that the APL of this applica-
tion is minimized. This is consistent with the primary objec-
tive of minimizing the max-APL because, with a given ap-
plication-to-tile assignment, the max-APL can be reduced by
minimizing each application's APL.

A. Single Application Mapping Optimization

Before elaborating the solution to the OBM problem, we
first formulate and solve the single-application mapping
(SAM) problem. The SAM problem is described as follows:
Given tiles and an application with threads, find the
thread-to-tile mapping that minimizes APL of application .

Given:
1) The number of tiles (or threads) ;

2) The L2 cache request rate array and the memory

controller request rate array as in Section III.B;

and
3) Arrays and , indicating the APLs from

the -th tile to the distributed L2 cache and to the
memory controller, respectively.

Find: Mapping , where , and

Minimize: The APL of application :

 (12)

We show that the above SAM problem is an easy problem
and propose a polynomial-time solution to it.

Due to the evenly distributed nature of the L2 cache in
CMPs and the proximity principle of memory controller
communication as discussed before, the APL of one thread
assigned to a certain tile depends only on the communication
rates and of thread , and the and of tile

 . It is independent of which tiles other threads are assigned
to. In other words, once an assignment of a thread is finished,
mapping results of other threads will not affect the APL of
the current thread as long as the threads are mapped to dif-
ferent tiles. This mapping problem is, thus, an instance of the
combinational assignment problem and can be solved using

the Hungarian method [15] with a complexity of
 .

We use the following Hungarian-based method to solve
the SAM problem.

Algorithm 1: Hungarian-based SAM solution

Inputs: The number of threads or tiles , tile latency ar-

rays and .

Step 1: Generate the cost matrix , where

 indicates the APL of -th thread placed on the -th

tile (L2 cache delay plus the on-chip memory request delay):

 (13)

Step 2: Call Hungarian algorithm with input matrix

to generate a permutation of that minimiz-

es the total cost. The output of Hungarian is the minimum

cost as well as the permutation .

Return: The minimized APL and mapping .

The first and second step have
 ,

 com-

plexity, respectively. The overall complexity of the SAM

solution is therefore
 .

B. Sort-Select-Swap Algorithm

Provided with the above SAM solution, we develop the
complete sort-select-swap algorithm for the OBM problem
applied to multiple application mapping as follows.

We first sort all the tiles according to their L2 cache
APLs (i.e.,). The second step is to select appropriate
tiles to assign to each application in such a way that the
large-cache-latency tiles and the small-cache-latency tiles are
equally distributed among different applications. For exam-
ple, we have an application a with 16 threads. We divide the
sorted tile list into 16 sections with equal length and select
the tile in the middle from each section for this application,
as shown in Figure 6. The selection is then followed by call-
ing the Hungarian-based SAM method to minimize the APL
within this application. Similarly, every application is as-
signed to tiles in this manner. After this selection step, every
thread in each application is assigned to a tile.

The third step is to perform fine tuning by swapping cer-
tain thread-to-tile assignments across applications. We use a
sliding-window-based swap and choose the best result greed-
ily to implement fine tuning. Tiles are still organized in the
list view conceptually, as shown in Figure 7. Each window
contains four tiles. All 24 possible permutations (the factorial
of 4) of the mappings for these four tiles are explored, and
we choose the permutation that leads to the minimum max-
APL. The window starts with a step size of 1, i.e., four con-
secutive tiles are picked, and slides from the beginning to the
end of the tile list. Then we increase the step size of the win-
dow and perform window-sliding again, as depicted in Fig-
ure 7. Finally, after all the window-sliding is done, the algo-
rithm calls the SAM method once more for each application
to reduce its APL, thereby possibly further reducing the
overall max-APL of the generated mapping. The pseudo
code is shown as follows.

Algorithm 2: sort-select-swap

Inputs: Application set , the number of threads or tiles

 , Cache access latency array and memory access

latency array .

Step 1: Sort all the tiles based on their L2 cache APLs. De-

note the sorted tile list as .
Step 2: Select tiles and assign them to applications

for application from to , do

Divide the tile list into sections

with equal length;

Pick the tiles in the middle of each section from ;
Call the Hungarian-based SAM method to assign these

 tiles to the threads of so that the APL for is

minimized;

Remove the assigned tiles from the list .
Step 3: Greedy sliding-window-based swap

for step size from to , do

for from 1 to , do

//The four tiles in the current window

Generate all 24 permutations of the current window;

Find the permutation that minimizes the max-APLs;

Change the four tiles' mapping to this permutation.

for application from to , do

Call the Hungarian-based SAM method to adjust the tile-

to-thread assignment of the tiles within application

 so that the APL for is minimized.

Return: Mapping

The proposed sort-select-swap algorithm has polynomial
time complexity:

Step 1: Sorting takes times of calculation.

Step 2: There are applications each requires an assignment.
In each assignment, picking tiles has time com-

plexity, the Hungarian algorithm has
 time com-

plexity and deleting the assigned members from the current
list takes time. Altogether the assignment step has

a time complexity of
 since

 .

Step 3: The number of windows generated is . During
the processing of each window, there are 24 permutations,
each requiring one APL calculation. This calculation is fin-
ished within time according to APL definition in (6).
Similar to step 2, the final Hungarian has time com-
plexity. Overall swapping has a time complexity of
 .

...

Section 1 Section 2 Section 16

Application a

Sorted tile list:
Pick Pick Pick...

...

Window

...

Step size 1:

Step size 2:

Window

Figure 6. Select from the sorted tile list. Figure 7. Sliding-window-based swap.

Therefore, the overall time complexity of the proposed
sort-select-swap algorithm is . With this low compu-
tation complexity, the proposed mapping algorithm can be
used when applications are dynamically added or removed in
the CMPs. This is achievable because the runtime of the pro-
posed mapping algorithm is short and application change
happens at a much coarser time-granularity. To realize this,

we simply collect the and statistics at runtime dur-

ing a certain interval after some applications are add-
ed/removed, and then solve the OBM problem to determine
the new mapping solution which will be used until the next
application change.

V. SIMULATION

A. Simulation Setup

We evaluate the effectiveness of different mapping algo-
rithms by utilizing traces gathered from running multi-
threaded PASREC 2.0 benchmarks [2] on full-system simu-
lation using Simics [18]. The GEMS [19] and Garnet [1]
simulators are integrated into Simics for detailed timing of
the memory system and on-chip network, respectively. We
use the latest NoC power model DSENT [24] for power es-
timation, based on 45nm technology and 1 V power supply.
We assume a canonical 3-stage credit-based wormhole router
with look-ahead routing optimization. With 128-bit link
width, short 16-bit packets are single-flit while long packets
carrying 64-byte data plus a head flit have 5 flits. Table 2
lists the key parameters of our simulation.

Since different PARSEC applications have various inten-
sities of network load (i.e., the sum of shared cache requests
and memory controller requests), we construct eight different
configurations (i.e., C1 to C8) with varying loads in the
evaluation. Each configuration has four 16-thread applica-

tions. Table 3 provides the average values and standard devi-
ations of the cache and memory traffic of the four applica-
tions for each of the eight configurations C1 to C8. Since the
cache communication rate is, on average, 6.78 times that of
the memory controller traffic rate, we classify based on the
characteristics of cache traffic. The eight configurations in-
clude those with relatively higher average rates (e.g., C4) or
lower rates (e.g., C2), and higher standard deviations (e.g.,
C8) or lower standard deviations (e.g., C7).

We compare the following four algorithms:
1) Global optimization (Global): as discussed in Section

II.D, it minimizes overall latency of all the threads;
2) Monte Carlo method (MC) for the OBM problem: from a

large number (e.g.) of random mappings, it selects
the one with the minimum max-APL;

3) Simulated annealing-based algorithm for the OBM prob-
lem (SA): we define a random "move" in SA as swapping
the mapping of two randomly chosen threads; and

4) The proposed sort-select-swap algorithm for the OBM
problem (SSS).

B. Simulation Results

1) Mapping Results of Different Algorithms

In Section II.D, we showed the mapping result of Global
for configuration C1, in which the Global increases the im-
balance among applications. Figure 8 (a) presents the map-
ping results of the proposed SSS for the same configuration.
The applications are sorted in ascending order of average
communication rate. As can be seen, Application 1, which
has the lightest on-chip traffic, is no longer placed in the four
corners of the chip in the SSS mapping method, whereas the
Global mapping result shown in Figure 4 assigns the corner
cores to Application 1. Figure 8 (b) compares the APLs of
the four applications in C1, which shows a significant im-
provement in the balance of on-chip packet latency in SSS.
For instance, compared with Global, the APL of Application
1 in SSS reduces from 25.15 to 22.40 cycles, resulting in a
10.89% decrease. The APLs of the four applications in SSS
are nearly the same. In the following subsections, more de-
tailed data on max-APLs, standard deviations, and network
performance and power are discussed.

11 1

1111

11

11

1 1

1

1

1

3

3

3

33

3

3

3 3

3

3 3

3

33

3

2

22

2

2

2

2

2 2

2 2

2

2 2

2

2

4

4 4

4

4

4

44

4

4

4

4 4 4

4

4

(a) Mapping result of SSS (b) APLs for the four applications

20

21

22

23

24

25

26

27

A
P

L
 (

cy
cl

es
)

Global SSS

A1

A2

A3

A4

Figure 8. Mapping result and APL comparison of C1.

2) Max-APL Comparison

Figure 9 compares the max-APL results of the four map-
ping methods. As shown in the figure, the proposed SSS is

TABLE 2. KEY PARAMETERS FOR SIMULATION.

Network topology 8x8 mesh

Router 3-stage, 2GHz

Input buffer 5-flit depth

Link bandwidth 128 bits/cycle

Cores Sun UltraSPARC III+, 2 GHz

Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency

Shared L2 per bank 256KB, 16-way, LRU, 6-cycle latency

Cache block size 64 Bytes

Virtual channel 3 VCs per protocol class

Coherence protocol MOESI

Memory controllers 4, located one at each corner

Memory latency 128 cycles

TABLE 3. AVERAGE VALUES AND STANDARD DEVIATIONS OF

COMMUNICATION RATES OF EIGHT CONFIGURATIONS.

Configuration
Cache Memory

Average Std-dev Average Std-dev

C1 7.008 88.3 0.899 9.84

C2 1.8855 17.52 0.381 2.21

C3 10.881 112.34 1.51 18.42

C4 11.063 107.27 1.548 17.56

C5 9.04 129.27 1.371 19.91

C6 9.222 125.81 1.409 19.21

C7 1.992 14.69 0.399 2.01

C8 8.881 131.87 1.334 20.45

able to reduce the max-APL by an average of 10.42% com-
pared to Global. This result illustrates that SSS can provide
good latency balancing for different combinations of applica-
tions. The high max-APL of Global indicates that it optimiz-
es mapping at the cost of greatly exacerbated imbalance.

MC and SA can also achieve mapping results with max-
APL improvement to Global by 8.74% and 9.44%, respec-
tively. However, note that the MC and SA are given higher
runtime than SSS to generate these results. The Monte Carlo
method and the simulated annealing are search-based algo-
rithms. They both have to perform a sufficient amount of
random moves in order to obtain a satisfying result. The high
complexity of search-based algorithms makes them nearly
impossible to be adopted in dynamic scenarios.

3) Standard Deviation

As mentioned before, although standard deviation of
APLs (dev-APL) may not be suitable for the objective func-
tion used in a particular mapping algorithm, it is still a direct
and well-acknowledged indicator for measuring the variance
among multiple values. Table 4 lists the dev-APL of the four
mapping methods for the eight different configurations. It
can be seen that Global has the largest dev-APL among the
four mapping algorithms. Both MC and SA have moderate
reduction in dev-APL. In comparison, the proposed SSS can
reduce dev-APL significantly by 99.65%, 95.45%, and 83.15%
compared to Global, MC and SA, respectively, demonstrat-
ing its superior advantage in balancing latencies among mul-
tiple applications.

4) Impact on Global APL

In order to achieve balanced on-chip packet latencies, it
is possible for the application mapping to increase the overall
packet latency. The proposed SSS is a performance-aware
latency balancing mapping algorithm as it uses the max-APL
as the criterion by which it may be able to achieve better
latency balancing with much less performance loss compared
to other criteria such as standard deviations. Figure 10 plots
the normalized global APLs (g-APLs) of four mapping
methods. As expected, Global has the minimal g-APL since
minimizing g-APL is its sole objective. The performance
loss percentages of the other three algorithms are all within 6%
because they all have minimization of max-APL as their
optimization objective. Among the three algorithms, SSS
only slightly increases g-APL compared to Global, by less
than 3.82% and is better than SA (4.82% loss) and MC (5.35%
loss). This means that the benefits of balanced latency in the
proposed SSS are not obtained at large penalty in overall
packet latency.

5) Algorithm Runtime Comparison

Search-based algorithms such as simulated annealing are
a tradeoff between runtime and performance. Figure 12 pre-
sents the max-APL results of SA when it is allowed to run for
different CPU time. The result is normalized to the runtime
of SSS and plotted in logarithmic scales. Due to the random-
ness of the simulated annealing method, we show the aver-
age of the max-APLs of the eight configurations. The max-
APL derived in SA decreases as the allowed algorithm
runtime increases, but it has a diminishing gain. As shown in
Figure 12, SSS outperforms SA even when SA's runtime is
100X larger than that of SSS. In addition, while the max-
APL difference between SA and SSS is not very large, we
have seen from Table 4 that the dev-APL between the two

Figure 9. Max-APLs for different configurations.

Figure 10. g-APLs for different configurations.

Figure 11. Dynamic power for different configurations.

Figure 12. Simulated annealing results as a function of runtime.

TABLE 4. DEV-APL FOR DIFFERENT CONFIGURATIONS.

 C1 C2 C3 C4 C5 C6 C7 C8

Global 2.094 1.630 1.877 1.774 2.140 2.030 1.262 2.160

MC 0.087 0.162 0.042 0.037 0.036 0.114 0.298 0.123

SA 0.060 0.020 0.091 0.114 0.060 0.241 0.110 0.022

SSS 0.006 0.005 0.007 0.010 0.005 0.002 0.002 0.014

20

21

22

23

24

25

26

27

M
ax

-A
P

L
 (

cy
cl

es
)

C1 C2 C3 C4 C5 C6 C7 C8 Avg

Global MC SA SSS

18

19

20

21

22

23

24

25

C1 C2 C3 C4 C5 C6 C7 C8 Avg

G
lo

b
al

 A
P

L
 (

cy
cl

es
)

Global MC SA SSS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C1 C2 C3 C4 C5 C6 C7 C8 Avg

D
y

n
am

ic
 p

o
w

er
 (

W
)

Global MC SA SSS

10
0

10
1

10
2

22.25

22.3

22.35

22.4

22.45

22.5

22.55

22.6

Normalized runtime

A
v

er
ag

e
m

ax
-A

P
L

 (
cy

cl
es

)

SA

SSS

methods has an average of around 6X difference when SA is
allowed to have similar runtime as SSS.

6) Power Consumption

In addition to the network performance, we also evaluate
the NoC power consumption of different mapping algorithms.
While the static power is approximately the same for differ-
ent schemes, the dynamic NoC power depends on the total
number of packets injected to the network per unit time and
the average number of hops per packet. Figure 11 presents
the dynamic power comparison. As can be observed, the
proposed SSS algorithm has almost negligible power over-
head with less than 2.7% compared to Global, and is slightly
better than both MC and SA, illustrating that SSS does not
penalize overall NoC power.

In summary, Global achieves the minimal global average
packet latency. However, the Global solutions experience the
worst imbalance among the four methods under comparison.
SA can obtain near-optimal solutions at the cost of very large
runtime. Similarly, as another randomized algorithm, MC
can also find the optimal solution theoretically provided with
sufficiently long runtime, but its performance in practice is
much worse than SA. In comparison, our proposed SSS algo-
rithm is able to achieve near-optimal solutions in terms of
latency balancing in a very short runtime and, at the same
time, incur little overall packet latency and power consump-
tion overhead.

VI. ACKNOWLEDGEMENT

This research is supported, in part, by the National Sci-
ence Foundation (NSF) grant CCF-1321131 and the Soft-
ware and Hardware Foundations program of the NSF.

VII. CONCLUSION

This paper addresses the important issue of balancing on-
chip network latency in multi-application mapping for chip
multiprocessors. We formulate the problem of on-chip laten-
cy balanced mapping (OBM) for multiple concurrently run-
ning applications. After proving its NP-completeness, we
propose an efficient heuristic-based algorithm that leverages
the characteristics of shared cache and memory controller
traffic. Simulation results show that the proposed algorithm
can achieve an average reduction of 99.65% in standard de-
viation and 10.42% in maximum average packet latency,
with less than 3.84% overhead in overall packet latency and
2.7% more power consumption. This demonstrates the via-
bility of exploiting thread-to-tile mapping to balance the on-
chip latencies among different applications while incurring
little overall network performance and power degradation.

REFERENCES

[1] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha, "GARNET: A

detailed on-chip network model inside a full-system simulator," In

Proceedings of the Performance Analysis of Systems and Software,

2009.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, "The PARSEC

benchmark suite: Characterization and architectural implications," In

Proceedings of the international conference on Parallel Architectures

and Compilation Techniques, 2008.

[3] G. Chen, F. Li, S. W. Son, and M. Kandemir, "Application mapping

for chip multiprocessors," In Design Automation Conference, 2008.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

"Introduction to algorithms," MIT press, 2001.

[5] W. J. Dally and B. Towles, "Principles and practices of inter-

connection networks," Morgan Kaufmann, 2003.

[6] W. J. Dally and B. Towles, "Route packets, not wires: On-chip

interconnection networks," In Design Automation Conference, 2001.

[7] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, "Application-aware

prioritization mechanisms for on-chip networks," In IEEE/ACM

International Symposium on Microarchitecture, 2009.

[8] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, "Fairness via source

throttling: a configurable and high-performance fairness substrate for

multi-core memory systems," ACM Sigplan Notices, 2010.

[9] R. Gabor, S. Weiss, and A. Mendelson, "Fairness and throughput in

switch on event multithreading," In IEEE/ACM International

Symposium on Microarchitecture, 2006.

[10] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, "Kilo-NOC: a

heterogeneous network-on-chip architecture for scalability and

service guarantees," In ACM SIGARCH Computer Architecture

News, 2011.

[11] A. Hansson, K. Goossens, and A. Rǎdulescu, "A unified approach to

constrained mapping and routing on network-on-chip architectures,"

In Proceedings of the IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, 2005.

[12] J. Howard, et al., "A 48-core IA-32 message-passing processor with

DVFS in 45nm CMOS," In Proceedings of the Solid-State Circuits

Conference Digest of Technical Papers, 2010.

[13] J. Hu, and R. Marculescu, "Energy-aware mapping for tile-based NoC

architectures under performance constraints," In Proceedings of the

Asia and South Pacific Design Automation Conference, 2003.

[14] W. Jang, and D. Z. Pan, "A3MAP: Architecture-aware analytic

mapping for networks-on-chip," ACM Transactions on Design

Automation of Electronic Systems, 2012.

[15] H. W. Kuhn, "The Hungarian method for the assignment problem,"

Naval Research Logistics, 2005.

[16] M. M., Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee, "Probabilistic

distance-based arbitration: Providing equality of service for many-

core CMPs," In IEEE/ACM International Symposium on

Microarchitecture, 2010.

[17] Z. Lu, L. Xia, and A. Jantsch, "Cluster-based simulated annealing for

mapping cores onto 2D mesh networks on chip," In Design and

Diagnostics of Electronic Circuits and Systems, 2008.

[18] P. S. Magnusson et al., "Simics: A full system simulation platform,"

In IEEE Computer, 2002.

[19] M. M. Martin, et al. "Multifacet's general execution-driven

multiprocessor simulator toolset," ACM SIGARCH Computer

Architecture News, 2005.

[20] S. Murali, and G. De Micheli, "Bandwidth-constrained mapping of

cores onto NoC architectures," In Proceedings of the conference on

Design, automation and test in Europe, 2004.

[21] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De

Micheli, "A methodology for mapping multiple use-cases onto

networks on chips," In Proceedings of the conference on Design,

automation and test in Europe, 2006.

[22] M. K. Qureshi, and Y. N. Patt, "Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to Partition

Shared Caches," In IEEE/ACM International Symposium on

Microarchitecture, 2006.

[23] L. Spracklen, and S. G. Abraham, "Chip multithreading: opportunities

and challenges," In International Symposium on High-Performance

Computer Architecture, 2005.

[24] C. Sun et al., "DSENT - A Tool Connecting Emerging Photonics with

Electronics for Opto-Electronic Networks-on-Chip Modeling," In

International Symposium on Networks-on-Chip, 2012.

[25] H. Vandierendonck, and A. Seznec, "Fairness metrics for multi-

threaded processors," Computer Architecture Letters, 2011.

