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Abstract—As the number of cores continues to grow in chip 

multiprocessors (CMPs), application-to-core mapping algo-

rithms that leverage the non-uniform on-chip resource access 

time have been receiving increasing attention. However, exist-

ing mapping methods for reducing overall packet latency can-

not meet the requirement of balanced on-chip latency when 

multiple applications are present. In this paper, we address the 

looming issue of balancing minimized on-chip packet latency 

with performance-awareness in the multi-application mapping 

of CMPs. Specifically, the proposed mapping problem is for-

mulated, its NP-completeness is proven, and an efficient heu-

ristic-based algorithm for solving the problem is presented. 

Simulation results show that the proposed algorithm is able to 

reduce the maximum average packet latency by 10.42% and 

the standard deviation of packet latency by 99.65% among 

concurrently running applications and, at the same time, incur 

little degradation in the overall performance.  

Keywords—On-chip networks; chip-multiprocessors; applica-

tion mapping; balanced on-chip latency 

I. INTRODUCTION 

With tens to possibly hundreds of cores integrated in cur-
rent and future multiprocessor systems-on-chips (MPSoCs) 
and chip-multiprocessors (CMPs) [12], networks-on-chips 
(NoCs) have been proposed as the primary shared media for 
providing high-performance and scalable communication [6]. 
Meanwhile, since a single application is unlikely to use up 
all the computing resources on a many-core chip, multiple 
applications can usually run concurrently on the system. 
However, due to the topological layout of the cores (e.g., in 
tile-based mesh topology), on-chip access latencies to cache 
and memory controllers are not necessarily the same when 
initiated from different source locations. It is important to 
account for this on-chip delay characteristic when mapping 
applications onto cores to optimize the system performance. 

While the issue of application mapping has been receiv-
ing increasing attention in many-core chip designs, the prob-
lem of mapping multiple applications to CMPs presents sev-
eral new challenges. First of all, mapping techniques pro-
posed thus far are mainly for MPSoCs [11][13][14][20][21] 
which, unfortunately, cannot be applied directly to CMPs 
due to their inherent difference: In MPSoCs, the shared 
cache/memory is clustered into some of the tiles while other 
tiles contain heterogeneous IP blocks with specific function-
alities. In CMPs, the shared cache is distributed to all tiles, 
each of which contains a homogeneous general-purpose pro-
cessor core and only some of which have a memory control-

ler. The task of application mapping in a MPSoC consists of 
assigning caches, IP cores, and other customized blocks to 
tiles, whereas the task of application mapping in a CMP con-
sisting of assigning the running threads to the fixed and ho-
mogeneous physical cores. Consequently, the latency model 
on which the mapping algorithms are based for MPSoCs no 
longer holds for CMPs.  

Moreover, when mapping multiple applications to CMPs, 
not only should the overall on-chip latency be reduced as in 
the single application case, the mapping process should also 
balance the average packet latency experienced by different 
applications. That is, each application should expect near 
equally minimized on-chip network latency as compared 
with other applications when accessing resources (i.e., shared 
cache and memory), regardless of where the threads of the 
application are mapped [16]. Balancing minimized on-chip 
latency in multi-application mapping is, in fact, much needed 
in CMPs for three major reasons. First, at the user level, the 
application-to-tile mapping should be transparent to end us-
ers to provide quality-of-service guarantees. This is particu-
larly important when multiple users pay for service in a 
shared environment, as it is unacceptable if the imbalance of 
latencies introduced in the mapping process results in service 
agreement violations for one or more users. Second, at the 
system level, many techniques in shared cache and memory 
systems [8][9][22] have been proposed to provide equal or 
differentiated services among applications, all of which as-
sume uniform on-chip latency. If the on-chip latencies 
among different applications are not well balanced, the effec-
tiveness of these techniques will be severely affected, if usa-
ble at all. Third, at the on-chip network level, several archi-
tectural techniques have been proposed to augment the de-
sign of router arbitrators and network topologies to provide 
on-chip latency balance, but at the cost of increased com-
plexity of routers [10] and additional traffic pattern re-
strictions [16]. If the NoC latency can be balanced early on at 
the mapping stage, these hardware and software overheads 
can be greatly mitigated or even entirely avoided. 

Although balancing the on-chip latency is a desirable and 
necessary feature, its realization in multi-application map-
ping is not straightforward. Balancing packet latencies 
among applications is often conflict with minimizing overall 
packet latency of all applications. On the one hand, mapping 
methods which have minimization of the overall latency as 
the sole objective are actually counter optimal in terms of 
latency-balancing, as shown in Section II. On the other hand, 
a mapping method is not useful if it focuses on balancing 



latency but leads to greatly increased overall packet latency 
of on-chip networks. In addition, it is observed that certain 
core locations have low access latency for one type of traffic 
(e.g., cache traffic) but have high access latency for another 
type of traffic (e.g., memory controller traffic), which com-
plicates the design of an effective latency-balancing algo-
rithm. Indeed, the proposed balanced-latency mapping prob-
lem is proved to be NP-complete in Section III, indicating 
that it is quite challenging to find an efficient solution. 

In this paper, we address the important issue of achieving 
balanced on-chip latencies with performance-awareness in 
the multi-application mapping of CMPs. We use the metric 
of min-max (i.e., minimizing the maximum of) average 
packet latency of the applications as the objective function to 
take into account both balanced and reduced latency aspects, 
and propose an efficient heuristic-based algorithm called 
sort-select-swap to find the effective mapping solutions. The 
key idea is to first implement "coarse tuning" in the mapping 
process by considering the dominant cache traffic, and then 
conduct "fine tuning" by taking memory traffic into consid-
eration and performing sliding-window based swaps. The 
main contributions of this paper are the following: 

 Identifying the inability of traditional performance-
oriented mapping methods to provide balanced latency; 

 Formulating the performance-aware latency-balancing 
mapping problem for CMPs, and proving its NP-
completeness; 

 Proposing an efficient heuristic-based algorithm with a 
time complexity of       where   is network size. 

The rest of this paper is organized as follows. Section II 
provides more information on the background and the moti-
vation for implementing balanced latencies in NoC-based 
application mapping. Section III formulates the mapping 
problem for multiple applications and proves its NP-
completeness. Section IV describes the details of our pro-
posed algorithm. Section V presents the simulation results 
and, finally, Section VI concludes the paper. 

II. BACKGROUND AND MOTIVATIONS 

This section first summarizes the related work in applica-
tion mapping for NoCs, and then it describes the structure of 
NoC-based CMPs and presents the latency models for shared 
cache requests and memory controller requests. We highlight 
that current performance-oriented mapping methods tend to 
exacerbate the imbalance in the on-chip latencies experi-
enced by different applications. This motivates finding more 
comprehensive mapping solutions that take the requirements 
of balanced latency into account as well. 

A. Related Work 

As the number of cores continues to grow with increased 
non-uniformity within the same chip, the importance of ap-
plication mapping has been rising rapidly. Earlier work on 
application mapping mostly targets improving the mapping 
effectiveness in NoC-based MPSoCs. Murali et al. focus on 
overall latency minimization under minimum routing and 
traffic splitting for SoCs [20]. Hu et al. address energy con-

sumption in the mapping task for tile-based MPSoC architec-
tures [13]. Hansson et al. present a combined mapping and 
routing approach for MPSoCs [11]. Jang et al. take into con-
sideration heterogeneous MPSoC architectures and propose 
efficient mapping solutions for various chip layouts [14]. 
These techniques assume MPSoC systems which have dif-
ferent characteristics than the targeted CMP systems consid-
ered in this work. 

Recently, researchers have started to explore the mapping 
problem in CMPs. Chen et al. present a set of comprehensive 
mechanisms that optimize the mapping of an application 
onto NoC-based CMPs under the assumption that only one 
application is running on the chip at a time [3]. However, 
with increasing number of cores, chip resources can be better 
utilized if the chip has multiple applications running simulta-
neously. Murali et al. present an efficient method to map 
multiple use-cases onto MPSoCs rather than CMPs [21]. In 
contrast, our work aims to address the multi-application 
mapping problem in CMPs to both optimize overall perfor-
mance and balance NoC latencies among the applications.  

Many techniques have been proposed to provide quality-
of-service support for various system components including 
cache, memory and on-chip networks [7][8][9][10][16][22]. 
This set of research has very different objectives than bal-
anced NoC latency and, therefore, are orthogonal and com-
plementary to our work. In fact, it is possible to integrate the 
approach developed in this work with previous mechanisms 
to further improve the service quality, which can be investi-
gated in the future. 

B. NoC-based CMP Architecture 

Figure 1 shows a typical example of 64-tile multiproces-
sor with mesh-based NoC structure. Each tile is comprised of 
a processing core, a private L1 cache, and a slice of shared 
L2 cache bank. The shared L2 cache is distributed among all 
the tiles. In most commercial CMPs, when a data block is 
fetched from memory, the L2 cache bank in which to place 
the data is determined by hashing on the lower-order bits of 
the data address [23]. Routers are interconnected to form a 
mesh network, and tiles are connected to routers via a net-
work interface (NI). Each of the four tiles in the corners 
(shown as four grey tiles in the figure) includes a memory 
controller in addition to the regular core/cache structure. 
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Figure 1. 64-core NoC-based CMP architecture. 



When the processing core has a data request, no further 
packet is needed if the request hits in the private L1 cache. 
Otherwise, two types of traffic can be generated depending 
on where the data is located: cache traffic (data is still on-
chip) and memory controller traffic (data needs to be fetched 
from off-chip main memory). Cache traffic includes the re-
questing packets from the processing core to an L2 cache 
bank (this packet contains the address of the required data, 
and is directed towards the tile that has the L2 cache bank to 
which the address is hashed), the checking/forwarding pack-
ets from the L2 cache bank to other private L1 caches, and 
the reply packets from L2 cache bank to the requesting pro-
cessing core. In all of these cases, either the source tile or the 
destination tile is an L2 cache bank. 

In the case of memory controller traffic, a requesting 
packet from the processing core is forwarded to one of the 
four memory controller tiles through the on-chip network. To 
increase the efficiency, the forwarding follows the proximity 
principle, i.e., the packet is sent to the nearest memory con-
troller tile out of the four tiles. Data are then fetched from the 
main memory and returned to the memory controller after a 
certain number of cycles. 

C. Packet Latency Models 

To explain the mesh-based NoC latency model, we first 
introduce the tile numbering rule adopted in this paper. The 
number         of a tile is determined by: 

              (1)  

where       are the row number and column number, respec-
tively, and   is the number of tiles in a row. For example, the 
29-th tile in Figure 1 (where    ) is located at the fourth 
row (from the top), fifth column (from the left). 

We derive the latency model based on [5] to calculate the 
service latency      of a packet generated at the  -th tile and 
heading for the   -th tile: 

                             (2)  

where        is the number of hops before a packet reaches 
its destination tile   . The terms     and     are the per-hop 
latency for the router and wire, respectively,     is the aver-

age queuing latency per hop. Unlike off-chip networks with 
pin limitations, on-chip networks typically have very wide 
link-width (e.g., 128-bit or 256-bit) with multiple virtual 
channels per link, so the queuing latency     is usually very 

small (0~1 cycles as observed in the simulation). The seriali-
zation latency,    , is calculated as the ratio of the packet 
length to the channel bandwidth, which is pre-determined for 
a given packet format and NoC structure. Note that if the 
destination tile to which the data address hashes happens to 
be the same as the source tile, there is no serialization latency 
since no network communication will be required. To avoid 
deadlocks, dimension-order routing (i.e., XY routing) is used 
to minimize design effort and implementation cost [5]. 
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Figure 2. Physical memory address breakdown. 

As mentioned, the hashing for the shared L2 cache banks 
uses lower bits of the data addresses (i.e., cache index) as 
shown in Figure 2. For example, in a 16 MB L2 cache with a 
block size of 64 bytes, the block offset is Bit 0 to Bit 5. The 
next lowest 6 bits, Bit 6 to Bit 11, are the cache index used to 
hash and decide which tile the cache line is placed. Hence, 
any consecutive chunk of 64-byte physical address (i.e., one 
cache line) is uniformly distributed across all the L2 cache 
banks. This means that, for the cache traffic, the source tile 
or the destination tile has statistically the same chance to be 
any tile in the network (including itself). Therefore, for a 

CMP with      tiles, the average number of hops         of 
a cache traffic packet generated at the  -th tile before arriv-
ing at its destination tile is calculated by: 

        
 

 
      

 

   
 (3)  

The value of         is smaller for tiles in the center and 
larger for tiles in the corners. For example, for a corner tile 

(e.g., tile number 1) on the CMP shown in Figure 3,         
  and for a central tile (e.g., tile number 28)           . Con-
sequently, the threads mapped onto the central tiles have 
smaller average L2 cache latency than the tiles closer to the 
perimeter, as shown in Figure 3a), where darker areas indi-
cate tiles with larger packet latencies.  

As also mentioned, memory controller packet forwarding 
is based on the proximity principle. The whole chip is divid-
ed into four quadrants relative to its center. All packets gen-
erated by tiles in one quadrant are sent to the memory con-
troller in that quadrant. Therefore, the average number of 
hops          for a memory controller request packet generated 
at the  -th tile is calculated by: 

                                       (4)  

The average on-chip latency of memory controller access is 
smaller for tiles closer to the corners, as shown in Figure 3b).  

(a) L2 cache delay per packet (b) memory controller delay per packet
 

Figure 3. Packet latencies on an 8-by-8 mesh network. 

With the above expression of         and          in combina-
tion with equation (2) for the latency model, two arrays 
        and         can be generated to estimate the on-
chip network latency of cache traffic and memory traffic 
originating from the  -th tile, respectively. 

D. Imbalance in Traditional Algorithms 

While on-chip latency balancing is an important design 
aspect in CMPs, traditional application mapping algorithms 
that target minimizing the overall packet latency of all the 



applications are actually counter optimal in terms of latency-
balancing. This is because they map the applications with 
higher data access rates to the tiles with smaller average on-
chip latencies, which is more beneficial in minimizing over-
all packet latency than mapping applications with less traffic 
to those tiles. This increases the latencies of those low traf-
fic-load applications and results in significantly imbalanced 
per-application average packet latencies (or APLs for short). 

To illustrate this effect, we conduct evaluations on four 
different configurations (i.e., sets) of input applications, 
namely C1, C2, C3, and C4. Each configuration contains 
four applications, each consisting of 16 threads. The applica-
tion traces are gathered from running the PARSEC 2.0 
benchmarks [18] (detailed evaluation methodology can be 
found in Section V.A). The mapping task is to map these 
4x16 threads onto an 8-by-8 mesh network. 

A large number (> 10
4
) of random mappings are generat-

ed first, and for each mapping we derive the maximum APL 
among the applications (i.e., each application has an APL, 
and the largest one among all applications is the max-APL) 
as well as the standard deviation of the applications' APLs 
(referred to as dev-APL). Larger max-APLs and dev-APLs 
indicate worse imbalance among the four applications. We 
then calculate the average of the max-APL and dev-APL for 
all the random mappings. These two values are adopted to 
denote the average level of latency balance between applica-
tions' APLs for a randomly generated mapping. 

Global stands for a mapping method that optimizes the 
overall network latency of all applications, i.e., reduces the 
global APL (referred to as g-APL). The g-APL is the average 
latency of all packets generated, calculated by the sum of all 
the packet latencies divided by the total communication vol-
ume. Table 1 shows the g-APL, max-APL, and dev-APL 
values for both the aforesaid random average result and 
Global. It can be seen that although the g-APL is reduced by 
4.78% through the Global method compared to the random 
average, the max-APL is increased by 9.85% and the dev-
APL is three to four times that of the random result. This 
means that the Global algorithm makes the APL of one or 
more of the applications dramatically larger in order to re-
duce the global APL. Consequently, the Global mapping 
reduces overall packet latency but at the cost of greatly exac-
erbating the imbalance among applications. 

As an illustrating example, Figure 4 shows the Global 
mapping results of the four applications in the C1 configura-
tion, each application containing 16 threads. The four appli-
cations are assigned with ID 1 to 4 in ascending order of total 
communication rates (i.e., Application 1 has the lightest traf-
fic). Note that the memory controller traffic takes only a 

small fraction of overall requests for each application, there-
by making the cache communication latency the dominant 
factor of the application APLs. As we can see from the map-
ping results, the threads of Application 1 are assigned tiles 
with the worst average L2-cache access time, resulting in an 
APL of 25.15 cycles, which is 17.80% more than the overall 
average APL of 21.35 cycles. This clearly demonstrates that 
a mapping algorithm that aims to reduce overall packet la-
tency is, in fact, counter-optimal in terms of latency balanc-
ing among the multiple simultaneously running applications. 
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Figure 4. Global mapping results of C1. 

III. ON-CHIP LATENCY BALANCING MAPPING 

This section first analyzes various potential metrics for 
latency balancing and illustrates that the max-APL should be 
selected as the criterion in the proposed problem formula-
tion. We then state the formulation of the balanced latency 
mapping problem and prove its NP-completeness. 

A.  Metrics of Latency Balancing 

As mentioned before, latency balancing in multi-
application mapping strives to minimize the variation in av-
erage packet latency (APL) across applications while keep-
ing APL low, regardless of where the threads of the applica-
tions are mapped. Nevertheless, the overall performance, i.e., 
the global APL, should also be taken into consideration, oth-
erwise the mapping method will introduce large total latency. 

Prior to the max-APL, we have investigated two other 
popular metrics: the standard deviation and the ratio of min-
imum to maximum of the APLs [25]. Unfortunately, they 
both suffer from one weakness if used as the objective func-
tion: optimizations based on these two objectives cannot 
ensure overall network performance and may result in such a 
solution that makes the APLs of each of the applications 
equally large. The example below illustrates this. 
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Figure 5. Comparison of two optimal mapping methods. 

Assume that there are four applications, each with four 
threads, totaling 16 threads to be mapped onto the 16 tiles of 
a 4-by-4 mesh. Suppose the four threads of Application 1 

TABLE 1. IMBALANCE EXACERBATION BY GLOBAL OPTIMIZATION. 

 
g-APL (cycles) max-APL (cycles) dev-APL 

Random Global Random Global Random Global 

C1 22.63 21.35 22.76 25.15 0.534 2.09 

C2 22.58 21.63 22.71 24.63 0.547 1.63 

C3 22.70 21.55 22.77 25.15 0.535 1.88 

C4 22.54 21.60 22.66 24.93 0.542 1.77 

Avg 22.61 21.53 22.73 24.97 0.54 1.84 



have an L2 cache access rate of 0.1, 0.2, 0.3, and 0.4, respec-
tively. The same are the thread access rates of Applications 2 
to 4. For simplicity, suppose all the applications require zero 
memory accesses. Assume    =3,    =1, and      . An 
optimal solution can be easily obtained as shown in Figure 
5(a), which achieves the globally minimal APL as well as 
equal APLs (10.3375 cycles) among Applications 1 to 4. 
However, if we choose the standard deviation of the four 
APL values or the min-to-max ratio as the objective, we find 
that Figure 5(b) is also among the optimal mappings with 
regard to the corresponding standard deviation and min-to-
max objectives: the standard deviation is zero and the min-
to-max ratio has a maximum value of 1. As can be seen, alt-
hough all the applications have the same APL, they experi-
ence equally bad latencies with an APL of 11.5375 cycles, 
meaning that standard deviation and min-to-max cannot min-
imize overall packet latency while achieving balanced APL. 

To avoid the drawbacks of the above two metrics as the 
objective function, we adopt the max-APL, which uses the 
maximum of all applications as the metric. By minimizing 
the max-APL, both the global performance and the balance 
among individual applications are taken into consideration, 
as it prevents any of these applications from having a signifi-
cantly large latency. Note that although standard deviation 
may not be suitable as objective function in designing an 
algorithm, it can still be used as an evaluation metric for 
mapping solutions to reflect the degree of balance. 

B.  Problem Statement 

Suppose a given NoC-based CMP has   tiles and a set of 
applications      where             with a total number 
of threads  . Each thread is mapped to one tile on the chip

1
. 

Assuming that the threads and tiles are indexed from   to  , 
the problem of application mapping is to find a permutation 
       where               denoting that the  -th 
thread is mapped to the  -th tile. 

There are two parameters regarding each thread of an ap-
plication: shared cache request rate when the requested data 
is on-chip and memory controller request rate when the re-
quested data is off-chip. The request rate is defined by the 
number of request packets per unit time. Let    denote the 

cache request rate of the  -th thread, and    denote the 

memory controller request rate of the  -th thread. For sim-
plicity, we define that  -th application    consists of the 
threads indexed from        to    (     and     ). 
For each tile of the NoC, we consider       and       as 
explained in Section II.C. Then, with a given mapping solu-
tion     , the APL of application    is calculated by 

   
                        

  
        

        
  
        

 (5)  

                                                           
1  If the number of threads    is less than  , we add        pseudo 
threads with zero memory controller traffic to those applications and solve 

the same problem. A more generalization would be for multiple threads to 
map to one tile. This is not considered in this paper. 

where            is the total packet latency caused by 

cache accesses when thread   is mapped to      and, similar-

ly,            is the total packet latency due to memory 

controller accesses. Therefore, the problem of latency bal-
anced mapping is to minimize the maximum of each applica-
tion's APL: 

             (6)  

Formally, we formulate the On-chip latency Balanced 
Mapping (OBM) problem as follows: 

Given:  
1) The number of tiles (or threads)  ; 
2) Application set     , where          , the  -th appli-

cation    consists of the threads indexed from        to 
  , where      and     ; 

3) The L2 cache communication array       , where    
indicates the request rate of L2 cache of the  -th thread; 

4) The memory controller communication array       , 
where    indicates the memory controller request rate of 

the  -th thread; and 
5) Arrays         and        , denoting the APLs from 

the  -th tile to the distributed L2 cache and to the 
memory controller, respectively; 

Find: Thread-to-tile mapping       , where      
          and 

Minimize: the max-APL 

        
         

     (7)  

where    is the APL of the  -th application defined in (5). 
Given router parameters in (2),       and       are de-
pendent on the position of the  -th tile only. 

C. NP-Completeness of OBM 

Theorem: the formulated OBM problem is NP-complete 
(NPC). 

Proof: In order to prove the NP-completeness of OBM, we 
first transform it into a decision problem: 

Decision version of OBM (DOBM): With the conditions giv-
en in the previous Section III.B, does there exist a mapping 
solution that makes the APL of each application no larger 
than a given value  ?  

In order to prove the NP-completeness of DOBM, we 
need to prove the following two statements: 
1)        ; 
2) For a known NPC problem  , we have        . 

We first prove that within polynomial time of calculation 
we can verify whether a given mapping solution satisfies the 
DOBM problem. It takes      calculations to get the APLs 
for all the applications, and there are   applications requiring 
     times of comparisons with the threshold value  . The 
total number of calculations is therefore            , 
thus proving        .  

We next prove that a known NPC problem   is polyno-
mial-ly reducible to DOBM. We adopt a well-known NPC 



problem, the set-partition problem [4] as   in our proof. It is 
stated as follows: Given a set of numbers          
         , does there exist two sets    and    with equal 
size, satisfying                 such that        

 
       

? 

Assume we have a subroutine Y that solves DOBM, i.e., 
Y returns whether there exists such a mapping that the APLs 
of all applications are no larger than  . In order to solve the 
above problem  , we set up a DOBM problem of the follow-
ing form: Build an  -tile chip such that the set of the APLs 
of each tile's L2 cache accesses is equal to  , i.e.,       is 
equal to    in the set-partition problem. Assume there are a 
total of two applications with equal size,    and   , making 
         . Then,         assume              . 

In this simpler version of the DOBM problem, the APLs of 
   and    become 

   
      

   
   

   
    

      
 
       

   
 (8)  

We then call the subroutine Y to find if there exists a 
mapping        so that each application's APL is no larger 
than  , where 

  
 

 
      

 

   

 (9)  

Note that   is constant for a given chip layout. If Y holds, i.e., 

     and     , we have 
 

 
    

 

 
       

    and 
 

 
    

 

 
       

   . As 
 

 
    

 

 
           

   , 

we conclude that 
 

 
    

 

 
    

 

 
       

   . Therefore, 

if Y holds, it means that 

                

   

   

       

 

       

   
 

 
 

 

 
   

 

   

 (10)  

  holds if and only if Y holds. The solutions to the two 
subsets for   are: 
                                          (11)  

Subroutine Y is called only once, proving        . 
Therefore the NP-completeness of DOBM is proved, and 
equivalently the OBM problem is NPC.                                 ■ 

IV. PROPOSED ALGORITHM 

The NP-completeness of the OBM problem motivates us 
to explore an efficient heuristic algorithm. Some of the pre-
vious research efforts on NoC mapping problems have tried 
general neighborhood search algorithms such as simulated 
annealing or genetic search [14][17], but these two algo-
rithms are too time-consuming to reach a satisfying solution. 

Based on the characterizations of NoC-based CMPs, we 
present an efficient heuristic algorithm called sort-select-
swap to solve the OBM problem. The key idea comes from 
the fact that the majority of the on-chip network communica-
tion is shared cache traffic, i.e., the L2 cache request rate    
is several times larger than the memory controller request 
rate   . Therefore we first implement coarse tuning by as-

signing the tiles to applications so that each application gets 

almost the same number of tiles with larger cache latencies 
and the same number of tiles with smaller cache latencies. 
Then fine tuning is done by taking into account the on-chip 
traffic to memory controllers and performing sliding-
window-based swaps.  

During the process, the following optimization task is 
common and necessary in both coarse and fine tuning to re-
duce imbalance: After selecting the tiles for each application, 
we need to find a mapping method which properly assigns its 
threads to these selected tiles, so that the APL of this applica-
tion is minimized. This is consistent with the primary objec-
tive of minimizing the max-APL because, with a given ap-
plication-to-tile assignment, the max-APL can be reduced by 
minimizing each application's APL. 

A.  Single Application Mapping Optimization 

Before elaborating the solution to the OBM problem, we 
first formulate and solve the single-application mapping 
(SAM) problem. The SAM problem is described as follows: 
Given    tiles and an application   with    threads, find the 
thread-to-tile mapping that minimizes APL of application  . 

Given: 
1) The number of tiles (or threads)   ; 

2) The L2 cache request rate array        and the memory 

controller request rate array        as in Section III.B; 

and 
3) Arrays         and        , indicating the APLs from 

the  -th tile to the distributed L2 cache and to the 
memory controller, respectively. 

Find: Mapping        , where               , and 

Minimize: The APL of application  : 

   
                  

  
   

        
  
   

 (12)  

We show that the above SAM problem is an easy problem 
and propose a polynomial-time solution to it. 

Due to the evenly distributed nature of the L2 cache in 
CMPs and the proximity principle of memory controller 
communication as discussed before, the APL of one thread 
assigned to a certain tile depends only on the communication 
rates    and    of thread  , and the       and       of tile 

  . It is independent of which tiles other threads are assigned 
to. In other words, once an assignment of a thread is finished, 
mapping results of other threads will not affect the APL of 
the current thread as long as the threads are mapped to dif-
ferent tiles. This mapping problem is, thus, an instance of the 
combinational assignment problem and can be solved using 

the Hungarian method [15] with a complexity of     
  . 

We use the following Hungarian-based method to solve 
the SAM problem. 

Algorithm 1: Hungarian-based SAM solution 

Inputs: The number of threads or tiles   , tile latency ar-

rays    and   . 



Step 1: Generate the       cost matrix         , where 

       indicates the APL of  -th thread placed on the  -th 

tile (L2 cache delay plus the on-chip memory request delay): 

                          (13)  

Step 2: Call Hungarian algorithm with input matrix          

to generate a permutation      of            that minimiz-

es the total cost. The output of Hungarian is the minimum 

cost         as well as the permutation      . 

Return: The minimized APL         and mapping      .  

The first and second step have     
  ,     

   com-

plexity, respectively. The overall complexity of the SAM 

solution is therefore     
  . 

B. Sort-Select-Swap Algorithm 

Provided with the above SAM solution, we develop the 
complete sort-select-swap algorithm for the OBM problem 
applied to multiple application mapping as follows. 

We first sort all the tiles according to their L2 cache 
APLs (i.e.,      ). The second step is to select appropriate 
tiles to assign to each application in such a way that the 
large-cache-latency tiles and the small-cache-latency tiles are 
equally distributed among different applications. For exam-
ple, we have an application a with 16 threads. We divide the 
sorted tile list into 16 sections with equal length and select 
the tile in the middle from each section for this application, 
as shown in Figure 6. The selection is then followed by call-
ing the Hungarian-based SAM method to minimize the APL 
within this application. Similarly, every application is as-
signed to tiles in this manner. After this selection step, every 
thread in each application is assigned to a tile. 

The third step is to perform fine tuning by swapping cer-
tain thread-to-tile assignments across applications. We use a 
sliding-window-based swap and choose the best result greed-
ily to implement fine tuning. Tiles are still organized in the 
list view conceptually, as shown in Figure 7. Each window 
contains four tiles. All 24 possible permutations (the factorial 
of 4) of the mappings for these four tiles are explored, and 
we choose the permutation that leads to the minimum max-
APL. The window starts with a step size of 1, i.e., four con-
secutive tiles are picked, and slides from the beginning to the 
end of the tile list. Then we increase the step size of the win-
dow and perform window-sliding again, as depicted in Fig-
ure 7. Finally, after all the window-sliding is done, the algo-
rithm calls the SAM method once more for each application 
to reduce its APL, thereby possibly further reducing the 
overall max-APL of the generated mapping. The pseudo 
code is shown as follows. 

Algorithm 2: sort-select-swap 

Inputs: Application set     , the number of threads or tiles 

 , Cache access latency array         and memory access 

latency array        . 

Step 1: Sort all the tiles based on their L2 cache APLs. De-

note the sorted tile list as     . 
Step 2: Select tiles and assign them to applications 

for application    from    to   , do 

Divide the tile list      into             sections 

with equal length; 

Pick the tiles in the middle of each section from     ; 
Call the Hungarian-based SAM method to assign these 

    tiles to the threads of    so that the APL for    is 

minimized; 

Remove the assigned tiles from the list     . 
Step 3: Greedy sliding-window-based swap 

for step size   from   to    , do 

for   from 1 to     , do 

//The four tiles in the current window          
         
Generate all 24 permutations of the current window; 

Find the permutation that minimizes the max-APLs; 

Change the four tiles' mapping to this permutation. 

for application    from    to   , do 

Call the Hungarian-based SAM method to adjust the tile-

to-thread assignment of the     tiles within application 

   so that the APL for    is minimized. 

Return: Mapping        

The proposed sort-select-swap algorithm has polynomial 
time complexity: 

Step 1: Sorting takes          times of calculation. 

Step 2: There are   applications each requires an assignment. 
In each assignment, picking     tiles has        time com-

plexity, the Hungarian algorithm has      
   time com-

plexity and deleting the assigned members from the current 
list      takes      time. Altogether the assignment step has 

a time complexity of            
         since 

      . 

Step 3: The number of windows generated is      . During 
the processing of each window, there are 24 permutations, 
each requiring one APL calculation. This calculation is fin-
ished within      time according to APL definition in (6). 
Similar to step 2, the final Hungarian has        time com-
plexity. Overall swapping has a time complexity of       
                .  

...

Section 1 Section 2 Section 16

Application a

Sorted tile list:
Pick Pick Pick...

 

...

Window

...

Step size 1:

Step size 2:

Window  

Figure 6. Select from the sorted tile list. Figure 7. Sliding-window-based swap. 



Therefore, the overall time complexity of the proposed 
sort-select-swap algorithm is      . With this low compu-
tation complexity, the proposed mapping algorithm can be 
used when applications are dynamically added or removed in 
the CMPs. This is achievable because the runtime of the pro-
posed mapping algorithm is short and application change 
happens at a much coarser time-granularity. To realize this, 

we simply collect the      and      statistics at runtime dur-

ing a certain interval after some applications are add-
ed/removed, and then solve the OBM problem to determine 
the new mapping solution which will be used until the next 
application change.  

V. SIMULATION 

A. Simulation Setup 

We evaluate the effectiveness of different mapping algo-
rithms by utilizing traces gathered from running multi-
threaded PASREC 2.0 benchmarks [2] on full-system simu-
lation using Simics [18]. The GEMS [19] and Garnet [1] 
simulators are integrated into Simics for detailed timing of 
the memory system and on-chip network, respectively. We 
use the latest NoC power model DSENT [24] for power es-
timation, based on 45nm technology and 1 V power supply. 
We assume a canonical 3-stage credit-based wormhole router 
with look-ahead routing optimization. With 128-bit link 
width, short 16-bit packets are single-flit while long packets 
carrying 64-byte data plus a head flit have 5 flits. Table 2 
lists the key parameters of our simulation.  

Since different PARSEC applications have various inten-
sities of network load (i.e., the sum of shared cache requests 
and memory controller requests), we construct eight different 
configurations (i.e., C1 to C8) with varying loads in the 
evaluation. Each configuration has four 16-thread applica-

tions. Table 3 provides the average values and standard devi-
ations of the cache and memory traffic of the four applica-
tions for each of the eight configurations C1 to C8. Since the 
cache communication rate is, on average, 6.78 times that of 
the memory controller traffic rate, we classify based on the 
characteristics of cache traffic. The eight configurations in-
clude those with relatively higher average rates (e.g., C4) or 
lower rates (e.g., C2), and higher standard deviations (e.g., 
C8) or lower standard deviations (e.g., C7). 

We compare the following four algorithms: 
1) Global optimization (Global): as discussed in Section 

II.D, it minimizes overall latency of all the threads; 
2) Monte Carlo method (MC) for the OBM problem: from a 

large number (e.g.    ) of random mappings, it selects 
the one with the minimum max-APL; 

3) Simulated annealing-based algorithm for the OBM prob-
lem (SA): we define a random "move" in SA as swapping 
the mapping of two randomly chosen threads; and 

4) The proposed sort-select-swap algorithm for the OBM 
problem (SSS).  

B. Simulation Results 

1) Mapping Results of Different Algorithms 

In Section II.D, we showed the mapping result of Global 
for configuration C1, in which the Global increases the im-
balance among applications. Figure 8 (a) presents the map-
ping results of the proposed SSS for the same configuration. 
The applications are sorted in ascending order of average 
communication rate. As can be seen, Application 1, which 
has the lightest on-chip traffic, is no longer placed in the four 
corners of the chip in the SSS mapping method, whereas the 
Global mapping result shown in Figure 4 assigns the corner 
cores to Application 1. Figure 8 (b) compares the APLs of 
the four applications in C1, which shows a significant im-
provement in the balance of on-chip packet latency in SSS. 
For instance, compared with Global, the APL of Application 
1 in SSS reduces from 25.15 to 22.40 cycles, resulting in a 
10.89% decrease. The APLs of the four applications in SSS 
are nearly the same. In the following subsections, more de-
tailed data on max-APLs, standard deviations, and network 
performance and power are discussed. 
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Figure 8. Mapping result and APL comparison of C1. 

2) Max-APL Comparison 

Figure 9 compares the max-APL results of the four map-
ping methods. As shown in the figure, the proposed SSS is 

TABLE 2. KEY PARAMETERS FOR SIMULATION. 

Network topology 8x8 mesh 

Router 3-stage, 2GHz 

Input buffer 5-flit depth 

Link bandwidth 128 bits/cycle 

Cores Sun UltraSPARC III+, 2 GHz 

Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency 

Shared L2 per bank 256KB, 16-way, LRU, 6-cycle latency 

Cache block size 64 Bytes 

Virtual channel 3 VCs per protocol class 

Coherence protocol MOESI 

Memory controllers 4, located one at each corner 

Memory latency 128 cycles 

TABLE 3. AVERAGE VALUES AND STANDARD DEVIATIONS OF 

COMMUNICATION RATES OF EIGHT CONFIGURATIONS. 

Configuration 
Cache Memory 

Average Std-dev Average Std-dev 

C1 7.008 88.3 0.899 9.84 

C2 1.8855 17.52 0.381 2.21 

C3 10.881 112.34 1.51 18.42 

C4 11.063 107.27 1.548 17.56 

C5 9.04 129.27 1.371 19.91 

C6 9.222 125.81 1.409 19.21 

C7 1.992 14.69 0.399 2.01 

C8 8.881 131.87 1.334 20.45 



able to reduce the max-APL by an average of 10.42% com-
pared to Global. This result illustrates that SSS can provide 
good latency balancing for different combinations of applica-
tions. The high max-APL of Global indicates that it optimiz-
es mapping at the cost of greatly exacerbated imbalance. 

MC and SA can also achieve mapping results with max-
APL improvement to Global by 8.74% and 9.44%, respec-
tively. However, note that the MC and SA are given higher 
runtime than SSS to generate these results. The Monte Carlo 
method and the simulated annealing are search-based algo-
rithms. They both have to perform a sufficient amount of 
random moves in order to obtain a satisfying result. The high 
complexity of search-based algorithms makes them nearly 
impossible to be adopted in dynamic scenarios. 

3) Standard Deviation 

As mentioned before, although standard deviation of 
APLs (dev-APL) may not be suitable for the objective func-
tion used in a particular mapping algorithm, it is still a direct 
and well-acknowledged indicator for measuring the variance 
among multiple values. Table 4 lists the dev-APL of the four 
mapping methods for the eight different configurations. It 
can be seen that Global has the largest dev-APL among the 
four mapping algorithms. Both MC and SA have moderate 
reduction in dev-APL. In comparison, the proposed SSS can 
reduce dev-APL significantly by 99.65%, 95.45%, and 83.15% 
compared to Global, MC and SA, respectively, demonstrat-
ing its superior advantage in balancing latencies among mul-
tiple applications. 

4) Impact on Global APL 

In order to achieve balanced on-chip packet latencies, it 
is possible for the application mapping to increase the overall 
packet latency. The proposed SSS is a performance-aware 
latency balancing mapping algorithm as it uses the max-APL 
as the criterion by which it may be able to achieve better 
latency balancing with much less performance loss compared 
to other criteria such as standard deviations. Figure 10 plots 
the normalized global APLs (g-APLs) of four mapping 
methods. As expected, Global has the minimal g-APL since 
minimizing g-APL is its sole objective. The performance 
loss percentages of the other three algorithms are all within 6% 
because they all have minimization of max-APL as their 
optimization objective. Among the three algorithms, SSS 
only slightly increases g-APL compared to Global, by less 
than 3.82% and is better than SA (4.82% loss) and MC (5.35% 
loss). This means that the benefits of balanced latency in the 
proposed SSS are not obtained at large penalty in overall 
packet latency.  

5) Algorithm Runtime Comparison 

Search-based algorithms such as simulated annealing are 
a tradeoff between runtime and performance. Figure 12 pre-
sents the max-APL results of SA when it is allowed to run for 
different CPU time. The result is normalized to the runtime 
of SSS and plotted in logarithmic scales. Due to the random-
ness of the simulated annealing method, we show the aver-
age of the max-APLs of the eight configurations. The max-
APL derived in SA decreases as the allowed algorithm 
runtime increases, but it has a diminishing gain. As shown in 
Figure 12, SSS outperforms SA even when SA's runtime is 
100X larger than that of SSS. In addition, while the max-
APL difference between SA and SSS is not very large, we 
have seen from Table 4 that the dev-APL between the two 

 
Figure 9. Max-APLs for different configurations. 

 
Figure 10. g-APLs for different configurations. 

 
Figure 11. Dynamic power for different configurations. 

 
Figure 12. Simulated annealing results as a function of runtime. 

TABLE 4. DEV-APL FOR DIFFERENT CONFIGURATIONS. 

 C1 C2 C3 C4 C5 C6 C7 C8 

Global 2.094 1.630 1.877 1.774 2.140 2.030 1.262 2.160 

MC 0.087 0.162 0.042 0.037 0.036 0.114 0.298 0.123 

SA 0.060 0.020 0.091 0.114 0.060 0.241 0.110 0.022 

SSS 0.006 0.005 0.007 0.010 0.005 0.002 0.002 0.014 
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methods has an average of around 6X difference when SA is 
allowed to have similar runtime as SSS. 

6) Power Consumption 

In addition to the network performance, we also evaluate 
the NoC power consumption of different mapping algorithms. 
While the static power is approximately the same for differ-
ent schemes,  the dynamic NoC power depends on the total 
number of packets injected to the network per unit time and 
the average number of hops per packet. Figure 11 presents 
the dynamic power comparison. As can be observed, the 
proposed SSS algorithm has almost negligible power over-
head with less than 2.7% compared to Global, and is slightly 
better than both MC and SA, illustrating that SSS does not 
penalize overall NoC power. 

In summary, Global achieves the minimal global average 
packet latency. However, the Global solutions experience the 
worst imbalance among the four methods under comparison. 
SA can obtain near-optimal solutions at the cost of very large 
runtime. Similarly, as another randomized algorithm, MC 
can also find the optimal solution theoretically provided with 
sufficiently long runtime, but its performance in practice is 
much worse than SA. In comparison, our proposed SSS algo-
rithm is able to achieve near-optimal solutions in terms of 
latency balancing in a very short runtime and, at the same 
time, incur little overall packet latency and power consump-
tion overhead. 
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VII. CONCLUSION 

This paper addresses the important issue of balancing on-
chip network latency in multi-application mapping for chip 
multiprocessors. We formulate the problem of on-chip laten-
cy balanced mapping (OBM) for multiple concurrently run-
ning applications. After proving its NP-completeness, we 
propose an efficient heuristic-based algorithm that leverages 
the characteristics of shared cache and memory controller 
traffic. Simulation results show that the proposed algorithm 
can achieve an average reduction of 99.65% in standard de-
viation and 10.42% in maximum average packet latency, 
with less than 3.84% overhead in overall packet latency and 
2.7% more power consumption. This demonstrates the via-
bility of exploiting thread-to-tile mapping to balance the on-
chip latencies among different applications while incurring 
little overall network performance and power degradation. 
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