
1

Implementation-Aware Selection of the Custom
Instruction Set for Extensible Processors
Amir Yazdanbakhsh1*, Mehdi Kamal1, Sied Mehdi Fakhraie1, Ali Afzali Kusha1,

Saeed Safari1, Massoud Pedram2

1School of Electrical and Computer Engineering, University of Tehran, Iran
2EE Department, University of Southern California, USA

a.yazdanbakhsh@gatech.edu, {mehdikamal, fakhraie, afzali, saeed}@ut.ac.ir, pedram@usc.edu

Abstract- This* paper presents an approach for
incorporating the effect of various logic synthesis options and
logic level implementations into the custom instruction (CI)
selection for extensible processors. This effect translates into
the availability of a piecewise continuous spectrum of delay
versus area choices for each CI, which in turn influences the
selection of the CI set that maximizes the speedup per area
cost (SPA) metric. The effectiveness of the proposed approach
is evaluated by applying it to several benchmarks and
comparing the results with those of a conventional technique.
We also apply the methodology to the existing serialization
algorithms aimed at relaxing register file constraints in multi-
cycle custom instruction design. The comparison shows
considerable improvements in the speedup per area compared
to the custom instruction selection algorithms under the same
area-budget constraint.

Keywords: Extensible Processor; Design space
exploration; Hardware/Software codesign; Application
Specific Instruction set Processors; Microarchitecture.

I. INTRODUCTION
Increased rate of embedded applications calls for high

performance, low power consumption, flexibility, and
cost efficiency of systems that realize such applications.
Extensible processors have emerged in the field of
embedded computing as a promising approach to
remedy many shortcomings of ASICs and general-
purpose processors [1]. This approach exploits a simple
general-purpose processor and extends its instruction set
architecture with beneficial custom instructions (CIs) to
provide flexibility and high performance [2]. In
designing these processors, the runtime behavior of
applications in the target domain are analyzed to
determine the critical code segments of the applications.
Based on this information, the base processor is
augmented with a number of special instructions
(custom instructions) for the computationally intensive
parts of the code.

Various algorithms have been developed to identify
and select the CIs in order to minimize the execution
time of the underlying applications in the target
domain [2]-[7]. In the CI identification phase, a pool of

*Presently at College of Computing, Georgia Institute of Technology, USA

feasible CIs is determined subject to meeting pre-
defined constraints (i.e., I/O constraint) whereas in the
CI selection phase, a subset of identified CIs is chosen
based on the specified objective function(s) and subject
to constraint(s) on the layout area.

During the high-level synthesis process, different
implementations of each primitive operation are
explored in order to generate a area-delay Pareto
optimal curve for that operation [8]. Previous works on
CI selection for extensible processors has considered
only a single point in the design space and ignored the
role of subsequent logic synthesis and optimizations on
the physical implementation of the design when
identifying the most effective CIs.

In this paper, we propose a framework to improve the
design of extended processors by considering different
implementations of a primitive for a selected custom
instruction. This is achieved by considering the Pareto
optimal curve (delay versus area) of the CIs. Using this
method, we are able to determine the best
implementation where the area usage of the CI is
minimum while the propagation delay of the CI does not
violate the propagation delay constraint. This
exploration which enables us to employ more CIs in a
predefined area budget and also, more speed gain, is
performed before the CI selection phase of the design
flow. The results show that applying the technique gives
rise to a considerable improvement in the speed
enhancement of the extended processors compared to
the case of the conventional design approach in which
fixed delay and area is considered for each primitive
operation. To the best of our knowledge, this
investigation has not reported for ASIPs in the literature.
Additionally, to have a reasonably low runtime, we had
to use an efficiently fast heuristic technique, which is
called WALK, to find (near) optimal implementation of
each CI. This problem can be reduced to Knapsack
problem, which is an NP-hard algorithm.

The remainder of this paper is organized as follows.
In Section II, related works are briefly reviewed while
motivation of the work along with the problem
definition and formulation are presented in Section III.

2

Section IV describes the proposed approach and
algorithm. Experimental setup and results are discussed
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS
There are several works in the literature focusing on

CI identification and selection algorithm (see,
e.g., [2], [10]-[18]). In [2], an enumeration algorithm
aimed at generating all valid CIs considering just
convexity and I/O constraints was presented. The
concept of binary decision tree was utilized to search
among all valid sub-graphs. Each internal node
represented a potential sub-graph, which was analyzed
based on the specified constraints to identify the validity
of the enumerated CIs. The inclusion or exclusion of a
node in a sub-graph was distinguished by the movement
towards the right or the left branch, respectively. An
approach similar to [2] and an exact algorithm to
enumerate the entire feasible CIs in a reasonable time
were provided in [10].

Different approaches to reduce the computation time
in the CI identification phase have been proposed
in [11]-[15]. While the architectural space is
comprehensively explored in these works, the selection
of the CIs is accomplished based on a constant area-
delay table derived from the synthesis tool regardless of
logic-level implementation of the primitive cells.
Different algorithms for high-level CI identification for
extensible processors have been proposed in [16]-[18].
In [19], the arithmetic operations of selected custom
instructions are optimized. In this work, to improve the
speedup, the normal hardware blocks were replaced by
the delay-optimized ones.

In [20], a design flow for reconfigurable ASIPs
(rASIPs) has been proposed. In the proposed design
flow, where the processor was described by using LISA
language, the custom instructions were extracted for
mapping them to a coarse grained reconfigurable
architecture. In this work, the CI extraction method
of [22], which did not consider the area usage of the CIs
during the selection phase, was used. A framework for
performance and area trade-off evaluation in the CI
extraction has been proposed in [24]. The information
about how the area usage of each identified CI has been
extracted was not presented in detail. Clearly, no area
usage optimization of the identified CIs before the
selection phase has been utilized. In [25], a
reconfigurable transparent accelerator based on the
look-up table was proposed. Designing this accelerator,
called Programmable Carry Function Unit (PCFU), was
the main focus of the paper. In [26], similar to [25], a
transparent accelerator, named Configurable Compute
Accelerator (CCA), has been proposed.

An ILP-based CI identification framework, which
extracts CIs from the critical code segment, has been
proposed in [27]. The extraction was performed using
the available data bandwidth and transfer latencies
between custom logic and a baseline processor. In [28],
a method to expedite CI generation from the high-level
application descriptions was discussed. An approach for
increasing the number of I/O ports of the CFU to access
the General Purpose Registers (GPRs) has been
suggested in [29]. It was based on the existing idea of
register clustering in VLIW processors without a
significant increase in the size of the GPR files. In [30],
an automated ISE synthesis, which consider both the
user-specified and processor-specific constraints have
been proposed. The authors did not provide the details
of the CI area usage estimation and the way that the
usage is considered in the selection phase. In [6], a
framework for estimating the area utilization and
latencies of custom instructions on lookup-table based
commercial FPGAs was proposed. In [21], multiple
implementations per each special (custom) instruction
were added to the extensible processor. A run-time
system was proposed to dynamically select the
appropriate variation of the special instruction based on
the available hardware resources. This work introduced
a novel run-time adaptive extensible processor to
increase the hardware usage efficiency.

While the aforementioned works have introduced
novel algorithms and architectures to increase the
flexibility and reconfigurability of custom instruction
selection and implementation, they have not considered
different synthesis constraints (in terms of area and
delay) for each custom instruction during the CI
selection phase in the ASIP design flow. We should
mention that the idea of using different area-delay
implementation of primitives has been used in other
fields of digital circuit design such as high level
synthesis [8] and reconfigurable architecture
design [20]. In these fields, the objective functions and
as well the granularity of the exploration are different
than those used in the ASIP design flow considered in
this work.

III. MOTIVATION AND PROBLEM FORMULATION
In this section, first, we describe the motivation of the

work by an example. Next, key concepts in the field of
custom instruction are formally presented. Also, the
problem of finding a subset of CIs that maximizes the
total speedup per area while satisfying an area budget
constraint is formulated.

A. Motivation
The CI selection algorithms select a subset of

instructions from the generated CIs in the CI

3

identification phase such that the speedup per area
(SPA) metric is maximized while an area budget
constraint is not violated [2][6]. Previous works consider
a constant value for the delay and area of the primitive
operations. Whereas, we consider different logic
implementations (different delays and areas) of the
primitive operations in the algorithm to maximize the
SPA parameter. Note that the SPA merit function is
utilized in the CI selection phase which is after the CI
identification phase. The proposed technique is applied
in the stage between identification and selection phases
and its efficiency is independent from the merit function
used in the selection phase. Hence, in this work, without
loss of generality, we use the SPA metric for the CI
selection under a predefined area budget.

Figure 1 shows two custom instructions generated
from a data flow graph example under micro-
architectural constraints. The CI selection algorithm
should make a decision between these two CIs and select
the one which is optimum in terms of the SPA metric. In
the case of the first CI, we assume that the area and delay
are fixed, and hence, SPA is fixed too. In the case of the
second CI, the (32-bit) adder primitive is synthesized
under different delay constraints assuming fixed areas
and delays for the other primitives. Different delay
constraints are synthesized with different area values due
to different logic implementations. The area versus delay
characteristic for this primitive is depicted in Figure 2.
The characteristic is an area-delay Pareto optimal curve.
As shown in this figure, the area of the synthesized 32-
bit adder decreases as the delay constraint increases. The
discontinuity in the characteristic originates from the use
of two micro-architecture implementations of the adder
(carry look-ahead adder on the left and ripple-carry adder
on the right.)

(a)

(b)

Figure 1. Two feasible custom instructions generated under micro-
architectural constraints. a) CI(a) b) CI(b).

Figure 2. Area versus delay Pareto optimal curve for a 32-bit
addition primitive.

The total area and critical path delay of the two CIs
are calculated as follows:

Custom Instruction (a):
psXORDXORDaCP 100)()(=+=

1282 A(XOR)= = aArea
Custom Instruction (b):

 ps+ R)= D(ADD)(OR)+ D(XO=D(ADD)+ DbCP 90

189)(2 += ADDA)ND)+ A(XOR A(OR)+A(A=A(ADD)+
b

Area

where CP stands for critical path delay of the CIs and
A(x) and D(x) show the area and delay values of the
operation x, respectively.
Table 1. Delay and area of some primitive operations. The area
values are normalized to the area of a 2-inputs NAND gate.

Operation Delay(ps) Area (# of two-inputs
NAND gate)

AND (32-bit) 40 41
OR (32-bit) 40 42

XOR (32-bit) 50 64

In Figure 3, the SPA versus delay curves of the adder

primitive (obtained using Figure 2 and Table 1) for the
two CIs are presented. These characteristics suggest that
the decision on the CI selection depends on the delay
constraint imposed by the system designer. The dashed
line corresponds to the SPA of CI(a). It means that CI(b)
are preferred to be selected in for the delays in the range
of 1.21ns and 2.02ns and greater than 2.36ns while for
the others the CI(a) should be selected.

Figure 3. Speedup per Area (SPA) versus delay constraint for each of
the CIs given in Figure 1.

4

This simple example demonstrates that integrating
logic-level synthesis information into the architecture-
level CI selection algorithms can potentially improve the
SPA parameter. In this paper, we present a CI extraction
method in which CIs are selected based on the logic-
synthesis information of the primitives.

B. Problem Formulation
A data flow graph (DFG), G = (V∪Vin, E), is an

acyclic directed graph where V and Vin denote the sets of
primitive operations in the basic processor and input
variables of the basic blocks, respectively, and E, is the
set of edges representing the data dependencies between
the operations[5]. A custom instruction C is a sub-graph
of G, induced by the subset of the nodes in V. The total
number of predecessor nodes that are not in C and have
at least one head endpoint to a node in C is denoted by
INC. Similarly, the total number of nodes in C that have
at least one head endpoint to the nodes that are not in C
is denoted by OUTC. In other words, INC and OUTC
represent the number of input values used by the
primitive operations in C and the number of values
produced by C to be used in other operations not in C,
respectively. Also, the convexity of the custom
instruction C means that the sequence of vertices in
every path between two nodes in C comprises of nodes
that also belong to C. The reason for considering convex
CIs is to ensure the existence of a feasible scheduling
solution [5].

Finally, counts of permissible read and write ports of
the register file, which are imposed by the micro-
architectural features, are denoted by Rin and Rout. Since
we do not allow accessing memory in the execution
pipeline stage, we consider the memory operations (e.g.
load and store) as forbidden nodes and exclude them
from the custom instruction identification (see,
e.g., [10][14]).

The problems of CI identification and selection may
be stated as follows:
Problem 1: Given a DFG of an application, enumerate
the set of feasible sub-graphs (CIs) considering the
following constraints:

1) INC ≤ Rin,
2) OUTC ≤ Rout,
3) There should not be any forbidden nodes in the

enumerated sub-graphs, and
4) Each sub-graph should be convex.

Problem 2: Given the set of feasible CIs, the maximum
delay constraint, Delaymax, and the area-delay Pareto
optimal characteristic for the primitive operations, select
the optimal CI set (in terms of the maximum
performance and minimum area usage) that are pair wise
disjoint and meet the specified area-budget constraint,
Areamax. This problem can be formulated as follows:

where Delaymax is the maximum allowed latency for the
computation of the custom instructions. In the cases
where this delay is more than one clock cycle, one
should customize the pipeline of the underlying
processor to allow for the execution of multi-cycle
CIs [34]-[36]. Note that due to the existence of the area-
delay characteristic for each primitive operation, there is
a function relating the area of each CI to the delays of
primitive. The performance improvement, Pi, is
calculated for each custom instruction. The maximum
performance improvement is limited by the micro-
architectural constraints that are formulated in [4].

IV. PROPOSED APPROACH
To bridge the gap between existing architecture-level

custom instruction selection algorithms and the logic-
level synthesis parameters such as delay and area, the
framework, which is shown in Figure 4 was developed.
Using this frame work, logic-level synthesis information
is provided to high-level CI selection algorithms. The
approach starts with the source code of the domain-
specific benchmarks in C/C++, which are compiled to
extract the DFG for future processing. Furthermore, the
iteration number of each basic block and the code
coverage of the benchmarks are extracted by applying
inputs. Afterwards, all primitive operations (e.g. add,
subtract, shift, etc.) are synthesized to obtain area-delay
Pareto optimal characteristics. Next, the evaluated
characteristics are stored into a logic-level synthesis
library which is exploited during the architecture-level
CI selection. The architecture-level CI selection
comprises of the following two steps: (1) match
enumeration (step (f)), and (2) template generation (step
(g)). More information regarding these steps may be
found in [13].

The template pool and area-delay Pareto optimal
curve library obtained from logic-level synthesis are
combined together in step (h) to form the integrated
framework. In step (i), we use an optimization algorithm
called WALK to search among the possible set of CIs in
order to maximize the obtainable speed while not
exceeding the specified area budget.

Thus, before applying the TemplateSelection function
on the candidate custom instructions, the WALK
algorithm is called. This algorithm would find the
minimum area for each CI using the area-delay Pareto-
optimal curve (space) of the primitive operations. The

5

pseudo code of the proposed algorithm is shown in
Figure 5. We should note that the area-delay curve is
extracted by synthesis of the primitives under different
delay constraints. Since the points obtained may not be
necessarily continuous, instead of Pareto optimal curve,
we may use Pareto optimal space (see, e.g., Figure 2).

The input of this algorithm is a CI, and its output is
the area and delay of each nodes of the CI. The
algorithm attempts to analyze different delays for the
nodes of the CI to find the minimum area of the CI
without violating the delay constraint. First, the
algorithm assigns the minimum delay value to each
node based on the area-delay curve/space (line 3). The
main part of the algorithm consists of two loops. The
inner loop (line 4) tries to minimize the area by
increasing the delay of each node.

The node delay is increased by moving from one point
to another point in the space for each call of the main
loop. The jump step in the space is determined by the
outer loop. Since there are different slopes for the area-
delay curves of the primitives, one may not use a fixed
jump step. For example, the adder area-delay curve in
Figure 2 has positive and negative slopes in different
regions. A fixed step in these cases may trap the
algorithm in local minima. In each iteration, the while
loop increases the delay of the node (line 6) which
decreases the area more compared to those of the other
nodes (lines 9-11). After finishing the inner loop, the
new area of the CI is compared to its minimum area
obtained before this jump step. If it is lower, then the
new area becomes the minimum area (lines 20-23).

Figure 4. Overview of the proposed architecture- and logic-level
integration framework. The set of custom instruction is generated
under various constraints regarding logic-level parameters.

1: WALK (Template T)
2: FOR (JumpStep = 1; JumStep < MaxJumpStep; JumpStep++) //OuterLoop
3: Assigning Minimum Delay to all Nodes of the T
4: WHILE (True) //Inner Loop
5: FOREACH (Node N of the T)
6: Walk on the area-delay space of the N by jumping step of \
 JumpStep until reach the minimum area
7: AreaReduction = Reduced area of T by reducing the area of N
8: PropagationDelay = Propagation Delay of T by reducing the \
 area of N
9: IF (AreaReduction < Max_AreaReduction) && \
 (PropagationDelay <= PropagationDelayConstraint)
10: CandidateNode = N
11: END IF
12: IF (CandidateNode = NULL)
13: BREAK; // Go to line 20
14: ELSE
15: Update the area-delay of CandidateNode
16: Update the area-delay of T
17: END IF
18: END FOREACH
19: END WHILE
20: IF (T.Area < MinimumTArea)
21: BestAreaDelay = area-delay of Nodes
22: MinimumTArea = T.Area;
23: END IF
24: RETURN BestAreaDelay
Figure 5. The pseudo code of the WALK algorithm.

V. RESULTS AND DISCUSSION
In this section, we compare conventional custom

instruction selection approaches in which only one
implementation of the primitive function is considered
(fixed values for delay and area) with our proposed
approach.

The area and delay of a CI depend on the area and
delay of the primitives used in the CI. The area is equal
to the summation of the area of all the primitives and the
delay of the CI is equal to the summation of the delay of
the primitives in the critical path. Hence, to calculate the
area and delay of each CI, first, we need to find the area
and delay of each primitive. The primitive area and delay
are calculated using the synthesis tool. In the
conventional approach, for each primitive, only one
implementation is considered. Because in the ISA
extension problem the goal is to increase speed
enhancement, in the conventional approach, for each
primitive, the implementation with the lower propagation
delay is used. The area and delay of these
implementations are used in the identification and
selection phases. Hence, in this paper, for both the
conventional and proposed approaches, first, the
primitives were synthesized based on the minimum delay
criterion. In the identification phase, only the CIs whose
delays were smaller than the predefined maximum
propagation delay constraint were identified. Then, the
delay and the area of the CIs were calculated based on
these area and delay values. Next, only for the proposed
scheme, after the identification, the area-delay space was
explored to find the best CI implementation. Note that

6

the constraints and objectives of the ISA extension for
both proposed and conventional method were similar.

These two approached were applied on some
embedded applications as benchmark suits. For this
purpose, we used seven domain-specific embedded
applications from a wide range of domains. The selected
benchmarks included IPSec and MD5 from
PacketBench [31], LMS and ADPCM from the SNU-RT
benchmark suits [32], and G271 Encode/Decode and
BitCounter from MiBench[33]. All the applications were
compiled by GCC to generate the 3-address intermediate
representation, called GIMPLE. We also implemented a
parser to extract the DFG of the basic blocks in all the
benchmarks. As an example, Figure 6 shows one of the
basic blocks of the G721decoder benchmark (a basic
block in Quantize function).

Figure 6. The DFG of a basic block in Quantize function of the
G721decoder benchmark.

To obtain area-delay Pareto optimal characteristics,
all primitive operations were synthesized using the
Synopsys DC synthesis tool and a 90nm standard cell
library. We imposed a wide range of delay constraints
during the synthesis and selected those who met the
constraint. All area values were normalized to the area of
a two-input nand gate. Finally, the discrete set of 2-tuple
points (delay, area) for each primitive was stored in the
library to be utilized for the template selection algorithm
of the framework depicted in Figure 4. In Table 2, some
details about the 32-bit primitives which we use to
generate the CIs are presented. The table contains the
minimum and maximum values for the area and delay of
each primitive as well as the number of the optimal
Pareto curves that were considered during the area-delay
exploration using the WALK algorithm.

In this work, for both conventional and proposed
methods, the maximum propagation delay and also the
I/O constraints were considered as 1 ns and 4/4,
respectively. As an example, Figure 7 depicts the
selected CIs by two methods for the G721decoder
benchmark when the area constraint was 350. In this
case, the performance improvements for the
conventional and proposed approaches were 6.1% and
8%, respectively.

Table 2. Minimum and maximum values for the area and delay of
each primitive and also, the number of the optimal Pareto curves.

Primitive Name Minimum Maximum Points in Pareto-Optimal
Curve Area Delay(ns) Area Delay (ns)

SUB 225 0.5 650 3.44 289
ADD 200 0.5 472 3.4 267

SHR / SHL 326 0.19 1358 0.47 28
EQT / NEQ 87 0.16 295 0.22 7
GRT / LES 115 0.21 315 0.69 44

AND 41 0.04 41 0.04 1
OR 42 0.05 42 0.05 1

XOR 64 0.05 64 0.05 1

In the following discussion, we use the term

“Saturation Point” to denote the upper bound on area
constraint value above which the attainable performance
will not improve anymore.

(a)

AND ADD

IN1 IN2 IN3 IN4

out1 out2

AND AND

IN1 IN2 IN3 IN4

out1 out2

CI1 CI2
(b)

Figure 7. The CIs obtained by the (a) conventional and (b) proposed
approaches in the case of the G721benchmark when the area
constraint is 400.

SPA results of applying both approaches for the
benchmarks are reported in Figure 8. The results show
that the proposed algorithm outperforms the
conventional approach under all area-budget constraints.
When comparing the approaches for these benchmarks,
two cases are encountered. In the first case, the two
curves converge to each other by increasing the area
constraint. This case happens for all benchmarks except
for IPSec. In the second case, the performance
improvement of the proposed approach is higher for all
area-budget constraints. For the results belonging to the
first case, the proposed algorithm always reaches the
saturation point at lower area constraints (costs) than
those for the conventional algorithm. The saturation
points for each of the two algorithms are shown with
arrows in Figure 8. In the second case (IPSec
benchmark), except for the area constraint of 500 where
the performance improvements of the two approaches
are the same, the proposed algorithm leads to a higher
improvement for a given area constraint.

7

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. Performance improvement versus area-budget constraint. a) MD5, b) LMS, c) G721Encode, d) G721Decode, e) Adpcm, f)
BitCounter, g) IPSec.

As mentioned before, selecting CIs is performed by
maximizing the SPA metric. Figure 9 shows SPA values
of the selected CIs obtained by the proposed algorithm
normalized to those of the conventional method. As the
results in this figure show, for all the benchmarks, the
normalized SPA values are positive (except for few area-
budget constraints which the values are zero) showing
that the proposed method outperforms the conventional
approach. However, after the saturation point, the

performance gains of the two approaches become equal.
The reason for the saturation of both approaches is that
the conflicts due to overlaps between CIs prevent adding
further CIs. Therefore, increasing area constraint does
not enable us to add further CIs for improving the
speedup. It should be noted that since our proposed
approach is more efficient compared to the conventional
approach, it reaches the saturation point at smaller areas.

0%

20%

40%

60%

0 20000 40000 60000

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 35000 Area = 50000

0%

20%

40%

60%

0 5000 10000 15000Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 7000 Area = 11000

0%

20%

40%

60%

0 10000 20000

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 12000

Area = 24000 0%

20%

40%

60%

0 5000 10000 15000 20000 25000 30000

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 13000

Area = 28000

0%

20%

40%

60%

0 2000 4000 6000 8000Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 3000

Area = 6000
0%

20%

40%

60%

0 2000 4000 6000Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 4500 Area = 6500

0%

20%

40%

60%

0 5000 10000

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Area Constraint(# of 2-input NAND Gate)

Conventional Proposed

Area = 7000Area = 4000

8

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 9. The speedup per area metric of the proposed algorithms normalized to that of the conventional algorithm. a) MD5, b) LMS, c)
G721Encode, d) G721Decode, e) Adpcm, f) BitCounter, g) IPSec.

0%

20%

40%

60%

80%

100%

120%

0 20000 40000 60000

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

0%

20%

40%

60%

80%

100%

120%

0 5000 10000 15000 20000

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

0%

20%

40%

60%

80%

100%

120%

0 5000 10000 15000 20000

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

0%

20%

40%

60%

80%

100%

120%

0 5000 10000 15000 20000 25000
No

rm
al

ize
d

SP
A

Area Constraint(# of 2-input NAND Gate)

0%

20%

40%

60%

80%

100%

120%

0 2000 4000 6000 8000

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

0%

20%

40%

60%

80%

100%

120%

0 2000 4000 6000

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

0%

20%

40%

60%

80%

100%

120%

0 5000 10000

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

9

The increase in SPA may be achieved by either
increasing the speedup factor or reducing the hardware
cost. As shown in Figure 8, the speedup of the proposed
algorithm is higher than that of the conventional
approach. Additionally, the area usage should be less
than or equal to the area-budget constraint. The average
area usage of the two approaches under different area
constraints are shown in Error! Not a valid bookmark
self-reference.. In nearly all cases, the results show that
the average area usage of the proposed is less than that of
the conventional approach. In the case of Bitcounter, the
proposed technique used more area on average while the
performance improvement was higher too leading to
higher SPA values. To make this concept clearer, the
percentage of area budget usage in both approaches for
Adpcm, LMS, and MD5 benchmarks are demonstrated
in Figure 10 under different area constraints,
respectively. These results indicate that for higher area-
budget constraints, the proposed approach has a lower
area usage and higher or equal performance
improvements.

Table 3. Average area usage and area reduction percentage for the
two approaches.

Benchmarks
Average Area Usage

(# of 2-input NAND gate) ࢒ࢇ࢔࢕࢏࢚࢔ࢋ࢜࢔࢕࡯ࢇࢋ࢘࡭ .ࢍ࢜࡭ࢊࢋ࢙࢕࢖࢕࢘ࡼࢇࢋ࢘࡭ .ࢍ࢜࡭
Conventional Proposed

IPSec 6155 5404 0.8779
LMS 6917 4591 0.6637

G721Encode 12922 10539 0.8155
G721Decode 15933 11889 0.7461

Adpcm 3792 2660 0.7014
BitCounter 3332 3340 1.0024

MD5 30983 23473 0.7576

To study the efficacy of the proposed algorithm for
multi-cycle operations, we again compared its results
with those of the conventional algorithm. In multi-cycle
operations, the custom instructions are executed in more
than one cycle. These instructions become multi-cycled
using methods that are categorized as serialization
algorithms [5]. In this work, we consider instructions
with a delay constraint of three clock cycles. We
assumed the working frequency of the base processor
was 1GHz in the 90nm CMOS technology.

The saturation points for the multi-cycle CIs are
presented in Table 4. The results reveal that our approach
reaches the saturation point at lower area usage. In terms
of performance, in the case of the approach presented in
this work, the improvements are the same or higher when
compared to those of the conventional technique. In
Figure 11, the normalized SPA’s and performance
improvements are presented. The results show that under
all area constraints the performance improvements
obtained in our approach is either higher or identical to
those of the conventional technique. In the case of
normalized SPA values, except for a couple low area

constraints in LMS and G721Encode, the achieved SPA
metrics by our proposed method is higher than those of
the conventional approach. Even for these negative
normalized SPA values, (the area constraint 1000 in
G721Encode and 1000 and 1500 in LMS benchmarks),
the performance improvements are higher.

(a)

(b)

(c)

Figure 10. The percentage of area usage of the conventional and
proposed approaches under different area constraints. a) Adpcm, b)
LMS, c) MD5.

Table 4. Area constraint and Performance (Per.) of saturation points
achieved by two approaches.

Benchmarks
Saturation Point

Conventional Proposed
Area Per. Area Per.

IPSec 8000 46.36% 4000 49.43%
LMS 11000 16.82% 6000 16.82%

G721Encode 24000 20.97% 12000 21.16%
G721Decode 28000 21.92% 13000 22.25%

Adpcm 6000 25.57% 4000 25.57%
BitCounter 9500 48.39% 7500 48.64%

MD5 55000 54.68% 35000 54.68%

0%

40%

80%

120%

0 2000 4000 6000 8000

Pe
rc

en
ta

ge
 o

f A
re

a
Us

ag
e

Area Constraint(# of 2-input NAND Gate)

Area usage (Conventional) Area usage (Proposed)

0%

40%

80%

120%

0 5000 10000 15000 20000 25000Pe
rc

en
ta

ge
 o

f A
re

a
Us

ag
e

Area Constraint(# of 2-input NAND Gate)

Area usage (Conventional) Area usage (Proposed)

0%

40%

80%

120%

0 20000 40000 60000Pe
rc

en
ta

ge
 o

f A
re

a
Us

ag
e

Area Constraint(# of 2-input NAND Gate)

Area usage (Conventional) Area usage (Proposed)

10

(a)

(b)

(c)

(d)

(e)

(f)

(g)

0%
20%
40%
60%
80%
100%
120%
140%

-30%

-10%

10%

30%

50%

70%

90%

0 20000 40000 60000 80000

No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Performance Improvement

0%

20%

40%

60%

80%

100%

120%

140%

-30%

-10%

10%

30%

50%

70%

90%

0 5000 10000

No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Performance Improvement

0%
20%
40%
60%
80%
100%
120%
140%

-30%
-10%
10%
30%
50%
70%
90%

0 5000 10000 15000 20000 25000

No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Performancec Imrovement

0%
20%
40%
60%
80%
100%
120%
140%

-30%
-10%
10%
30%
50%
70%
90%

0 10000 20000 30000 No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Performancec Imrovement

0%
20%
40%
60%
80%
100%
120%
140%

-30%
-10%
10%
30%
50%
70%
90%

0 2000 4000 6000 8000 10000

No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Performancec Imrovement

0%
20%
40%
60%
80%
100%
120%
140%

-30%
-10%
10%
30%
50%
70%
90%

0 2000 4000 6000 No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Perfromance Improvement

0%
20%
40%
60%
80%
100%
120%
140%

-30%

-10%

10%

30%

50%

70%

90%

0 5000 10000 15000 No
rm

al
ize

d
pe

rf
or

m
an

ce

im
pr

ov
em

en
t

No
rm

al
ize

d
SP

A

Area Constraint(# of 2-input NAND Gate)

Normalized SPA Normalized Performance Improvement

11

Figure 11. Normalized performance improvement achieved by proposed algorithm in compare to conventional method for multi-cycle custom
instructions imposing delay constraint equal to two times of clock cycle latency. a) MD5, b) LMS, c) G721Encode, d) G721Decode, e) Adpcm,
f) BitCounter, g) IPSec.

VI. CONCLUSION
In this work, we proposed to integrate logic-level

synthesis information into the existing high-level custom
instruction selection algorithms for application specific
instruction processors (ASIPs). The technique made use
of the area-delay Pareto optimal characteristics of
primitive operations obtained from the synthesis tool to
generate the set of CIs that maximizes a predefined merit
function. In this work, for this function, we utilized
Speedup per Area (SPA) under the area-budget
constraint as the metric function. To explore the area-
delay Pareto optimal space, a heuristic algorithm called
WALK was used. The algorithm searched among
different area-delay possibilities for each primitive in all
candidate CIs to reduce the CI area budget. We applied
our proposed method to some benchmarks from different
domains in embedded processors including seven
domain-specific embedded applications from a wide
range of domains. The selected benchmarks included
IPSec and MD5 from PacketBench, LMS and ADPCM
from the SNU-RT benchmark suits, and G271
Encode/Decode and BitCounter from MiBench. Our
results, which were obtained for different area
constraints, showed that up to 10% improvement in the
achievable performance compared to the conventional
custom instruction selection algorithms under the same
area-budget constraint could be achieved. Furthermore,
they revealed that, in most cases, our proposed algorithm
reached the maximum attainable performance
improvement using lower areas compared to those of the
conventional approach. We also applied this
methodology to the existing serialization algorithms. The
comparison of the results indicated that up to 80% speed
up per area improvement compared to the traditional
multi-cycle algorithms under the same area constraints
may be obtained.

REFERENCES
[1] K. Keutzer, S. Malik, and A.R. Newton, "From ASIC to ASIP: the next

design discontinuity," in Proceedings of International Conference on
Computer Design: VLSI in Computers and Processors, 2002, pp. 84-90.

[2] N. T. Clark, H. Zhong, and S. A. Mahlke, “Automated Custom
Instruction Generation for Domain-Specific Processor Acceleration,” in
IEEE Trans. On Computers, vol. 54, no. 10, pp. 1258-1270, Oct. 2005.

[3] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in
Proc. 40th Des. Autom. Conf., Jun. 2003, pp. 256–261.

[4] A. Yazdanbakhsh, M. Kamal, M. E. Salehi, H. Noori, and S. M.
Fakhraie, “Energy-Aware Registerfile Design Space Exploration for
Extensible Processors,” in Proc. 10th International Conference on
Embedded Computer Sysmtes: Architectures, Modling and Simulation,
July. 2010, pp. 273-281.

[5] C. Galluzi, and K. Bertels, “The Instruction-set Extension Problem: A
Survey,” in ACM Transaction on Reconfigurable Technology and
Systems, vol 4, no. 2, pp. 18-1:18-28, May, 2011.

[6] S. K. Lam, T. Srikanthan, and C. T. Clarke “Selecting Profitable
Custom Instructions for Area-Time-Efficient Realization on

Reconfigurable Architectures,” in IEEE Trans. on Industrial
Electronics, vol. 56, issue 10, pp. 3998-4005, Oct. 2009.

[7] A. Yazdanbakhsh, M. E. Salehi, and S. M. Fakhraie “Customized
Pipeline and Instruction Set Architecture for Embedded Processing
Engines,” in Journal of Supercomputing, vol. 68, No. 2, pp. 948-977,
Mau. 2014.

[8] Ph. Coussy and A. Morawiec. High-Level Synthesis from Algorithm to
Digital Circtuit. Springer Science, 2008.

[9] N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. Pearson Education, 2005, pp. 678.

[10] L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate algorithms
for the extension of embedded processor instruction sets,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 7, pp. 1209–
1229, Jul. 2006.

[11] P. Yu and T. Mitra, “Scalable custom instructions identification for
instruction-set extensible processors,” in Proc. Int. Conf. Compilers,
Architectures, and Synth. Embed. Syst., Sep. 2004, pp. 69–78.

[12] X. Chen, D. L. Maskell, and Y. Sun, “Fast Identification of Custom
Instructions for Extensible Processors,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 26, no. 2, pp. 359– 368, Feb. 2007.

[13] A. Yazdanbakhsh, M. E. Salehi, S. Safari, and S. M. Fakhrair, “Locality
Considerations in Exploring Custom Instruction Selection Algorithms,”
in Proc. 2ndAsia Symposium on Quality Electronic DesignConf., August.
2010.

[14] P. Biswas, S. Banerjee, N. D. Dutt, L. Pozzi, and P. Ienne, “ISEGEN:
An Iterative Improvement-Based ISE Generation Technique for Fast
Customization of Processors,” IEEE Trans. Very Large Scale
Integration Syst., vol 14, no. 7, pp. 754-762, Jul. 2006.

[15] P. Bonzini and L. Pozzi, “Polynomial-time subgraph enumeration for
automated instruction set extension,” in Proc. DATE, Apr. 2007, pp.
1331–1336.

[16] T. Li, W. Jigang, S. Lam, T. Srikanthan, and X. Lu, “Efficient Heuristic
Algorithm for Rapid Custom-Instruction Selection,” in Proc. 8th
IEEE/ACIS International Conference on Computer and Information
Science, 2009, pp. 266-270.

[17] T. Li, W. Jigang, Y. Deng, T. Srikanthan, and X. Lu, “Fast
Identification Algorithm for Application-
Specific Instruction-Set Extensions,” in Proc. International Conference
on Electronic Design, 2008, pp. 1-5.

[18] K. Seto and M. Fujita, “Custom Instruction Generation with High-Level
Synthesis,” in Proc. 6th IEEE Symposium on Application Specific
Processors, June. 2008, pp. 14-19.

[19] A. K. Verma, Y. Zhu, P. Brisk, and P. Ienne, “Arithmetic optimization
for custom instruction set synthesis,” in Proc. 7th IEEE Symposium on
Application Specific Processors, July. 2009, pp. 54-57.

[20] L. Jozwiak, N. Nedjah, M. Figueroa, “ Modern develpomnet methods
and tools for embedded sytems: A survey”, in the VLSI Journal of
Integration, Vol(43), pp. 1-33, 2010.

[21] L. Bauer, M. Shafique, and J. Henkel, “Efficient Resource Utilization
for an Extensible Processor through Dynamic Instruction Set
Adaptation,” in IEEE Transaction on Very Large Scale Integration
(VLSI) Systems, vol. 16, 2008.

[22] [Ref-1] K. Karuri, A. Chattopadhyay, X. Chen, D. Kammler, L. Hao,
R. Leupers, H. Meyr, “A Design Flow for Architecture Exploration and
Implementation of Partially Reconfigurable Processors”, in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol(16),
No.(10), pp. 1281-1294, 2008.

[23] [Ref-2] K. Karuri, M. A. Al Faruque, S. Kraemer, R. Leupers, G.
Ascheid, and H. Meyr, “Fine-grained application source code profiling
for ASIP design,” in Proc. Des. Autom. Conf. (DAC), 2005, pp. 329–
334.

[24] [Ref-3] U.D. Bordoloi, H.P. Huynh, S. Chakraborty, and T. Mitra,
“Evaluating Design Trade-offs in Customizable Processors, in
Proceedings of Design Automation Design (DAC), 2009, pp. 244-249.

[25] [Ref-4] S. Yehia, N. Clark, S. Mahlke, K. Flautner, “Exploring the
Design Space of LUT based Transparent Accelerators”, in Proceedings
of international conference on Compilers, architectures and synthesis
for embedded systems (CASES), 2005, pp.11-21.

12

[26] [Ref-5] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application Specific Processing on a General Purpose Core via
Transparent Instruction Set Customization,” in Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture,
2004, pp. 30-40.

[27] [Ref-6] K. Atasu, C. Ozturan, G. Dundar, O. Mencer, and W. Luk,
“CHIPS: Custom Hardware Instruction Processor Synthesis,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), Vol. (27), No. (3), pp.528-541, 2008.

[28] [Ref-7] K. Atasu, W. Luk, O. Mencer, C. Ozturan, and G. Dundar,
“FISH: Fast Instruction SyntHesis for Custom Processors,” in IEEE
Transaction on Very Large Scale Integration (VLSI) Systems, Vol. (20),
No. (1), pp. 52-65, 2012.

[29] [Ref-8] K. Karuri, A. Chattopadhyay, M. Hohenauer, R. Leupers, G.
Ascheid, and Heinrich Meyr, “Increasing Data-Bandwidth to
Instruction-Set Extensions through Register Clustering,” in Proc. of
IEEE/ACM Intl. Conf. on Computer-Aided Design (ICCAD), 2007, pp.
166-171.

[30] [Ref-9] R. Leupers, K. Karuri, S. Kraemer, and M. Pandey, “A Design
Flow for Configurable Embedded Processors based on Optimized
Instruction Set Extension Synthesis,” in Proc. Design, Automation and
Test in Europe, 2006.

[31] R. Ramaswamy and T. Wolf, “PacketBench: A tool for workload
characterization of network processing,” in Proc. of IEEE International
Workshop on Workload Characterization, October 2003, pp. 42-50.

[32] SNU-RT Real Time Benchmarks.[Online]. Available:
http://archi.snu.ac. kr/realtime/benchmark/.

[33] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. of Int. workshop on workload
characterization, 2001, pp. 3-14.

[34] H. Lin and Y. Fei, “Resource Sharing of Pipelined Custom Hardware
Extension for Energy-Efficient Application-Specific Instruction Set
Processor Design,” in ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 17, no. 4, 2012.

[35] Altera, Nios II Custom Instruction User Guide, Apr. 2010 [Online].
Available: http://www.altera.com/literature/ug/ug nios2 custom in-
struction.pdf

[36] C. Favi, T. Kluter, Ch. Mester, and E. Charbon, “Optionally-Clocked
Instruction Set Extensions for High Efficiency Embedded Processors,”
in IEEE Transactions on Circuits and Systems, vol. 59, no. 3, 2012.

