
Application Mapping for Express Channel-Based

Networks-on-Chip

Di Zhu, Lizhong Chen, Siyu Yue, and Massoud Pedram

University of Southern California

Los Angeles, California, USA 90089

{dizhu, lizhongc, siyuyue, pedram}@usc.edu

Abstract—With the emergence of many-core multiprocessor

system-on-chips (MPSoCs), the on-chip networks are facing

serious challenges in providing fast communication for various

tasks and cores. One promising solution shown in recent studies

is to add express channels to the network as shortcuts to bypass

intermediate routers, thereby reducing packet latency. However,

this approach also greatly changes the packet delay estimation

and traffic behaviors of the network, both of which have not yet

been exploited in existing mapping algorithms. In this paper, we

explore the opportunities in optimizing application mapping for

express channel-based on-chip networks. Specifically, we derive a

new delay model for this type of networks, identify their unique

characteristics, and propose an efficient heuristic mapping algo-

rithm that increases the bypassing opportunities by reducing

unnecessary turns that would otherwise impose the entire router

pipeline delay to packets. Simulation results show that the pro-

posed algorithm can achieve a 2~4X reduction in the number of

turns and 10~26% reduction in the average packet delay.

Keywords—network-on-chip; application mapping; express

channels

I. INTRODUCTION

With the integration of tens to possibly a hundred of cores on
a chip [8][18], multiprocessor system-on-chips (MPSoCs) have
been provided with tremendous opportunities for parallel exe-
cution. A key challenge of the parallel paradigm is the design
of high performance on-chip network (a.k.a. OCN or NoC) that
can connect various IP blocks or tasks running on different
cores. However, as the network sizes continue to grow, tradi-
tional NoC topologies such as mesh or concentrated mesh [1]
have been facing serious performance issues due to their inher-
ent nature of hop-by-hop packet forwarding.

A more scalable approach that has been paid increasing at-
tention is to add express channels [7][12][14] to the tile-based
NoCs. These express channels act as shortcuts between non-
neighboring tiles to bypass all intermediate routers, thereby
accelerating packet transfer. Nevertheless, the addition of ex-
press channels significantly changes the traffic patterns and
requires different delay calculation models between tiles. For
example, packets on express channels cannot make turns; so
packets need to get off the express channels and go through the
entire router pipeline stages in order to make a turn, which
slows down the packet transport. These and other new charac-
teristics exhibited in express channel-based networks are not
captured and exploited in existing application mapping algo-
rithms that are responsible for mapping tasks to physical tiles.

In this paper, we investigate the opportunity of optimizing

application mapping for express channel-based networks. Spe-
cially, we identify the critical differences between traditional
networks and express channel-based networks, derive a new
delay model reflecting express channels, mathematically for-
mulated the corresponding application mapping problem, and
proposed an efficient heuristic mapping algorithm based on the
key observations of the problem characteristics. The proposed
algorithm, Turn Reduction Algorithm for Mapping (TRAM), is
able to not only effectively map tasks with large communica-
tion rate closer to each other as what have been achieved in
previous algorithms, but also maximize the alignment of heavi-
ly communicating tasks in both rows and columns, thus
reducing unnecessary turns that would otherwise impose the
long delay of router pipeline to packets.

The rest of the paper is organized as follows. Section II pro-
vides more background on express channel-based on-chip
networks and motivates the need for new mapping algorithms.
Section III formulates the problem, and Section IV explains the
details of the proposed TRAM algorithm. Section V and VI
describe evaluation methodology and present simulation results.
Finally, Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Express Channel-Based On-chip Networks

While mesh topology has traditionally been used for tile-
based NoCs, packets in mesh networks must be forwarded hop-
by-hop, which exposes the router delay (e.g., 3~4 cycles) and
link delay (e.g., 1 cycle) at every hop to the packet latency. To
mitigate the latency problem of mesh, particularly for large
networks, concentration [1] (Figure 1b CMesh) has been pro-
posed in which multiple IP blocks or tasks are placed on the
same tile to form a task cluster. All tasks in a task cluster occu-
py one tile and share one router. With a concentration degree
of 4, the network diameter can be reduced by half. However,
due to the layout constraints and the increased router complexi-
ty, it is difficult to employ high concentration degrees, thus
limiting the latency reduction through this technique.

As more research being conducted to improve NoC perfor-
mance, recent studies show promise of adding express channels
on top of concentration to accelerate packet transfer [7][12][14].
Figure 1(c) shows an example of the popular flattened butterfly
(FB) topology [12] that adds separate links to connect two non-
neighbor tiles directly (e.g., from top-left tile to top-right tile).
To better utilize the link resources, a network with multi-drop
express channels (Figure 1d MECS) [7] is proposed to com-
bine separate links to a unified link but with multiple “drops”,
so that no additional input or output ports are needed. Packets
are routed on the express channels as much as possible and use

This work is supported in part by the Software and Hardware Foundations

program of the NSF’s Directorate for Computer & Information Science &

Engineering.

978-3-9815370-2-4/DATE14/©2014 EDAA

non-express channels only if contention occurs. In this way,
intermediate routers on the same row or column can be by-
passed, resulting in only the link latency.

However, in order to change dimension, packets need to get
off the express channels and enter the normal router/switch
pipeline to make the turns. Also, dimension-order routing is
typically used in FB and MECS instead of adaptive routing [7].
This is because adaptive routing may generate a large number
of turns, causing most packets to go through normal routers,
which defeats the purpose of adding express channels.

B. Related Work

Application mapping is an important component in the de-
sign of multiprocessor systems. MPSoC applications such as
video encoder/decoder typically consist of many tasks that are
working collaboratively to perform certain functions. By map-
ping frequently or heavily communicating tasks to physically
close tiles, the average packet delay and power consumption
can be greatly reduced. Due to the importance of application
mapping, a number of mapping algorithms have been proposed.
For example, Hu et al. in [9] use graphs to model the character-
istic of applications and propose a branch-and-bound algorithm
to minimize communication energy of mapping. A two-step
genetic algorithm is proposed in [15] to map applications on
mesh-based NoCs to optimize task graph execution. Murali et
al. focus on minimizing communication delay under bandwidth
constraints in [16]. Chen et al. present mechanisms for joint
optimization by task scheduling, application mapping, data
mapping and routing on NoC-based CMPs [2]. Faruque et al.
use a distributed approach based on agents for application
mapping and greatly lowered the monitoring traffic and com-
putational effort compared to centralized schemes [5]. In [10],
Jang et al. form the mapping of heterogeneous cores on irregu-
lar mesh-based MPSoCs to a mixed-integer programming
problem and proposed two effective heuristic algorithms.

While the above works are very effective in achieving their
corresponding objectives, these algorithms are not able to dis-
tinguish the differences in tile communication latency between
the two types of networks. For instance, in mesh networks, as
long as two tiles (e.g., A and B in Figure 1b) have the same
Manhattan distances from a source tile (e.g., S in Figure 1b),
the latencies are the same; whereas in express channel-based
networks, the tile with less turns has shorter latency (e.g., 7
cycles from S to A in Figure 1c) than the tile with more turns
(e.g., 11 cycles from S to B in Figure 1c). Therefore, applying
existing mapping algorithms to express channel-based NoCs
may result in suboptimal or inefficient mapping solutions.

III. PROBLEM STATEMENT

A. Network, Application, and Average Packet Delay

Several important definitions are given below.

Definition 1 Network Topology:
1) A CMesh network has a network size of tiles.
2) Concentration degree is the number of processing ele-

ments (PEs) that can be placed on one tile.

Therefore, a CMesh-based MPSoC with a concentra-
tion degree of can hold at most PEs.

Definition 2 Application:
3) An application contains a set of tasks { }, each executed

on one PE. Tasks communicate with each other during exe-
cution to exchange data, maintain coherency, etc.

4) A task cluster is a set of tasks that are grouped together
to be placed on one tile of a CMesh network. Concentration
degree indicates a task cluster contains at most tasks.

Since the partitioning of tasks into task clusters greatly de-
pends on the specific functionalities and restrictions of each
task in a particular application, in this paper, we assume the
task clusters are given for an application, and focus on the
main problem of mapping task clusters to tiles on the NoC.

Definition 3 An application mapping solution is a permu-
tation , so that task cluster is
mapped to tile .

In order to give a formal definition of average packet delay,
we define the communication graph of an application and the
tile delay graph of a given NoC topology as follows.

Definition 4 A communication graph is a di-
rected graph, in which each vertex represents a task cluster
 and each edge denotes the communication

from to . The weight associated with edge denotes

the communication rate , i.e., the average number of flits

sent from to per unit time.

Definition 5 A tile delay graph is a complete
directed graph, in which each vertex represents a tile .
There is an edge between any two vertices

(tiles). The weight associated with edge represents the

delay from tile to tile when following the routing path

(e.g., XY routing path) from to .

Given that task cluster is mapped to tile , the average

packet delay of an application can be defined as follows.

Figure 1. On-chip networks without express channels: (a) and (b), and with express channels: (c) and (d).

S A

B

S A

B

(a) Mesh (b) CMesh (c) Flattened Butterfly (d) MECS

Definition 6 The average packet delay (APD) of an appli-
cation can be calculated by

(1)

Note that this equation is applicable to both CMesh networks
as well as networks with express channels. The key difference
is the tile delay model used in task delay graph in Defini-

tion 5, which is discussed next.

B. Delay Models

1) Tile delay model for CMesh networks

Definition 7 Unit-length link delay is the number of
cycles (typically 1) between neighboring tiles. Delays for long
express channels are proportional to the length. Router delay
 is the number of cycles a packet takes to go through a rout-
er, i.e., the number of router pipeline stages.

In CMesh networks without express channels, each packet
has to go through the entire router pipeline for each hop it
travels. Therefore the tile delay on CMesh network without
express channels can be calculated by:

 (2)

where is the Manhattan distance between tile and ,

and is the per router contention latency which depends on
traffic load. In contemporary NoCs, because of the large link-
width (e.g., 256-bit) and low load of real applications, the value
of is usually between 0.5 to 1 cycles per router (also ob-
served in our simulations). Also note that this delay model has
already included the injection router and the ejection router to
account for end-to-end tile delay.

2) Tile delay model for express channel-based networks

To derive the tile delay model for express channel-based
networks, we first define an auxiliary turn function as below:

Definition 8 A turn function is used to identify
whether packets sent from tile to tile need to make a turn

assuming XY routing:

 (3)

The turn function is crucial in determining the packet delay
on express-channel networks. If and are on the same row

or column, the router of will directly send packets to the
express channel from to , so that packets only go through

two router pipelines (the injection router and ejection router)
before reaching the destination tile. Otherwise, packets are sent
to the router of the turning point tile first, which is in the same
column with the destination tile. Packets go through three
routers in total in this case.

With the above turn function , the tile delay model
from tile to tile can be expressed by:

 (4)

Figure 2 exemplifies the base packet latency from tile to
all other tiles in a CMesh-based NoC and express channel-
based networks, assuming and (the 3-cycle
router follows a canonical pipeline design consisting of virtual
channel allocation, switch allocation and switch traversal, with
the optimization of look-ahead routing to hide routing compu-

tation). Figure 2 highlights why algorithms proposed for
CMesh-based NoCs are less effective when applied to express
channel-based NoCs directly. In the CMesh delay model, tile
 , , are are considered to have the same packet delay
to ; whereas in the new delay model with express channels,
and have 33% larger delays compared to the other two.

7

7 11

15

15 19

11

11 15

15 19

23

23 27

19

2 3 41

6 7 85

109 11 12

7

7 11

9

12 13

8

8 12

9 13

14

14 15

13

2 3 41

6 7 85

109 11 12

(a) Tile delay on CMesh (b) Tile delay on MECS
1413 15 16 1413 15 16

Figure 2. Tile delay of packets with source at tile .

C. Problem Formulation

With the above definitions and delay models, we can formu-
late the application mapping problem as follows:
Given:

1) An express channel-based network, containing tiles;

2) The application communication graph , with

communication rate as the edge weight; and

3) The tile delay graph , with delay as the edge

weight;

Find: Mapping of task clusters to tiles:

Minimize the average packet delay:

 (5)

The above formulated problem has the form of a Quadratic
Assignment Problem (QAP). A general QAP is NP-hard [6].
Enumerating all possible solutions is costly even for a
simple NoC, not to mention larger networks. However,
the special characteristics of the tile delay model of express-
channel networks may give us some insights for designing
effective heuristic algorithms.

IV. PROPOSED ALGORITHM

In this section, we propose an efficient heuristic algorithm
that runs in polynomial time for application mapping in express
channel-based networks. The proposed algorithm, Turn Reduc-
tion Algorithm for Mapping (TRAM), utilizes the following two
observations. First, as tiles on the same row or column have
smaller packet delay, aligning task clusters with large commu-
nication rate in the same row or column can effectively reduce
both delay and turns. Second, similar to mapping methods on
CMesh networks, as the link delay linearly depends on the
Manhattan distance between source and destination tiles ac-
cording to Equation (4), it is still beneficial to put task clusters
as close to each other as possible. TRAM contains three main
steps to realize these objectives.

Step 1 Partition task clusters into sets and place each set
on one row of the express-channel network.

The partitioning is based on Kernighan–Lin (KL) algorithm
[11], an efficient heuristic algorithm for solving graph parti-
tioning problems. It attempts to partition a graph into two sets
with equal sizes, such that the sum of edge weights between
vertices in the two sets are minimized (min-cut).

We call KL algorithm in a hierarchical fashion until we get
sets each with task clusters, as shown in Figure 3(a). After
each two-way partitioning, we use a heuristic to determine the
placement of the two sets. Take the partitioning stage in
Figure 3(a) as an example. We name each two sets a KL sec-
tion (i.e., KL sections are labeled 1 to 4). The order among
these four KL sections is decided at the previous stage, and KL
has finished the partitioning in the current four KL sections.
The orders of the pair of sets within each KL section need to be
determined. Consider the KL section 2, which contains the

third and fourth sets. Let

 denote the total communica-

tion rate between the third set and all the sets above KL section

2 (i.e. section 1), and
 denote the total communication rate

between the third set and all the sets below section 2 (i.e. sec-

tion 3 and 4). Similarly we define

 for the fourth

set. We calculate and compare the differences between

high/low communication rate, i.e.

 and

 , and then place the set with higher in

the third row and the other in the fourth row, so that the heavier
communication is put closer to the outside of the KL section.
The orders in other sections are determined similarly. The
complete pseudo code for step 1 is shown below:

for from 1 to

 // current number of sections is

 // in this iteration we get sets

 for from 1 to
 in current section , call KL to get the new -
th and -th sets

 (-th set,)

 (-th set,)

 (-th set,)

 (-th set,)

 if place -th set at -th row
 place -th set at -th row
 else place -th set at -th row
 place -th set at -th row

The time complexity of KL algorithm is since the

graph has vertices. Calculating and takes
 operations. Therefore the time complexity of Step 1 is
 according to the master theorem [3].

Step 2 Distribute task clusters in each set to the columns of
the network.

The first step fixes the positions of rows whereas the order of
task clusters within each row remains unsolved. In Step 2, we

iteratively distributes of task clusters within each row to the
columns. The order of task clusters in the first row is randomly
assigned, of which the possible performance loss can be re-

stored in Step 3. At the iteration, with the task clusters in
the first rows already placed, the placement of the task

clusters of the set is determined to minimize the average
packet delay considering the communication rate between the
current row and the first rows, as shown in Figure 3(b).
The above problem at each iteration is an assignment problem:

In the cost matrix , denotes the APD contributed by

placed at the -th column. It is solved by Hungarian algorithm
[13] optimally. The pseudo code for Step 2 is shown below:

Randomly assign tasks clusters in the first row to each column;
for from 2 to (the -th row)

 Calculate the cost matrix ;

 Call Hungarian with the cost matrix as input;

 Assign task clusters in the -th row to each column accord-
ing to the Hungarian assignment results;

Hungarian algorithm can achieve a time complexity of

 . Calculating the cost matrix has a time complexity

of . Therefore the time complexity of Step 2 is .

Step 3 Rearrange the columns to minimize the link delay of
communication traffic on horizontal links.

The process is similar to Step 1, except that each column is
treated as a node in the input graph of KL algorithm. The time
complexity of Step 3 is .

Taking into account all the three steps, the overall time com-
plexity of the proposed algorithm is .

V. EVALUATION METHODOLOGY

A. Schemes Under Comparison

As mesh network without concentration has much higher la-
tency than other structures, in order to provide more fair
comparison, we use CMesh as the baseline. The following six
application mapping schemes on CMesh and MECS architec-
tures are compared: 1) MC_CMesh (the baseline): Monte
Carlo method on CMesh, which picks the mapping with the
smallest latency among a large number of randomly generated
mapping solutions based on CMesh structure; 2) SA_CMesh:
simulated annealing algorithm on CMesh structure; 3)
MC_MECS: Monte Carlo method on MECS structure; 4)
SA_MECS: simulated annealing algorithm on MECS structure
using the new tile delay model; 5) SA_CMesh(MECS): the
mapping solution is first generated by SA_CMesh, and then
apply the solution on MECS structure; and 6) TRAM: our
proposed approach.

N

N/2

N/2

N/4

N/4

N/4

N/4

…

tc1 tc2 tcn
…

(k-1) rows

kth row

n columns
n

2

n

4

n

2

n

4

n

4

n

4
…

1

2

3

4

h=1 h=2 h=3

……… …

(a) Step 1: Row Placement (b) Step 2: Column arangement (c) Step 3: Column Adjustment

Column 1 Column 2 Column n
N/8

N/8

N/8

N/8

N/8

N/8

N/8

N/8

Figure 3. Three steps of TRAM.

Since Monte Carlo and simulated annealing are algorithms
that have tradeoff between runtime and performance, for fair
comparison, the runtime of both algorithms are configured to
be roughly the same as the runtime of our proposed algorithm.

B. Simulation Setup

The proposed TRAM algorithm is evaluated quantitatively
under both typical and stressed workloads. This includes the
traces of four real applications, namely mpeg4, toybox, vopd,
and mms, as well as four random task graphs generated by
TGFF [4], referred to as tgff_r1, tgff_r2 tgff_sp1 and tgff_sp2.
Figure 4 shows the communication rate graph of mpeg4 and
toybox (vopd and mms are omitted here due to space limita-
tion). Each node denotes a task cluster, and the edge width
indicates the relative magnitude of the communication rate.
The tgff_r1 and tgff_r2 are two random graphs while tgff_sp1
and tgff_sp2 are two series-parallel graphs formed recursively
by joining two sub-graphs in series and parallel, mimicking the
stressed behaviors of multithreaded applications. Collectively,
these eight inputs comprise a representative set of MPSoC
scenarios. A 64-task configuration with concentration degree 4
is simulated for majority of the evaluation. In addition, 256-
task configuration is also evaluated for scalability discussion.

In the simulation results, the APDs are calculated according
to our delay model. Runtime is based on a machine with an
Intel Core i7-3770 processor. NoC power is calculated using
the latest NoC power model dsent [17] under 45nm and 1V.
The unit-length link delay is set to 1 and is set to 3. For
each of the test case, the contention delay is acquired by
feeding the trace in a cycle-accurate NoC simulator.

VI. RESULTS AND ANALYSIS

A. Impact on Performance

We first evaluate the effectiveness of TRAM to reduce turns.
Table I compares the percentage of communication traffic that
needs to make turns in express-channel networks for different
algorithms. It can be seen that the proposed TRAM is able to
achieve an average of 2~4X reduction in the percentage com-

pared to other algorithms. Figure 5 presents the mapping re-
sults obtained by TRAM for mpeg4 and toybox. A dashed
arrow means the packet from source to destination tile needs to
take a turn. When TRAM is used, only 11.8% and 4.2% of the
traffic needs to make turns for mpeg4 and toybox, respectively.
It is worth noting that, while the proposed algorithm is optimiz-
ing for the number of turns, most of the heavily communicating
tasks (as indicated by wider edges) are also mapped close to
each other, as can be seen from Figure 5.

The reduced turns and closer physical distances result in
considerable improvement of packet latency. Figure 6 plots the
results of average packet delay for the eight different test cases.
Compared to the baseline system, the proposed TRAM algo-
rithm reduces the packet delay by 26.5% on average. Also,
TRAM is 10% better than SA_CMesh(MECS). This indicates
that the mapping solution generated from CMesh-based net-
works is not optimal when applied to express channel-based
networks.

B. Impact on Power Consumption

Although the primary objective is to reduce packet delay, the
proposed TRAM is also able to slightly reduce power con-
sumption as a side effect, because the algorithm reduces the
number of routers and links through which packets need to
travel. Table II shows the dynamic power of different mapping
algorithm solutions on various applications. It can be seen that,
even though TRAM does not target for power optimization, it
still achieves the lowest dynamic power consumption among
all schemes.

C. Impact of Pipeline Stages

So far we have assumed a 3-stage router pipeline, which is
an optimized version on top of the canonical 4-stage router.
Equation (5) indicates that the number of router pipeline stages
may affect the latency of express-channel networks. To assess
this impact, Figure 7 compares the mapping results of simulat-
ed annealing on CMesh networks, simulated annealing on
MECS and the proposed TRAM on MECS while varying the
numbers of pipeline stages () from 1 to 4. As can be seen,

1 6

2

4

3

8

12

5

7

9

10

13

11

14

1516

1

62

4

3

8

12

5

7

9

1013 11

14 15 16

(a) mpeg4 Communication Graph (b) toybox Communication Graph
(a) mpeg4 Communication Graph (b) toybox Communication Graph

1

62

4

3

812 5

7

9

10

13

1114

15

16 1

6

2

4

3

12

5

7

9

10 13

11 14

1516

8

 Figure 4. Communication graph for mpeg4 and toybox. Figure 5. Mapping results of mpeg4 and toybox.

Figure 6. Normalized average packet delay for eight different applications.

0.6

0.7

0.8

0.9

1

mpeg4 toybox vopd mms tgff_r1 tgff_r2 tgff_sp1 tgff_sp2 average

N
o
rm

al
iz

ed
 A

P
D

MC_CMesh SA_CMesh MC_MECS SA_CMesh(MECS) SA_MECS TRAM

the proposed TRAM is effective across different number of
pipeline stages. This illustrates that TRAM can be useful in a
wide range of networks built from more aggressive or more
conservative router architectures.

Figure 7. Average packet delay as a function of router pipeline stages.

D. Scalability

Previous evaluation uses 64-task configurations with concen-
tration degree of 4. To further illustrate the scalability of the
proposed algorithm, we generate four TGFF configurations of
256 tasks with the same concentration degree. Simulation
results show that, compared with MC_CMesh and SA_MECS,
TRAM is able to reduce the average packet delay by 55% and
23% under the same runtime, respectively. This demonstrates
that the proposed TRAM can achieve higher improvement for
larger networks, indicating its good scalability.

VII. CONCLUSIONS

Express channel-based networks have been proposed in re-
cent studies as a promising approach to support fast on-chip
communications for current and future many-core MPSoCs.
However, the characteristics of these new topologies have not
been exploited in existing application mapping algorithms. In
this paper, we propose an efficient heuristic algorithm to ex-
plore the application mapping opportunities in express-channel
networks. The proposed TRAM algorithm is able to effectively
map tasks with large communication rate closer to each other,
and aligns heavily communicating tasks to the same rows or
columns to reduce unnecessary turns. Simulation results show
significant reduction in the number of turns and considerable
reduction in average packet delay in the generated mapping
solutions.

REFERENCES

[1] Balfour, J., & Dally, W. J. (2006). Design tradeoffs for tiled CMP on-

chip networks. In ACM International Conference on Supercomputing.

[2] Chen, G., Li, F., Son, S. W., & Kandemir, M. (2008). Application

mapping for chip multiprocessors. In Design Automation Conference.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001).

Introduction to algorithms. MIT press.

[4] Dick, R. P., Rhodes, D. L., & Wolf, W. (1998). TGFF: task graphs for

free. In Proceedings of the 6th international workshop on

Hardware/software codesign (pp. 97-101). IEEE Computer Society.

[5] Faruque, A., Abdullah, M., Krist, R., & Henkel, J. (2008, June). ADAM:

run-time agent-based distributed application mapping for on-chip

communication. In Proceedings of the 45th annual Design Automation

Conference (pp. 760-765). ACM.

[6] Garey, M. R., & Johnson, D. S. (1979). Computers and intractability A

Guide to the Theory of NP-Completeness.

[7] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu (2009). Express cube

topologies for on-chip interconnects. In International Symposium on

High Performance Computer Architecture (pp. 163-174).

[8] J. Howard, S. Dighe, Y. Hoskote, et al. (2010). A 48-core IA-32

message-passing processor with DVFS in 45nm CMOS. In IEEE

International Solid-State Circuits Conference (pp. 108-109)

[9] Hu, J., & Marculescu, R. (2003). Energy-aware mapping for tile-based

NoC architectures under performance constraints. In Proceedings of the

ASP-DAC.

[10] Jang, W., & Pan, D. Z. (2012). A3MAP: Architecture-aware analytic

mapping for networks-on-chip. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 17(3), 26.

[11] Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for

partitioning graphs. Bell Systems Technical Journal, 49.

[12] J. Kim, J. Balfour, and W. J. Dally (2007) . Flattened butterfly topology

for on-chip networks. In IEEE/ACM International Symposium on

Microarchitecture (pp. 172-182).

[13] Kuhn, H. W. (2005), The Hungarian method for the assignment

problem. Naval Research Logistics.

[14] Kumar, A., Peh, L.-S., Kundu, P. & Jha, Niraj K. (2007). Express virtual

channels: Towards the ideal interconnection fabric. In IEEE

International Symposium on Computer Architecture.

[15] Lei, T., & Kumar, S. (2003, September). A two-step genetic algorithm

for mapping task graphs to a network on chip architecture. In Digital

System Design, 2003. Proceedings. Euromicro Symposium on (pp. 180-

187). IEEE.

[16] Murali, S., & De Micheli, G. (2004). Bandwidth-constrained mapping of

cores onto NoC architectures. In Proceedings of the conference on

Design, automation and test in Europe.

[17] Sun, C., Chen, C., Kurian, G., et al. (2012). DSENT - A Tool

Connecting Emerging Photonics with Electronics for Opto-Electronic

Networks-on-Chip Modeling. In International Symposium on Networks-

on-Chip.

[18] Tilera Corporation. http://www.tilera.com/products/processors.

1 2 3 4
4

6

8

10

12

14
(a) vopd

Router Pipeline Stages

A
P

D
(c

y
cl

es
)

1 2 3 4
4

6

8

10

12

14

Router Pipeline Stages

(b) mms

SA_CMesh

SA_MECS

TRAM

TABLE I. PERCENTAGE OF TRAFFIC THAT NEEDS TO MAKE TURN.

Systems
Percentage (%)

mpeg4 toybox vopd mms tgff_r1 tgff_r2 tgff_sp1 tgff_sp2 Average

MC_MECS 40.82 31.26 34.16 37.62 56.73 50.07 33.27 48.30 41.53

SA_CMesh(MECS) 38.47 22.53 31.67 20.98 48.71 48.78 43.02 43.04 37.15

SA_MECS 25.03 15.00 19.41 11.96 40.97 39.98 36.92 27.69 27.12

TRAM 11.80 4.22 4.37 0.12 20.93 19.52 21.23 12.10 11.79

TABLE II. DYNAMIC POWER CONSUMPTION.

Systems
Dynamic Power (mW)

mpeg4 toybox vopd mms tgff_r1 tgff_r2 tgff_sp1 tgff_sp2

MC_CMesh 95.91 130.05 167.25 42.30 107.28 121.83 119.86 100.31

SA_CMesh 91.38 125.46 156.93 40.77 105.24 110.67 108.31 92.31

MC_MECS 84.22 113.51 146.54 38.79 87.59 97.26 96.15 83.98

SA_CMesh(MECS) 82.46 111.74 145.07 38.72 85.99 96.98 95.67 83.13

SA_MECS 80.69 105.63 140.17 38.09 85.80 96.44 94.17 81.27

TRAM 77.07 104.55 129.78 37.91 82.66 91.62 88.80 76.12

