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ABSTRACT
Autonomous driving has become a major goal of automobile man-
ufacturers and an important driver for the vehicular technology.
Hybrid electric vehicles (HEVs), which represent a trade-off be-
tween conventional internal combustion engine (ICE) vehicles and
electric vehicles (EVs), have gained popularity due to their high
fuel economy, low pollution, and excellent compatibility with the
current fossil fuel dispensing and electric charging infrastructures.
To facilitate autonomous driving, an autonomous HEV controller
is needed for determining the power split between the powertrain
components (including an ICE and an electric motor) while simul-
taneously managing the power consumption of auxiliary systems
(e.g., air-conditioning and lighting systems) such that the overall
electromobility is enhanced. Certain (partial) prior knowledge of
the future driving profile is useful information for the automatic
HEV control. In this paper, methods for predicting driving profile
characteristics to enhance HEV power control are first presented.
Based on the prediction results and the observed HEV system state
(e.g. velocity, battery state-of-charge, propulsion power demand),
we propose a reinforcement learning method to determine the
power source split between the ICE and electric motor while
also controlling the power consumptions of the air-conditioning
and lighting systems in the automobile. Experimental results
demonstrate significant improvement in the overall HEV system
efficiency.

1. INTRODUCTION
Growing concerns about fuel consumption and pollutant emis-

sion have forced the automotive industry toward the development
of electric and hybrid electric vehicles. Nowadays, most of the
major automobile manufacturers have introduced their own electric
vehicles (EVs) and/or hybrid electric vehicles (HEVs). Compared
with conventional ICE (internal combustion engine)-propelled
vehicles, EVs demonstrate much higher energy efficiency and zero
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tailpipe emission due to the employment of electric motors [1].
However, battery-related concerns have restricted the widespread
adoption of EVs [2]. On the other hand, the HEVs that represent
a compromise between conventional vehicles and full EVs, can
achieve higher fuel economy and lower pollution than conventional
ICE-based vehicles and suffer from fewer battery-related concerns
compared to EVs.

HEVs feature a hybrid propulsion system comprised of an ICE
with an associated fuel tank and one or more electric motors (EMs)
with associated energy storage system (batteries), both of which
are coupled to the drivetrain. The ICE consumes fuel and provides
the primary propulsion, whereas the EM provides the secondary
propulsion by consuming electricity stored in the battery pack [3].
Besides assisting the ICE with extra torque, the EM can also serve
as an electricity generator to recover kinetic energy during vehicle
braking to charge the battery pack. This is called the regenerative
braking mechanism, which helps improve the HEV fuel economy
[3, 4].

A power management policy for HEVs determines the power
split between the ICE and EM to satisfy the speed and torque
requirements while ensuring safe and smooth operation of various
power components. Since the fuel cost is the major operating
cost of an HEV, the majority of previous work on HEV energy
management policies aim to reduce fuel consumption and pollu-
tion emissions. Rule-based power management strategies have
been designed to determine the power split between ICE and EM
based on intuition, heuristics, human expertise or fuzzy logic [5,
6]. Although rule-based approaches are effective for real-time
supervisory control, their results may be far from optimal. On
the other hand, the optimization-based HEV control strategies
either minimize the fuel consumption during a trip with a known
(deterministic or stochastic) future driving profile [7, 8, 9], or
perform real-time supervisory control by converting the amount
of battery charge into equivalent fuel consumption [10]. These
optimization-based control strategies require a priori knowledge
of driving cycles and detailed and accurate HEV modeling, and
are therefore quite challenging, and likely ineffective, in real-time
implementations.

Reinforcement learning (RL) [11] provides a powerful tool for
the learning agent (i.e., the decision-maker) to "learn" how to
"act" optimally when the exact and accurate system modeling is
difficult or even impossible to obtain [12]. The agent can observe
the environment’s state and take an appropriate action according
to the observed state. A reward will be given to the agent as the
result of the chosen action. Stimulated by the reward, the agent
targets at deriving a policy, which is a mapping from each possible
state to an optimal action, by "learning" from its past experience.
The reinforcement learning technique has been applied to the HEV



energy management problem in [13] for fuel cost minimization.
However, there are two important limitations of this work: (i)
the proposed RL techniques can be enhanced to make use of cer-
tain prediction results about future driving profile characteristics,
and (ii) this work and most of the other previous works simply
ignore the power consumption of auxiliary systems, which may
accounts for 10% - 30% of the overall fuel consumption. Hence, a
joint control framework is desirable to simultaneously reduce fuel
consumption induced both by propelling the vehicle and by the
auxiliary systems1.

In this paper, we investigate a joint control framework of pow-
ertrain and auxiliary systems in an HEV by means of RL, in order
to overcome the two aforesaid shortcomings. We minimize fuel
cost induced both by propelling the vehicle and by the auxiliary
systems since both are critical parts in the overall fuel consump-
tion, and meanwhile maximize a total utility function (representing
the degree of desirability) of the auxiliary systems. Unlike some
previous approaches, the learning process does not require com-
plete a priori information about driving profiles and uses only
partial information about the HEV drivetrain modeling, i.e., it can
be partially model-free. The learning process properly determines
the operating modes of the HEV components, such as battery
discharging/charging power/current, gear ratio, operating power of
auxiliary systems, etc., based on the proper definition of "states".
We properly determine the reward of the RL agent such that the
objective of the RL agent coincides with our goal of both minimiz-
ing the overall fuel consumption and maximizing the total utility
function of the auxiliary systems. The TD(λ)-learning algorithm
[11] is employed as the RL algorithm due to its higher convergence
rate and higher performance in non-Markovian environment.

In order to further enhance the effectiveness of the RL frame-
work, we incorporate prediction of future driving profile character-
istics. The prediction results will serve as a part of the “state" clas-
sification in the main RL algorithm, and can enhance the perfor-
mance of the RL agent because certain partial information of the
future characteristics can be provided [11]. An exponential weight-
ing function, although quite simple, can serve as a desirable pre-
diction method of future driving profile characteristics, in order to
strike a balance between effectiveness in prediction and additional
complexity in the RL algorithm. Simulation results over real-world
and testing driving cycles demonstrate the effectiveness of the pro-
posed RL-based joint HEV control mechanism.

2. SYSTEM DESCRIPTION
Although this work aims at designing a smart and (partially)

model-free HEV controller that does not need a precise modeling
of various HEV components, it is still necessary to understand
the fundamental principles of HEV operations. Without loss of
generality, we design our power management policy based on the
parallel HEV configuration as the one of the most widely employed
configurations in state-of-the-art HEVs [4], in which the ICE and
EM can deliver power in parallel to drive the wheels. There are
five operation modes in a parallel HEV, depending on the energy
flows: (i) only the ICE propels the wheels/vehicle, (ii) only the EM
propels the wheels/vehicle, (iii) both the ICE and EM propel the
wheels/vehicle, (iv) the ICE propels the vehicle and simultaneously
drives the EM to charge the battery pack, and (v) the EM charges
the battery pack during braking, i.e., the regenerative braking
mode. Once again, auxiliary systems are important parts of an
HEV and consume a significant part of overall fuel consumption.

2.1 HEV Component Analysis
1Although the auxiliary systems are typically powered by battery,
the battery is ultimately charged by consuming fuels.

2.1.1 Internal Combustion Engine (ICE)
According to the quasi-static ICE model [14], the ICE fuel effi-

ciency is given by

ηICE(TICE ,ωICE) = TICE ·ωICE/(ṁ f ·D f ). (1)

where TICE and ωICE are torque (in N·m) and revolution speed (in
rad/s) of the ICE, respectively, which represent the operating point
of the ICE; ṁ f is the fuel consumption rate (in g/s) of ICE, which
is a nonlinear function of the operating point; D f is the fuel energy
density (in J/g). The following constraints should be satisfied to
ensure safe and smooth operation of the ICE:

ω
min
ICE ≤ ωICE ≤ ω

max
ICE , (2)

0≤ TICE ≤ T max
ICE (ωICE).

2.1.2 Electric Motor (EM)
The EM can operate either as a motor to propel the vehicle or as

an electric generator to charge the battery pack. The efficiency of
the EM is defined by

ηEM(TEM ,ωEM) =

{
(TEM ·ωEM)/(Pbatt − paux) TEM ≥ 0
(Pbatt − paux)/(TEM ·ωEM) TEM < 0

(3)

where TEM and ωEM denote the torque and speed of the EM, re-
spectively, Pbatt is the output power of battery pack, and paux is the
operating power of auxiliary systems. Obviously Pbatt− paux is the
input power of the EM. When the EM operates as a motor, TEM is
positive and Pbatt − paux > 0; when the EM operates as a genera-
tor, TEM is negative and Pbatt− paux < 0. The following constraints
should be satisfied to ensure safe and smooth operation of the EM:

0≤ ωEM ≤ ω
max
EM , (4)

T min
EM (ωEM)≤ TEM ≤ T max

EM (ωEM).

2.1.3 Vehicle Dynamics
The electric vehicle is assumed to be a rigid body with four

wheels, and the vehicle mass is assumed to be concentrated in a
single point. The tractive force FT R to support the vehicle speed
and acceleration (which are set by the driver by pressing the brak-
ing or acceleration pedals) satisfies

FT R = m ·a+Fg +FR +FAD, (5)
Fg = m ·g · sinθ,

FR = m ·g · cosθ ·CR,

FAD = 0.5 ·ρ ·CD ·AF · v2,

where m is the vehicle mass, a is the vehicle acceleration, Fg is the
force due to the road slope, FR is the rolling friction force, FAD is
the air drag force, θ is the road slope angle, CR is the rolling friction
coefficient, ρ is the air density, CD is the air drag coefficient, AF is
the frontal area of vehicle, and v is the vehicle speed. Given v, a,
and θ, the tractive force FT R can be derived using (5). Then, the
wheel torque Twh and wheel speed ωwh are related to FT R, v, and
the wheel radius rwh as given by

Twh = FT R · rwh, (6)
ωwh = v/rwh.

The demanded power to propel the vehicle, denoted by pdem, is
given by

pdem = FT R · v = Twh ·ωwh. (7)

2.1.4 Drivetrain Mechanics
The ICE and EM are coupled through the drivetrain to propel the

vehicle. The speed and torque of the ICE, the EM, and the wheel



satisfy the following relationship:

ωwh =
ωICE

R(k)
=

ωEM

R(k) ·ρreg
(8)

Twh = R(k) ·
(
TICE +ρreg ·TEM · (ηreg)

α
)
· (ηgb)

β

where

α =

{
+1 TEM ≥ 0
−1 TEM < 0,

(9)

β =

{
+1 TICE +ρreg ·TEM · (ηreg)

α ≥ 0

−1 TICE +ρreg ·TEM · (ηreg)
α < 0.

(10)

In (8), R(k) is the gear ratio of the k-th gear (there are often a total
of four or five gear ratios), ρreg is the reduction gear ratio, and ηreg
and ηgb are the efficiencies of the reduction gear and the gear box,
respectively.

2.1.5 Auxiliary Systems
The auxiliary system of HEV is comprised of lighting, air con-

ditioning (or more generally, heating, ventilation, and air con-
ditioning or HVAC), and other battery-powered systems such as
GPS. The auxiliary systems may account for 10% - 30% of the
overall fuel consumption for an ordinary (fuel-based) vehicle. For
HEVs and EVs, it is projected that auxiliary systems will take a
larger portion of the overall energy consumption partly because
heating of an ordinary vehicle can be partially achieved by the
heated internal combustion engine. Hence, the power consumption
of auxiliary systems needs to be jointly considered and optimized
with the powertrain control for an HEV in order to achieve the
global optimal solution. For example, if the battery stored charge
is not enough or the battery output power is relatively large, it
is desirable to limit the power consumption of auxiliary systems.
The effect of auxiliary systems (or more specifically, the HVAC
module) can be compensated later after the battery is charged by
the ICE or when the battery output power is reduced.

Let paux denote the total operating power of auxiliary systems,
which is a control variable of HEV controller (and partially for
the driver.) We adopt a utility function faux(paux) to represent
the total satisfaction level when applying operating power paux
to the auxiliary systems, which is widely adopted in modeling
HVAC systems [15]2. The utility function is general in the sense
that it demonstrates the combination of effects of multiple auxil-
iary systems such as lighting, HVAC, and other battery-powered
systems. In general, the utility function is a uni-modal (quasi-
concave) function since neither too high power consumption nor
too low power consumption is desirable for the auxiliary system
components (for example, too high power consumption for the
HVAC means either too hot or too cold, and vice versa.) The utility
function faux(paux) can be either inferred from driver behaviors
(e.g., the target temperature set by the driver) or from past learning
experiences, and may vary from time to time. The goal of HEV
controller is to maximize the total utility function value over the
whole driving profile.

2.2 HEV Control Flow
In reality, it is the driver that determines the speed v and the

propulsion power demand pdem = ωwh · Twh profiles (or equiva-
lently, the speed v and acceleration a profiles) for propelling the
HEV through pressing the acceleration or brake pedal. Then, the
HEV controller determines the operation of ICE, EM, drivetrain,
2Please note that this utility function is a simplified version of the
actual utility function since the actual utility function of HVAC is
not only a function of the instantaneous power consumption but
also depends on the previous temperature.

Figure 1: The interactions between agent and environment in
RL framework.

and auxiliary systems3 so that the HEV meets the target perfor-
mance (i.e., speed v and acceleration a) and a certain objective
function is maximized. This is called the backward-looking opti-
mization approach and is equivalent to actual HEV management
[5, 6].

In the actual HEV control process, the HEV controller chooses a
few control variables, such as battery output power Pbatt (or equiv-
alently, the battery discharging/charging current i), the gear ratio
R(k), and the operating power paux of the auxiliary systems. The
remaining of variables, including the ICE torque TICE and speed
ωICE , EM torque TEM and speed ωEM , become associate (depen-
dent) variables, the values of which are determined by Pbatt , R(k),
and paux according to the operating principles of HEV discussed in
Section 2.1.

The majority of HEV control strategies in the reference papers,
such as dynamic programming-based strategy, model predictive
control strategy, and equivalent consumption minimization strategy
(ECMS), rely on very detailed HEV system modeling. There are
also model-free or partially model-free HEV control strategies that
do not rely on detailed HEV system modeling or only need partial
HEV modeling, which are preferred due to their flexibility and
generality, and ease in implementation. For example, rule-based
control strategies only require battery modelings. The proposed
RL-based HEV control strategy is also a model-free or partially
model-free HEV control framework.

3. REINFORCEMENT LEARNING BASICS
Reinforcement learning (RL) provides a mathematical frame-

work for discovering and learning strategies that map situations
onto actions with the goal of maximizing a cumulative reward
function [11]. In the RL framework, the learner and decision-
maker is called the agent and everything outside the agent is
called the environment (which interacts with the agent). The agent
and environment interact continually, the agent selecting actions
and environment responding to these actions and presenting new
situations to the agent. The environment also gives rise to rewards
to the agent, which are special numerical values that the agent tries
to maximize over the optimization period.

Figure 1 illustrates the agent-environment interaction in the RL
framework at each of a sequence of discrete time steps t = 0,1,2, ....
At each time step t, the agent observes some representation of the
environment state st ∈ S , and on that basis takes an action at ∈
A , where S and A are the sets of possible states and actions (in
every state), respectively. One time step later, the agent receives a
numerical reward rt+1 ∈ R and finds the environment in a new state
st+1 as a consequence of the action taken.

A policy of the agent, denoted by π, is a mapping from each state
s∈ S to action a∈A that specifies the action a= π(s) that the agent
will choose in state s. The ultimate goal of the agent is to find the

3Often the driver also determines operation of auxiliary systems
partly, such as lighting systems.



optimal policy, such that the value function

V π(s) = E

{
∞∑

k=0

γ
k · rt+k+1 | st = s

}
(11)

is maximized for each state s ∈ S .
The value function V π(s) is the expected return when system

starts in state s at time t and follows policy π thereafter. 0 < γ < 1
is a parameter named the discount rate that ensures the infinite sum∑

∞

k=0 γk · rt+k+1 converges to a finite value. More importantly, γ

reflects the uncertainty and discount in the future [11]. rt+k+1 is
the reward received at time step t + k+1.

4. RL-BASED JOINT CONTROL FRAME-
WORK OF POWERTRAIN AND AUXIL-
IARY SYSTEMS

In this section, we present the motivation and details of the pro-
posed RL-based joint control framework of powertrain and auxil-
iary systems.

4.1 Motivations of Using RL for Joint HEV
Control

We use reinforcement learning for the joint control framework
of powertrain and auxiliary systems due to the following reasons.
(i) HEV energy management policies aim to minimize the total
fuel consumption (and maximize the cumulative utility function
of auxiliary systems) during a whole driving cycle rather than the
instantaneous fuel consumption rate (or instantaneous objective
function value) at a certain time step, which is suitable for RL
since the latter also aims to optimize an expected cumulative return
instead of an immediate reward (11). (ii) During a driving cycle,
the change of vehicle speed, power demand, battery charge level
(and predicted future driving profile) necessitates different HEV
operating modes, which is suitable for RL since an RL agent takes
different actions depending on the current state. (iii) The actual
driving cycles are non-stationary. Hence, the RL technique is more
suitable for the joint HEV power management framework than
other optimization methods.

Most of the previous work on HEV power management neglect
the power consumption of auxiliary systems (including HVAC,
lighting, etc.), which may account for 10% - 30% of the overall
fuel consumption of the HEV. The power management results may
be sub-optimal by neglecting this important portion of power con-
sumption. In order to mitigate this shortcoming, we aim to develop
a more effective joint control framework for HEV propulsion and
auxiliary systems, to minimize the overall fuel consumption and
maximize the overall objective function of auxiliary systems.

So as to further enhance the effectiveness of the RL-based joint
control framework, we incorporate prediction of future driving pro-
file characteristics. The prediction results can serve as a part of the
"state" in the RL-based control algorithm, and can enhance the per-
formance of the RL agent by providing partial information of the
future characteristics of driving profiles. Details are described in
the next subsection.

4.2 Prediction of Future Driving Profile Charac-
teristics

In this subsection, we describe the prediction method of future
driving profile characteristics. As one know, the prediction cannot
be highly accurate because of the following two reasons: (i) the
prediction accuracy is inherently limited by the difficulty and
randomness in driving profile prediction, and (ii) a more accurate
prediction result (with higher precision levels) will significantly
add computation complexity and reduce convergence rate of the

RL algorithm, because the prediction results will add at least one
dimension to the state space of the RL algorithm. Hence, we
need to achieve a desirable tradeoff between the effectiveness in
prediction and additional complexity in the RL algorithm.

Another important observation is that although we could predict
both the future velocity and future propulsion power demand (or
acceleration), predicting the later is more desirable for the RL
agent. This is because the propulsion power demand is more
directly related to the action chosen (e.g., the battery discharging
current, gear ratio, etc.) by the RL agent than the velocity.

Based on the above-mentioned two observations, we adopt the
exponential weighting function, which predicts the future data
(propulsion power demand) based on the current measurement
data as follows:

prei← (1−α) · prei−1 +α ·measi−1, (12)

where prei is the i-th predicted future data (propulsion power
demand), prei−1 is the (i− 1)-th predicted data, measi−1 is the
(i− 1)-th measured data (propulsion power demand), and α is the
learning rate. Experiments show that the exponential weighting
function, though quite simple, can serve as a desirable prediction
method to strike a balance between effectiveness in prediction
and additional complexity in the RL algorithm. Other methods
such as artificial neural network (ANN) can also be utilized for
future driving profile prediction. Details are omitted due to space
limitation.

4.3 Details of the RL Process

4.3.1 State Space
We define the state space of the RL technique as a finite number

of states, each represented by the propulsion power demand, vehi-
cle speed, battery pack stored charge level, and predicted driving
profile characteristics, given by

S =
{

s = [pdem,v,q, pre]T |pdem ∈ Pdem,v ∈ V ,q ∈ Q , pre ∈ P re
}

(13)
where pdem is the power demand for propelling the HEV, v is the
vehicle speed, q is the amount of charge stored in the battery pack,
and pre is the predicted characteristics of future driving profiles.

Different actions may be taken in different states. For instance, if
the propulsion power demand level is negative, i.e., during vehicle
braking, the action chosen by the agent (HEV controller) should
be charging the battery by using the EM as a generator. On the
other hand, if the propulsion power demand level is a very large
positive value, the selected action should be discharging the battery
to power the EM, which propels the vehicle and provides power for
auxiliary systems in assistance with ICE.

A RL agent is able to observe a state from online measurement.
In the actual implementation, the current propulsion power demand
level pdem and vehicle speed v are obtained by sensors to measure
the driver-controlled pedal motion, and future driving profile char-
acteristics are predicted using methods described above. However,
the charge level q cannot be obtained from online measurement of
battery’s terminal voltage, because the terminal voltage of battery
pack changes with the charging/discharging current and therefore it
is not an accurate indicator of q [16]. In order to observe the charge
level q, the Coulomb counting method [17] is required by the RL
agent, which is typically realized using a dedicated circuit imple-
mentation [18].

Pdem, V , Q , and P re in (13) are, respectively, the finite sets
of propulsion power demand levels, vehicle speed levels, levels
of charge stored in the battery pack, and predicted driving profile
characteristics. Discretization is required when defining these four
finite sets. In particular, Q is constructed by discretizing the range



of charge stored in the battery pack, i.e., [qmin,qmax], into a finite
number of charge levels:

Q = {q1,q2, ...,qN} (14)

where qmin = q1 < q2 < ... < qN = qmax. Generally, qmin and qmax
are 40% and 80% of the nominal capacity of battery pack, respec-
tively, for an ordinary HEV (charge-sustaining mode).

4.3.2 Action Space and Reduced Action Space
We define the action space of the RL framework as a finite num-

ber of actions, each represented by the discharging current of bat-
tery pack, the gear ratio, and operating power of auxiliary systems,
i.e.,

A =
{

a = [i,R(k), paux]
T |i ∈ I,R(k) ∈ R, paux ∈ Paux

}
(15)

where an action a= [i,R(k), paux]
T chosen by the RL agent denotes

to discharge the battery using current i, choose the k-th gear ratio,
and apply operating power paux for the auxiliary systems.

The set I in (15) contains within it a finite (discretized) number
of discharging current values in the range of [−Imax, Imax]. i > 0
denotes discharging the battery pack, and i < 0 denotes charging
the battery pack. The set R contains all allowable gear ratio values,
which depend on the powertrain design. Usually, there are four or
five gear ratio values in total [8]. Finally, Paux represents a finite
(discretized) set of operating power levels of auxiliary systems.

Alternatively, we define a reduced action space Are, in which an
action are = [i]T only accounts for the discharging/charging current
of the battery. Using this reduced action space, the gear ratio
R(k) and auxiliary systems operating power paux can be selected
by solving an optimization problem such that the instantaneous
reward function (as shall be discussed later) can be maximized.
Since the computation complexity and convergence speed of RL
algorithms are proportional to the number of state-action pairs [19],
the reduced action space Are significantly reduces the computation
complexity and increase convergence speed of the RL algorithm.
Another advantage of the reduced action space is that discretiza-
tion of paux in the original action space is no longer required,
which in turn enhances the control precision and performance.
Of course, there is a side effect that the reduced action space
relies on (partial) HEV component modeling when solving the
optimization problem. However, due to the significant advantages,
we would suggest to use the reduced action space Are for reduced
computation complexity and increased convergence rate, and make
the RL agent partially model-free.

4.3.3 Reward Function
The objective of the RL-based joint control mechanism is to

minimize the total fuel cost, induced by both propelling the ve-
hicle and auxiliary systems, and to maximize the overall utility
function value of the auxiliary systems over the whole driving
profile. Therefore, we define the reward r that the agent receives
after taking action a in state s as the negative of the fuel con-
sumption plus the utility function value of the auxiliary systems
at that time step, i.e., (−ṁ f + w · faux(paux)) · ∆T , where ∆T
is the length of a time step, ṁ f is the fuel consumption in that
time step, and w is a weighting factor determining the relative
importance of fuel consumption and the auxiliary system utility
function. The RL agent targets at maximizing the expected return
(11), which is a discounted sum of rewards. Hence, by using the
above-mentioned reward function, the overall fuel consumption
will be minimized and the overall utility function value will be
maximized (of course they are connected through the weighting
factor w) while maximizing the expected return.

In an actual reinforcement learning implementation, the RL
agent (HEV controller) should be aware of the reward it receives

after taking an action, since the observation of reward is critical
in deriving the optimal policy. In the above-mentioned reward
definition, ṁ f can be obtained by measuring the fuel consumption
directly, and utility function faux(paux) can be either inferred from
driver behaviors (e.g., the target temperature set by the driver) or
from past learning experience.

4.3.4 TD(λ)-Learning Algorithm for Joint HEV Con-
trol

We employ the TD(λ)-learning algorithm [11] to derive the opti-
mal policy for the joint control of powertrain and auxiliary systems,
because of (i) its relatively higher convergence rate and (ii) higher
performance in non-Markovian environment. In TD(λ)-learning,
a Q value, denoted by Q(s,a), is associated with each state-action
pair (s,a), where a state s is represented by the propulsion power
demand pdem, the vehicle speed v, the battery charge q, and pre-
dicted future driving profile characteristics pre, and an action a
can be either a complete action or a reduced action as described
before. The Q(s,a) value approximates the expected (discounted)
cumulative reward of taking action a in state s. Details of the
TD(λ) algorithm is summarized as follows.

In the TD(λ)-learning procedure, the Q values are initialized
arbitrarily in the beginning of execution. At each time step t, the
agent selects an action at for current state st based on the Q(s,a)
values. To avoid the risk of getting stuck at a sub-optimal solution,
the exploration versus exploitation policy [11] is employed for the
action selection, i.e., the agent does not always select the action a
with the maximum Q(st ,a) value for current state st . Instead, the
current best action is chosen only with probability of 1−ε, and the
other actions are chosen with equal probability.

Suppose that the chosen action is at at time step t, the learning
agent observes a new state st+1 and receives reward rt+1 at time
step t +1. Then based on the observed st+1 and rt+1, the agent up-
dates Q values for each state-action pair (s,a), in which the eligibil-
ity e(s,a) of each state-action pair (s,a) is updated and effectively
utilized during Q value updating. The eligibility e(s,a) of a state-
action pair (s,a) reflects the degree to which the particular state-
action pair has been chosen in the recent past, where λ is a constant
between 0 and 1. Due to the usage of the eligibility of state-action
pairs, in practice we do not need to update Q values and eligibility
e of all state-action pairs. We only keep a list of M most recent
state-action pairs since the eligibility of all other state-action pairs
is at most λM , which is negligible when for a large enough M.
Algorithm 1 TD(λ)-Learning Algorithm
1: Initialize Q(s,a) arbitrarily for all the state-action pairs.
2: for each time step t do
3: Choose action at for state st using the exploration-

exploitation policy.
4: Take action at , observe reward rt+1 and next state st+1.
5: δ← rt+1 + γ ·maxa′ Q(st+1,a′)−Q(st ,at).
6: e(st ,at)← e(st ,at)+1.
7: for all state-action pair (s,a) do
8: Q(s,a)← Q(s,a)+α · e(s,a) ·δ.
9: e(s,a)← γ ·λ · e(s,a).

10: end for
11: end for

5. EXPERIMENTAL RESULTS
We simulate the operation of an HEV, the model of which

is developed in the vehicle simulator ADVISOR [20]. The key
parameters of the HEV are summarized in Table 1. We test our
joint HEV control framework and compare with the reinforcement
learning (RL) policy [13] and the rule-based policy [5]. We use
both real-world and testing driving trip profiles, which are devel-
oped and provided by different organizations and projects such as



Table 1: HEV key parameters.
Vehicle Transmission ICE

m = 1254 kg ρreg = 1.75 peak power 41kW
CR = 0.009 ηreg = 0.98 peak eff. 34%
CD = 0.335 ηgb = 0.98 EM
AF = 2 m2 R(k) = [13.5;7.6; peak power 56kW

rwh = 0.282 m 5.0;3.8;2.8] peak eff. 92%
battery

Capacity 25A·h Voltage 240V

Figure 2: Normalized fuel consumption of RL-based HEV con-
trol frameworks with and without prediction.

U.S. EPA (Environmental Protection Agency) and E.U. MODEM
(Modeling of Emissions and Fuel Consumption in Urban Areas
project).

One improvement of this work over [13] is that we introduce
prediction of future driving profile characteristics. First, we mea-
sure the fuel economy improvement due to the prediction only.
Figure 2 shows the normalized fuel consumption for three driving
profiles (i.e., OSCAR, UDDS, and MODEM) under HEV control
frameworks with and without the prediction. The fuel economy
improvement due to prediction only can be as high as 12%.

Furthermore, we compare the proposed joint control framework
with the rule-based policy [5]. We assume the most desirable
power consumption of the auxiliary systems is 600W and more
or less power consumption from the auxiliary systems will reduce
the value of the utility function faux(paux). Table 2 shows the
accumulation of the reward function (−ṁ f +w · faux(paux)) ·∆T
over whole driving profiles. Please note that −ṁ f is a negative
value and also the reward function value is negative. We can
observe the proposed control framework always achieves higher
reward function values than the rule-based policy. To compare
the fuel economy of the proposed and rule-based policy, Figure 3
shows the corresponding MPG values from the two policies for
different driving profiles. The proposed framework achieves up to
29% MPG improvement.

6. CONCLUSIONS
In this paper, we first present methods for predicting driving

profile characteristics to enhance HEV power control. Based on

Table 2: Reward function values from the proposed joint con-
trol framework and the rule-based policy.

Proposed Rule-based
OSCAR -275.76 -337.50
UDDS -754.85 -849.25
SC03 -284.14 -319.66

HWFET -741.12 -861.68

Figure 3: The MPG values achieved by the proposed joint con-
trol framework and the rule-based policy.
the prediction results and the observed HEV system state (e.g.
velocity, battery state-of-charge, propulsion power demand), we
propose a reinforcement learning method to determine the power
source split between the ICE and EM while also controlling the
power consumptions of the air-conditioning and lighting systems
in the automobile. Experimental results demonstrate up to 29%
MPG value improvement.
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