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Abstract—The future smart energy systems are projected to 

be decentralized power networks, each consisting of various 
types of renewable power generators that serve a small group of 
energy users. Interaction between different power networks  
through energy trading over a marketplace provides the chance 
to fully utilize the capacity of each power generator type. As a 
result of this interaction, the power generation and distribution 
levels can be decided for each time slot in order to achieve a 
maximal utility. In this paper, an electricity trade model is 
introduced for decentralized power networks to deal with the 
utility maximization problem. In the proposed model, multiple 
power networks can trade among each other and thus each of 
them can achieve a utility increase from making use of its 
comparative advantage on power generation during a certain 
period of time. The model is studied from several special 
scenarios to a more general scenario and an efficient solution is 
presented for each scenario. Experimental result validates the 
accuracy and efficiency of the presented solutions. 

I. INTRODUCTION 
Energy efficiency optimization has drawn significant attention 

especially with the increase of energy prices, the rise of energy usage 
and the deteriorating environment [1], [2]. Smart energy systems are 
thus introduced which aim at increasing the efficiency of both energy 
generation and distribution. The state-of-the-art smart energy systems, 
including resource allocation frameworks in cloud computing, smart 
grid infrastructures, and electric mobility systems, are undergoing a 
transformation from a centralized, producer-controlled network to one 
that is decentralized and consumer-interactive [1]-[3]. In order to 
switch from a centralized power distribution network (in which 
electrical energy is generated by a few far-off high-capacity 
generators and transferred to local end-users) to a decentralized 
network infrastructure, it is necessary to implement small-scale 
generators that are located closely to the points-of-use. This 
distributed power generation scheme makes it easier to incorporate 
and utilize all kinds of renewable energy sources, and can 
significantly reduce the energy transmission cost [3]. 

This however makes it challenging to operate and control the 
decentralized power network with increasing number of distributed 
energy sources. Authors of [4] introduced the notion of microgrid to 
tackle this problem. A microgrid is a small scale power network, 
which contains one or multiple types of renewable power generators 
and energy storages serving a single or a small group of energy users, 
and offers the possibility of coordinating the distributed resources in a 
more intelligent way so that they can behave as a controlled entity and 
achieve energy autonomy without relying on external power sources. 

For each power network, it is necessary to match power demand 
with supply as response to the intermittency of renewable power 
sources such as wind and solar [5]. This however is very challenging 
due to the fact that power demand depends on a variety of factors of 

energy users and also energy users may impose their preference of 
energy usage at certain times. It is also worth noting that various 
types of power generation centers experience different power 
generation capabilities and costs as a function of time and weather 
conditions, e.g., a photovoltaic power generator cannot generate 
power during night time. The problem of matching demand with 
supply becomes even more complicated with the adoption of energy 
storage [5]. For a power network, the amount of energy generation 
and consumption needs to be decided under certain resource 
constraints and with the goal of maximizing the consumer satisfaction 
level [6]. 

The roadmaps of state-of-the-art microgrid power network 
structures are mainly based on the marketing ideas [7]. Compared 
with adopting energy storage, it is more cost-efficient for one power 
network to sell its surplus power generation to meet the demand of its 
neighborhoods, with the exchange of purchasing energy from other 
power networks during its energy shortage times. By trading with 
other networks, each power network can make use of its comparative 
advantage and achieve an increase of user satisfaction. Previous work 
such as [7] has analyzed the structure of the energy trading platform 
involving the microgrid neighborhood. However, they lack a 
thorough analysis of economic factors such as the best cooperative 
decision on energy generation, the optimal trading volume of energy, 
and also the determination of relative energy prices. 

To provide a detailed study on the above problems, we present an 
electricity trade model for power networks in this paper. In this model, 
multiple power networks can trade among each other and as a 
consequence, each one of them can achieve an increase in the user 
satisfaction level from making use of its comparative advantage on 
power generation during a certain period of time. We elaborate the 
proposed model at some special scenarios and then at a general 
scenario. We provide optimal solutions for both the special scenarios 
and the general scenario, in which the idea of comparative advantage 
is employed to significantly reduce the problem complexity. 

The remainder of this paper is organized as follows. In the next 
section, we present the system model for electricity trading among 
multiple power networks to maximizes the user satisfaction level. In 
Section III, we discuss the presented model in detail from several 
special scenarios to a more general scenario. Section IV reports 
experimental results and the paper is concluded in Section V. 

II. SYSTEM MODEL 
In our model, there are 𝑁 power networks in the smart energy 

system, and each of them contains one or several types of power 
generators serving a small group of energy users. A slotted time 
model is assumed, i.e., all system cost parameters and constraints as 
well as energy generation and consumption decisions are provided for 
discrete time intervals of constant length. For example, if we set the 
operating period to be a day and 𝑇 = 6, a day is divided into 6 time 
slots, each with duration of four hours. We use 𝑃𝑛,𝑖  and 𝐶𝑛,𝑖 to 



represent the energy generation and consumption levels, respectively, 
for each power network 𝑛 at time slot 𝑖  where 𝑛 ∈ {1,2, … ,𝑁}  and 
𝑖 ∈ {1,2, … ,𝑇}. 

In the perspective of economists, users consume commonalities 
(such as energy) at each time because this energy consumption 
provides satisfaction for users. The level of satisfaction is represented 
by utility [8]. We use the famous Cobb-douglas utility function, 
which models that for each power network 𝑛 , the relationship 
between the utility and the level of energy consumption at each time 
follows the form [8]: 

𝑈𝑛 = �𝐶𝑛,𝑖
𝛼𝑖

𝑇

𝑖=1

 , (1) 

where 𝛼𝑖  is the preference factor at each time slot and we have 
0 < 𝛼𝑖 < 1  for all 𝑖 . A higher 𝛼𝑖  means that the users prefer to 
consume more energy at the corresponding time slot. Although an 
individual might have his own energy usage preference, it can be 
assumed that different power networks share the same set of 
community preference factors because each power network is 
connected to a number of users, which means at any time slot 𝑖, 𝛼𝑖 is 
the same for different power network 𝑛. 

Basically, an electricity trade contract consists of two steps: First, 
all the power networks get together to decide the total energy 
generation at each time slot in order to achieve a maximal overall 
utility function; Second, the power networks “bargain” among each 
other to decide the distribution of the total energy generation in a fair 
way. In the following subsections, we will present the system model 
for each step. 

A. Model for Cooperative Energy Generation 
In international economics studies, countries are willing to engage 

in international trades because they are distinct from each other and 
all of them can benefit from the differences by reaching an 
arrangement in which each country does the things it does relatively 
well [8]. Similarly, in the interaction of various power networks, each 
power network can perform electricity trade with its neighbors in 
order to achieve a utility increase. 

In this model, we assume that the power networks have different 
energy generation costs as well as total resources. For each power 
network 𝑛 , we denote the total resource by 𝐼𝑛 , and the energy 
generation at each time slot by 𝑃𝑛,𝑖 . It is also commonly modeled in 
economics that under a given resource constraint, the production 
possibilities of energy generation should follow the given equation [8]: 

�𝛽𝑛,𝑖 ∙ 𝑃𝑛,𝑖

𝑇

𝑖=1

= 𝐼𝑛 , (2) 

where for each network 𝑛, 𝛽𝑛,𝑖 is the number of resource units that are 
required to generate one unit of energy at each time slot and 𝐼𝑛 is the 
total number of resource units that are allowed to use during one 
operating period. Notice that 𝛽𝑛,𝑖 is determined by the type of energy 
generators as well as the level of technology, and might not be 
constant for different 𝑖 values. If a network cannot generate energy at 
all during certain time slots (e.g. photovoltaic generators cannot 
generate energy during night time), then 𝛽𝑛,𝑖  is set to +∞. 

We aim at achieving a global maximum utility, so 𝐶𝑖 is used to 
denote the total energy consumption (equal to the total energy 
generation) at time slot 𝑖. In addition, as stated before, 𝛼𝑖 denotes the 
corresponding preference factor, which has been assumed to be the 
same for all power networks. Using the above definitions, the 
cooperative energy generation problem can be modeled as follows: 

Cooperative Energy Generation Problem to Maximize the Total 
Utility 

Find the optimal energy generation 𝑃𝑛,𝑖  for 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑇. 
Maximize:  

𝑈 = �𝐶𝑖
𝛼𝑖

𝑇

𝑖=1

 

Subject to: 

�𝛽𝑛,𝑖 ∙ 𝑃𝑛,𝑖

𝑇

𝑖=1

= 𝐼𝑛  , ∀ 1 ≤ 𝑛 ≤ 𝑁 

𝑃𝑛,𝑖 ≥ 0 , ∀ 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑇 

𝐶𝑖 = �𝑃𝑛,𝑖

𝑁

𝑛=1

= �𝐶𝑛,𝑖

𝑁

𝑛=1

 , ∀ 1 ≤ 𝑖 ≤ 𝑇 

B. Model for Energy Distribution 
As the total energy generation at each time slot is determined, the 

power networks need to make decisions on energy distribution, i.e., 
determining the energy consumption level at each power network. 
The rule of energy distribution should be based on the contribution 
made by each of the power networks. 

In our model, the energy distribution is performed using a method 
that we refer to as the fair benefit distribution law that results in the 
same utility increase ratio (the ratio of the utility function after trade 
to the maximal utility function before trade, i.e., 𝑈𝑛,𝑡𝑟𝑎𝑑𝑒/𝑈𝑛,𝑙𝑜𝑐𝑎𝑙) 
for every power network 𝑛. With the same set of preference factors, it 
can be easily proven that the most efficient distribution method that 
maximizes the utility increase ratio (which is the same for all power 
networks after trade) can be performed as follows: for 1 ≤ 𝑛 ≤ 𝑁, 
1 ≤ 𝑖 ≤ 𝑇, we have 

𝐶𝑛,𝑖 =
𝑈𝑛,𝑙𝑜𝑐𝑎𝑙

∑ 𝑈𝑗,𝑙𝑜𝑐𝑎𝑙
𝑁
𝑗=1

∙ 𝐶𝑖  , (3) 

where 𝐶𝑖 is the total generated energy at time slot 𝑖, and 𝑈𝑛,𝑙𝑜𝑐𝑎𝑙  can 
be determined using the local maximization method that will be 
discussed in the next section. 

The problem of energy distribution is relatively simple, and hence, 
we do not discuss in detail in this paper because of space limit (but it 
is used and shown in experimental result section). In the next section, 
we focus on the cooperative energy generation problem. Several 
special scenarios are studied and finally a general solution is provided. 

III. UTILITY MAXIMIZATION SOLUTIONS 
In this section, different scenarios are studied for the above- 

mentioned cooperative energy generation problem. We differentiate 
these scenarios based on the number of power networks 𝑁 and the 
total number of time slots 𝑇. 

A. 𝑁 = 1: 
When 𝑁 = 1 , there is only one power network. This case is 

considered as a closed economy group in terms of energy (i.e., no 
energy trading is allowed) and decides the optimal energy generation 
distribution at different times. In this case, we have 𝐶𝑖 = 𝑃1,𝑖  for 
1 ≤ 𝑖 ≤ 𝑇 . The convex optimization technique [9] can be used to 
numerically solve this problem. 

Property 1: At the optimal solution point of the above local 
utility/welfare maximization problem, we have: 

𝜕𝑈/𝜕𝐶𝑖
𝜕𝐼1/𝜕𝑃1,𝑖

=
𝛼𝑖 ∙ 𝑈
𝛽1,𝑖 ∙ 𝐶𝑖

= 𝐷     ∀ 1 ≤ 𝑖 ≤ 𝑇, (4) 



where 𝐷  is the same value for all 𝑖 , which results in the optimal 
solution given by: 

𝑃1,𝑖 = 𝐶𝑖 =
𝛼𝑖

𝛽1,𝑖 ∙ ∑ 𝛼𝑚𝑇
𝑚=1

∙ 𝐼1   ∀ 1 ≤ 𝑖 ≤ 𝑇.  (5) 

Proof: Assume at the optimal solution point, there exists a pair of 
time slots {𝑖, 𝑗} with 𝜕𝑈/𝜕𝐶𝑖

𝜕𝐼1/𝜕𝑃1,𝑖
> 𝜕𝑈/𝜕𝐶𝑗

𝜕𝐼1/𝜕𝑃1,𝑗
. We will be able to find a new 

feasible solution with 𝐶𝑖′ = 𝐶𝑖 + 𝜎/𝛽1,𝑖 and 𝐶𝑗′ = 𝐶𝑗 − 𝜎/𝛽1,𝑗 , where 
𝜎 is a very small value with the same unit of total resource 𝐼1. As we 
have 𝜕𝑈/𝜕𝐶𝑖

𝜕𝐼1/𝜕𝑃1,𝑖
> 𝜕𝑈/𝜕𝐶𝑗

𝜕𝐼1/𝜕𝑃1,𝑗
, it can be proven that 

𝑈�𝐶1,𝐶2, … ,𝐶𝑖′,𝐶𝑗′, … � >  𝑈�𝐶1,𝐶2, … ,𝐶𝑖 ,𝐶𝑗 , … � , which contradicts 
the optimality of the solution. As a result, the optimal solution will 
occur only when 𝜕𝑈/𝜕𝐶𝑖

𝜕𝐼1/𝜕𝑃1,𝑖
 is the same for every 𝑖.                                ∎ 

The 𝑁 = 1 scenario is relatively simple. However, the solution of 
the simple scenario is necessary to determine the general solution for 
more complex scenarios. 

B. 𝑁 = 2, 𝑇 = 2: 
In the simplest electricity trading scenario, there are two power 

networks and an operating period is divided into only two time slots. 
Economists have used the notion of comparative advantage to 
analyze the motive of trading. Comparative advantage refers to the 
ability of a entity to produce a particularly good or service at a lower 
marginal cost or opportunity cost over another [8]. For energy 
generation in a power network, the comparative advantage comes 
from the ability of generating energy at a particular time slot at a 
lower opportunity cost over the energy generators in another power 
network. For convenience, assume we have re-labeled the time slots 
to make 𝛽1,1

𝛽2,1
< 𝛽1,2

𝛽2,2
. Based on the definition, the first power network 

has comparative advantage on energy generation at time slot 1, and 
the second has comparative advantage on energy generation at time 
slot 2. Notice that comparative advantage is determined by the ratio of 
𝛽1,𝑖

𝛽2,𝑖
 instead of the absolute values, which means that even though a 

power network has a higher energy generation cost at every time slot, 
it can still have comparative advantage at some of the time slots. 
Electricity trading aims at enabling both power networks to make 
better use of its comparative advantage at a special time slot, and the 
optimal solution can be determined accordingly. 

Property 2: At the optimal solution point of the utility 
maximization problem with 𝑁 = 2 and 𝑇 = 2, if 𝛽1,1

𝛽2,1
< 𝛽1,2

𝛽2,2
, we have 

either 𝑃2,1 = 0 or 𝑃1,2 = 0 (or both). 
Proof: Assume we have both 𝑃2,1 > 0 or 𝑃1,2 > 0 at the optimal 

solution point, we will be able to find a new feasible solution with 
𝑃1,1
′ = 𝑃1,1 + 𝜎1/𝛽1,1 , 𝑃1,2

′ = 𝑃1,2 − 𝜎1/𝛽1,2 , 𝑃2,1
′ = 𝑃2,1 − 𝜎2/𝛽2,1 

and 𝑃2,2
′ = 𝑃2,2 + 𝜎2/𝛽2,2 , where 𝜎1  and 𝜎2  are very small values 

with the same unit of total resource 𝐼1 and 𝐼2. Since 𝛽1,1

𝛽2,1
< 𝛽1,2

𝛽2,2
, there 

should exist a pair of {𝜎1,𝜎2} such that 𝛽1,1

𝛽2,1
< 𝜎1

𝜎2
< 𝛽1,2

𝛽2,2
. In this case, 

we will have both 𝑃1,1
′ + 𝑃2,1

′ > 𝑃1,1 + 𝑃2,1  and 𝑃1,2
′ + 𝑃2,2

′ > 𝑃1,2 +
𝑃2,2, which leads to a higher total utility and contradicts the optimality 
of the solution.                                                                                      ∎ 

Based on this property, at least one power network will be 
assigned to generate energy at one time slot at the optimal solution 
point. And thus the optimal solution of the utility maximization 
problem with 𝑁 = 2 and 𝑇 = 2 can be achieved by comparing the 
optimal solutions with 𝑃2,1 = 0 or 𝑃1,2 = 0. 

Notice that there is another special situation where 𝛽1,1

𝛽2,1
= 𝛽1,2

𝛽2,2
. It 

can be proven that there are multiple optimal solution points in this 
case and one of the optimal solution can be achieved when each of the 
two power networks simply maximizes its own utility as in the case 
of 𝑁 = 1, which means that none of the two power networks can gain 
from trading. We will not discuss this case in detail because of space 
limitation but it is validated in the experimental results section. 

C. 𝑁 > 2, 𝑇 = 2: 
The above scenario can be extended to a multiple-network- two-

slot situation. Assume we have already re-labeled the time slots so 
that we have 𝛽1,1

𝛽1,2
< 𝛽2,1

𝛽2,2
< 𝛽3,1

𝛽3,2
< ⋯ < 𝛽𝑁,1

𝛽𝑁,2
. We come up with the 

property as follows: 
Property 3: At the optimal solution point of the utility 

maximization problem with 𝑁 > 2 and 𝑇 = 2, if 𝛽1,1

𝛽1,2
< 𝛽2,1

𝛽2,2
< 𝛽3,1

𝛽3,2
<

⋯ < 𝛽𝑁,1

𝛽𝑁,2
, there exists a number 𝑛∗  such that we have 𝑃𝑛,2 = 0 for 

∀1 ≤ 𝑛 < 𝑛∗  and 𝑃𝑛,1 = 0 for ∀𝑛∗ < 𝑛 ≤ 𝑁 . In other words, there 
exists at most one (probably zero) power network that will generate 
energy at both time slots. 

Proof: When there already exists a number 𝑛∗ with both 𝑃𝑛∗,1 =
0  and 𝑃𝑛∗,2 = 0 , if there exists another number 1 ≤ 𝑛 < 𝑛∗  with 
𝑃𝑛,2 > 0 , we will have 𝛽𝑛,1

𝛽𝑛,2
< 𝛽𝑛∗,1

𝛽𝑛∗,2
 (equivalently, 𝛽𝑛,1

𝛽𝑛∗,1
< 𝛽𝑛,2

𝛽𝑛∗,2
) 

together with 𝑃𝑛,2 > 0 and 𝑃𝑛∗,1 > 0. We can find a better solution 
according to the proof of Property 2. Similarly, there should not exist 
another number of 𝑛∗ < 𝑛 ≤ 𝑁 with 𝑃𝑛,1 > 0.                                  ∎ 

Based on the above property, when 𝑛∗  is given, 𝑁 − 1  power 
networks are specified in energy generation at only one time slot and 
𝑃𝑛,1 or 𝑃𝑛,2 can be simply determined based on the total resource 𝐼𝑛 
for 𝑛 ≠ 𝑛∗, and it is easy to solve the utility maximization problem 
with only two variables 𝑃𝑛∗,1 and 𝑃𝑛∗,2. The remaining problem is to 
determine the optimal value of 𝑛∗, and a straightforward algorithm is 
to enumerate 𝑛∗ from 1 to N. However, we can easily prove that the 
total utility is a unimodal concave function with respect to 𝐶1 or 𝐶2, a 
more efficient method can be found. The detailed algorithm is omitted 
because of space limitation.  

D. 𝑁 = 2, 𝑇 > 2: 
The two-network-multiple-slot case is similar to the previous one. 

Assume we have already re-labeled the time slots so that 𝛽1,1

𝛽2,1
< 𝛽1,2

𝛽2,2
<

𝛽1,3

𝛽2,3
< ⋯ < 𝛽1,𝑇

𝛽2,𝑇
. We come up with the similar property as follows: 

Property 4: At the optimal solution point of the total 
utility/welfare maximization problem with 𝑁 = 2  and 𝑇 > 2 , if 
𝛽1,1

𝛽2,1
< 𝛽1,2

𝛽2,2
< 𝛽1,3

𝛽2,3
< ⋯ < 𝛽1,𝑇

𝛽2,𝑇
, there exists a time slot 𝑡∗ such that we 

have 𝑃2,𝑖 = 0 for ∀1 ≤ 𝑖 < 𝑡∗ and 𝑃1,𝑖 = 0 for ∀𝑡∗ < 𝑖 ≤ 𝑇. In other 
words, there exists at most one (probably zero) time slot in which 
energy is generated by both power networks. 

The proof is similar to that of Property 3 and thus it is omitted. In 
addition, assume that we have already known the value of 𝑡∗ based on 
the analysis in Section III.A. We also have the following property: 

Property 5: At the optimal solution point of the above problem 
with 𝑁 = 2 and 𝑇 > 2, 𝜕𝑈/𝜕𝑃1,𝑖

𝛽1,𝑖
 is the same for each 1 ≤ 𝑖 < 𝑡∗  and 

𝜕𝑈/𝜕𝑃2,𝑖

𝛽2,𝑖
 is the same for 𝑡∗ < 𝑖 ≤ 𝑇. 

Proof: Based on Property 4, we have 𝑃2,𝑖 = 0 for ∀1 ≤ 𝑖 < 𝑡∗ 
and 𝑃1,𝑖 = 0  for ∀𝑡∗ < 𝑖 ≤ 𝑇 , which means that 𝐶𝑖 = 𝑃1,𝑖  for 



∀1 ≤ 𝑖 < 𝑡∗ and 𝐶𝑖 = 𝑃2,𝑖 for ∀𝑡∗ < 𝑖 ≤ 𝑇. Hence, Property 5 can be 
concluded from the proof of Property 1.                                             ∎ 

Properties 4 and 5 can be used to determine the energy generation 
at all the other time slots when 𝑃1,𝑡∗  and 𝑃2,𝑡∗ are given:   

𝑃1,𝑖 =
𝛼𝑖

𝛽1,𝑖 ∙ ∑ 𝛼𝑚𝑡∗−1
𝑚=1

∙ �𝐼1 − 𝛽1,𝑡∗𝑃1,𝑡∗�   ∀ 1 ≤ 𝑖 < 𝑡∗.  (6) 

𝑃2,𝑖 =
𝛼𝑖

𝛽2,𝑖 ∙ ∑ 𝛼𝑚𝑇
𝑚=𝑡∗+1

�𝐼2 − 𝛽2,𝑡∗𝑃2,𝑡∗�   ∀ 𝑡∗ < 𝑖 ≤ 𝑇. (7) 

As a result, given the value of 𝑡∗, there are only two variables in 
the above problem and they can be easily solved using geometric 
optimization. And also, we can use a similar procedure of 
determining the optimal value of 𝑛∗ discussed in the above subsection 
to determine the optimal value of 𝑡∗. 

E. 𝑁 > 2, 𝑇 > 2: 
This is the most general scenario of the cooperative energy 

generation problem, which is based on the multi-country, multi-
commodity model in international economics which has been studied 
in [10]. Although this is a complex problem with 𝑁 ∙ 𝑇 variables and 
has been proved hard to solve, we can significantly reduce the 
problem complexity by combining the algorithms in the previous two 
subsections. Based on the property of energy generation cost, we are 
able to re-label all the power networks as well as the time slots so that 
for any 𝑛1 < 𝑛2  and 𝑡1 < 𝑡2 , we have 𝛽𝑛1,𝑡1 𝛽𝑛2,𝑡1⁄ < 𝛽𝑛1,𝑡2 𝛽𝑛2,𝑡2⁄ . 
For convenience, we use the energy generation matrix 𝐏 defined as: 

𝐏 =

⎣
⎢
⎢
⎢
⎡
𝑃1,1 𝑃1,2 𝑃1,3 ⋯ 𝑃1,𝑇
𝑃2,1 𝑃2,2 𝑃2,3 ⋯ 𝑃2,𝑇
𝑃3,1 𝑃3,2 𝑃3,3 ⋯ 𝑃3,𝑇
⋮ ⋮ ⋮ ⋱ ⋮

𝑃𝑁,1 𝑃𝑁,2 𝑃𝑁,3 ⋯ 𝑃𝑁,𝑇⎦
⎥
⎥
⎥
⎤

.  (8) 

Based on the solution of the previous scenarios, at the optimal 
solution point, many of the items in the energy generation matrix will 
be zero. To study the solution of this general scenario, we also define 
a “path” of the energy generation matrix P in which the non-zero 
items form a path from the point (1,1) to (N,T). An example of a path 
for 𝑁 = 5 and 𝑇 = 5 is shown as follows: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑃1,1 𝑃1,2 0 0 0

0 𝑃2,2 𝑃2,3 𝑃2,4 0
0 0 0 𝑃3,4 0
0 0 0 𝑃4,4 0
0 0 0 𝑃5,4 𝑃5,5⎦

⎥
⎥
⎥
⎥
⎤

.  (9) 

Property 6: The energy generation matrix at the optimal solution 
point with 𝑁 > 2 and 𝑇 > 2 must be a path. 

Proof: If there is a non-zero item outside a path, we can find a 
pair of networks 𝑛1 < 𝑛2 together with a pair of time slots 𝑡1 < 𝑡2 
that result in 𝑃𝑛1,𝑡2 > 0and 𝑃𝑛2,𝑡1 > 0. We can find a better solution 
according to the proof of Property 2.                                                   ∎ 

Dynamic programming algorithm can be used to examine all the 
paths in a matrix with a complexity of O((N+T)!). However, based on 
the optimal 𝑛∗  and 𝑡∗ determination methods in the previous 
subsections, we can define a “non-tortuous path” in which the 
inflection points are also set to zeros. This means on the non-tortuous 
path, we have either a power network is specified in energy 
generation at one certain time slot, or the energy at a time slot is 
generated by only one network, so it will be much easier to calculate 
the value of each item in the matrix. For example, a non-tortuous path 
of the corresponding path in (9) is given by : 

⎣
⎢
⎢
⎢
⎢
⎡
𝑃1,1 𝑃1,2 0 0 0

0 0 𝑃2,3 0 0
0 0 0 𝑃3,4 0
0 0 0 𝑃4,4 0
0 0 0 0 𝑃5,5⎦

⎥
⎥
⎥
⎥
⎤

.  (10) 

Using the above definition, Algorithm 1 is presented to solve the 
cooperative energy generation problem with 𝑁 > 2 and 𝑇 > 2. 

Algorithm 1: Solution for Cooperative Energy Generation 
Problem with 𝑵 > 𝟐 and 𝑻 > 𝟐. 

Initialize 𝑈 = 0: 
// find optimal non-tortuous path 
For all non-tortuous paths in P 
      Calculate the value of each non-zero item in P; 

Calculate the utility function 𝑈𝑡𝑒𝑚𝑝; 
If  𝑈𝑡𝑒𝑚𝑝 > 𝑈 
        𝑈 = 𝑈𝑡𝑒𝑚𝑝; 
        Update the optimal non-tortuous path; 
End if 

End for 
// calculate optimal solution 
For all paths corresponding to the optimal non-tortuous path 
      Calculate the optimal value of each non-zero item in P; 

Calculate the utility function 𝑈𝑡𝑒𝑚𝑝; 
If  𝑈𝑡𝑒𝑚𝑝 > 𝑈 
        𝑈 = 𝑈𝑡𝑒𝑚𝑝; 
        Update the optimal energy generation solution; 
End if 

End for 
 
Notice that different paths might share the same non-tortuous path, 

and also one path might correspond to more than one non-tortuous 
paths. The proposed algorithm has greatly reduced the complexity of 
the problem. The number of variables has been reduced from (𝑁 ∙ 𝑇) 
to at most (N+T-1).  

IV. EXPERIMENTAL RESULTS 
To demonstrate the effectiveness of the proposed solutions, we 

examine various cases corresponding to the aforesaid (specific or 
general) scenarios. The proposed solutions have been implemented 
using C programming and tested for various cases. Because of space 
limitation, we only show the results for the special scenario 𝑁 = 2, 
𝑇 = 2 and the general scenario 𝑁 > 2, 𝑇 > 2. The results from local 
optimization scenario (𝑁 = 1) are used as the baseline. 

In the first experiment, we focus on the scenario 𝑁 = 2, 𝑇 = 2. 
The preference factors of the two time slots are set to be 0.3 and 0.7. 
Before trading, both networks are considered to be closed economic 
groups and maximize their own utility functions. When the two power 
networks open up to trade, they first get together to decide the optimal 
energy generation at each time slot so that the total utility can be 
maximized. After that, they distribute the total energy consumption in 
a fair way, as discussed in Section II.B. The model is tested for 
various cases with different combinations of energy generation cost 
and total resources. The detailed simulation results are presented in 
Table I. 



TABLE I.  SIMULATION RESULTS FOR DIFFERENT CASES WITH 𝑁 = 2, 
𝑇 = 2 

 grid 𝛽1 𝛽2 𝐼𝑛 
Before trade After trade 𝑈𝑡𝑟𝑎𝑑𝑒

𝑈𝑙𝑜𝑐𝑎𝑙
 𝑃1 𝑃2 𝑃1 𝑃2 

1 1 1 2 10 3.0 3.5 3.0 3.5 1 
2 4 8 20 1.5 1.75 1.5 1.75 1 

2 1 1 2 10 3.0 3.5 4.5 2.75 1.04 
2 6 8 20 1.0 1.75 0 2.5 1.04 

3 1 1 2 10 3.0 3.5 10 0 1.08 
2 6 8 100 5.0 8.75 0 12.5 1.08 

4 1 5 5 40 2.4 5.6 5.4 2.6 1.12 
2 8 4 40 1.5 7.0 0 10.0 1.12 

5 1 1 5 50 15 7.0 30 4.0 1.33 
2 8 4 40 1.5 7.0 0 10.0 1.33 

6 1 1 5 50 15 7.0 50 0 2.09 
2 8 1 40 1.5 28 0 40 2.09 

One can observe from Table I that in case 1 with 𝛽1,1

𝛽2,1
= 𝛽1,2

𝛽2,2
, there 

is no comparative advantage between the two networks. As a result, 
the optimal solution can be achieved when each of the two networks 
simply maximizes its own utility, and none of the two networks can 
gain from trade. From case 2 to case 6, as long as there is a difference 
between 𝛽1,1

𝛽2,1
 and 𝛽1,2

𝛽2,2
, each power network can make use of its 

comparative advantage and achieves a utility increase from trading 
with each other. The higher this difference is, the more they can gain 
from trade. In addition, comparing case 2 and case 3, we can also 
observe that the total resource for energy generation will also affect 
the cooperative energy generation decision for both power networks. 
In case 2, the resource of the second power network is relatively 
limited, and thus the first network needs to generate energy at both 
time slots. But in case 3, both power networks have enough resources 
so that each of them turns out to generate energy at its own 
advantageous time slot. 

In the second simulation, we analyze the general scenario with a 
total number of power networks 𝑁 = 4 and total time slot  𝑇 = 6. We 
set 𝛽𝑛1,𝑡1 𝛽𝑛2,𝑡1⁄ < 𝛽𝑛1,𝑡2 𝛽𝑛2,𝑡2⁄  for any 𝑛1 < 𝑛2 and 𝑡1 < 𝑡2, and test 
our model in various cases with total resource combinations. The final 
results of cooperative energy generation at each time slot are shown 
in Table II. 

TABLE II.  COMPERATIVE ENERGY GENERATION RESULTS WITH 𝑁 = 4, 
𝑇 = 6 

case grid 𝐼𝑛 𝑃𝑛,1 𝑃𝑛,2 𝑃𝑛,3 𝑃𝑛,4 𝑃𝑛,5 𝑃𝑛,6 

1 

1 900 225 113 56 28 0 0 
2 50 0 0 0 0 2.5 0 
3 50 0 0 0 0 5 0 
4 50 0 0 0 0 8.8 33 

2 

1 200 100 50 0 0 0 0 
2 200 0 0 16.7 0 0 0 
3 200 0 0 11.2 8.8 0 0 
4 300 0 0 0 19.2 55.8 112 

3 

1 30 26 2 0 0 0 0 
2 30 0 3.75 0 0 0 0 
3 30 0 3 0 0 0 0 
4 900 0 4.3 26 52 104 208 

 

In the experiments shown in Table II, case 1 and case 3 are the 
two extreme cases in which one power network has much larger 
amount of resources and thus turns out to generate energy at most of 
the time slots, while the other networks generate energy at only one or 
two time slots. In case 2, as the four power networks have about the 
same amount of resources, the energy at each time slot turns out to be 
generated by one certain network with comparative advantage. No 
matter in which case, the optimal energy generation matrix turns out 
to be a path as we defined in Section III.E. 

Another observation from the experimental results is that even if 
one power network has a much better technology, i.e., 𝛽𝑛,𝑖 is smaller 
than any other networks at any time slot, it will still benefit from 
trading with other power networks. And also, a power network with 
less energy generation resources is more likely to turn out to generate 
energy at a single time slot. 

V. CONCLUSION 
In this paper, we present an electricity trade model to deal with 

the cooperative energy generation and the energy distribution for 
multiple power networks in a smart energy system. In our model, 
each power network has its own energy generation and consumption 
and aims at maximizing its total user satisfaction level. We discuss 
the cooperative energy generation problem and solution in detail for 
different scenarios including the most general case where the 
proposed algorithm would significantly reduce the problem 
complexity while guaranteeing the optimality. The idea of 
comparative advantage is used for power networks in making 
decisions on energy generation. The accuracy and efficiency of our 
presented solutions are validated by experimental results.  
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