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ABSTRACT 
Achieving high performance under a peak temperature limit is a 
first-order concern for VLSI designers. This paper presents a new 
abstract model of a thermally-managed system, where a stochastic 
process model is employed to capture the system performance and 
thermal behavior. We formulate the problem of dynamic thermal 
management (DTM) as the problem of minimizing the energy 
cost of the system for a given level of performance under a peak 
temperature constraint by using a controllable Markovian decision 
process (MDP) model. The key rationale for utilizing MDP for 
solving the DTM problem is to manage the stochastic behavior of 
the temperature states of the system under online re-configuration 
of its micro-architecture and/or dynamic voltage-frequency 
scaling. Experimental results demonstrate the effectiveness of the 
modeling framework and the proposed DTM technique. 

Categories and Subject Descriptors 
D.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aides 

General Terms 
Algorithms, Design, Performance 

Keywords 
Dynamic thermal management, stochastic processes, uncertainty 

1. INTRODUCTION 
Ongoing advances in CMOS process technologies and VLSI 
designs have resulted in the introduction of high-performance 
multi-core systems on a chip (SoC). Thermal control in such 
systems has become a first-order concern due to the increased 
power density and thermal vulnerability of the chip. Localized 
heating is a frequent occurrence in SoC designs. Power 
dissipation is spatially non-uniform across the chip, resulting in 
emergence of hot spots and spatial temperature gradients that can 
cause accelerated aging, timing errors (setup time violations), or 
even physical damage to the chip. To solve this, dynamic thermal 
management (DTM) techniques, which attempt to ensure thermal 

safety by employing runtime mechanisms to control power 
density and to prohibit excessive local heating, have been 
proposed as a class of micro-architectural solutions and control 
strategies, which seek to enable the highest SoC performance 
while meeting peak temperature constraints. 

As reported in [1]-[5], the problem of thermal modeling and 
management has received a lot of attention. The work presented 
in [1] relies on a compact thermal model to achieve a 
temperature-aware design methodology. A thermal control 
mechanism used to cool the microprocessor’s temperature has 
been derived in [2]. Predictive thermal management [3], which 
exploits certain properties of multimedia applications, is an 
example of online strategies for thermal management. In [4], 
design guidelines for power and thermal management for high-
performance microprocessors are provided. A summary of 
research that combine interconnect thermal effects and reliability 
measures is given in [5]. 

Much of the past work has examined techniques for thermal 
modeling and management, but these techniques may be 
ineffective to reduce chip temperature of multi-core (MC) 
systems because the configurability of the micro-architecture 
depending on the target application and the uncertainty in 
temperature measurement (erroneous or noisy temperature 
reports) have often not been considered. Furthermore, thermal 
models, based on equivalent circuit models, cannot adequately 
model heat generation and diffusion in structures with complex 
shapes and boundary conditions. Indeed, it is extremely difficult 
to obtain the exact solution of the heat equations that arise from 
realistic die conditions [6]. These difficulties render the problem 
of identifying hot spots stochastic.  

In this paper, we present a stochastic model of a thermally-
managed MC system (which we shall call TMS, for short) using a 
Markov decision process (MDP) model. Recall that MDP, which 
provides a robust theoretical framework for resource management 
problems, is a theory of modeling the sequential decision making 
process [7]. The key rationale for utilizing MDP for solving the 
DTM problem in MC systems is to manage the stochastic 
behavior of the temperature states of the system under dynamic 
re-configuration of its micro-architecture (which may take place 
in response to application program characteristics), while 
maximizing the system performance subject to the constraint that 
a critical temperature threshold is not exceeded locally or 
globally. 

The remainder of this paper is organized as follows. Section 2 
provides some preliminaries of the paper, while section 3 
describes the details of the proposed models for a TMS. Section 4 

 

This research is supported in part by the National Science Foundation 
under grant no. 0509564. 

 



presents a DTM problem formulation. Experimental results and 
conclusions are given in section 5 and section 6. 

2. PRELIMINARIES 
A modern computing system, which typically utilizes multi-cores 
to achieve high performance, exhibits different thermal profiles 
under different application programs due to its re-configurable 
micro-architecture. For example, its cache size varies drastically, 
depending on the characteristics of the running threads (i.e., 
application programs), where these adaptive caches adjust from 
small sizes with fast access time to higher capacity but slower and 
more power hungry configurations. As expected, larger cache 
configurations, which are more prominent for dual-thread 
workloads, provide higher power dissipation than smaller size 
cache. This in turn dynamically changes the temperature profile 
of the SoC during program execution. Details of the functionality 
of the MC systems and algorithms for changing the micro-
architectural configuration on-the-fly fall outside the scope of the 
present paper. Interested readers may refer to [8]. 

Application programs tend to exhibit different characteristics as a 
function of the program phase they are in [9]. This is in turn 
affects the computational workload of the processor, causes a new 
micro-architectural configuration to be employed, which in turn 
results in a different thermal profile on the chip. Figure 1 shows 
the obtained IPC (Instruction per Cycle) by running various 
application programs (e.g., SPEC CPU2000 [10]) on the Intel 
Core Duo processor with a typical architectural specification (cf. 
[11]). In this figure, IPCs for applications are compared to L2 
cache miss rate, where average IPC for CPU2000 benchmarks is 
measured as 0.85. It is clearly seen that higher L2 cache miss rate 
accounts for its low IPC. 
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Figure 1. IPC vs. L2 cache miss rate on Intel Core Duo processor. 

An integrated circuit (device) is typically allowed to operate when 
the ambient air temperature, TA, surrounding the device package, 
is within the range of 0°C to 70°C [12]. It is expedient to define 
the critical temperature threshold, Tcrit, as the temperature above 
which a chip is in thermal violation resulting in timing errors or 
accelerated device/interconnect aging, and a trigger temperature 
threshold, Ttrig, as the temperature above which DTM techniques 
are employed. A thermal manager employs temperature reduction 
mechanisms when the system temperature exceeds a pre-defined 
temperature threshold (i.e., the trigger temperature). 

Temperature reading can be performed by either external or 
internal thermal sensors. External thermal sensors, e.g., 
thermocouples, incur a rather large time delay in reading the 
temperature and tend to produce less accurate temperature 
measurements. Internal thermal sensors, e.g., solid state sensors, 
which may be deployed in larger numbers across a chip, have 
been developed in pursuit of higher accuracy. However, there still 
remain inaccuracies associated with the solid state sensors. For 
example, current biased temperature sensors are in general 
sensitive to noise on power and ground lines, and thus the sensor 
output for low temperature reading is affected by process 
variations, etc. 

3. SYSTEM MODELING 
We present a stochastic modeling technique to construct a TMS 
by utilizing a continuous-time Markov decision process 
(CTMDP). 

3.1 Background 
A CTMDP is a controllable continuous-time Markov process, 
which satisfies Markovian property [7] and takes a set of state s ∈ 
S, where state transition rates are controlled by actions a ∈ A. We 
consider a cost function which assigns a value to each state and 
action pair by adopting a conventional approach, i.e., when the 
system makes a transition from state s to another state s’, it 
receives a cost.  

Given a CTMDP with n states, its generator matrix G is defined 
as an n×n matrix, where an entry σs,s’ in G is called the transition 
rate from state s to another state s’, which can be calculated as 

, ' ( ', ) (1 / ( , '))( ) , 's s a s a s s s sσ δ τ⋅= ≠  (1) 

where τ(s, s’) is a transition time from s to s’, and δ(s’, a) is 1 if s’ 
is the destination state of action a or 0 otherwise. We can 
calculate the limiting distribution (steady) state probabilities of 
the CTMDP from its generator matrix. If state transition rates are 
controlled by actions chosen from a finite set of action A, a policy 
is defined as a set of state-action pairs for all the states of the 
CTMDP. The details of the CTMDP are omitted here. Interested 
readers may refer to [7]. 
The exponential distribution for state transition times, a prominent 
property of CTMDP model, is sometimes insufficient to model 
practical cases, especially when we model the first request arrival 
in the idle state period [13], where the inter-arrival times of 
service requests are in this case generally distributed. However, it 
will not hurt the quality of the present paper if we assume that the 
task inter-arrival times are exponentially distributed during the 
active state period since thermal management is only in effect 
during the program execution. Furthermore, the burst of program 
execution on a processor follows exponential distribution [14]. 

3.2 Component Models 
We present a CTMDP-based model of a TMS to optimally solve 
the DTM problem. Figure 2 shows an abstract model of a TMS, 
which comprises of three components: processor, application 
program, and thermal sensor. In this paper, for simplicity we 
assume that each application is executed by one processor and 
that individual thermal sensors measure temperatures of each and 
every processor in the MC system. A new application may cause 
micro-architectural re-configuration of the corresponding 
processor in order to improve the overall performance. A thermal 



manager (TM) receives state (phase) of the application, reads 
temperature data from the thermal sensor, and issues commands 
to the processor under its control to manage the temperature rise 
above Ttrig. There is one TM assigned to each processor. Notice 
that Ri, Sj, and Hk represent the state sets of the application 
program (i = 1, 2, …, l), the processor (j = 1, 2, …, m), and the 
temperature (k = 1, 2, …, n), respectively, where l, m, and n are 
the number of applications, processors, and thermal sensors 
available within a MC system. Next, we construct the CTMDP 
model of a single processor system for simplicity. The CTMDP 
model of a MC system can be constructed in the same manner. 
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Figure 2. Abstract model of a thermal-managed MC system. 

3.2.1 Modeling the Processor State 
The CTMDP model of the processor is constructed as follows. 
Assume that each state s ∈ S represents a combination of a micro-
architectural configuration c ∈ C (e.g., register file sizing, cache 
sizing, or float-point-unit disabling) and an action a ∈ A (e.g., 
operating voltage-frequency (VF) setting), where there are micro-
architectural configuration set C = {c1, c2, …, cu} and action set A 
= {a1, a2, …, av} available to the processor. Thus, the CTMDP 
model of the processor includes a state set S = {s1, s2, …, sw} and 
a parameterized generator matrix Gproc, where w is the numbers of 
states of the processor, i.e., w = u·v. A state transition out of some 
state s is controlled by either an action a ∈ A or a configuration 
change c ∈ C. Any state transition takes a certain amount of time 
to complete, where this latency overhead ranges from several 
clock cycles to hundreds of milli-seconds. A typical micro-
architecture re-configuration latency, the duration between the 
time a decision is made to change the micro-architectural 
configuration and the time of actual configuration, takes up to 
tens of clock cycles [16]. Thus, a state transition time in the 
CTMDP model of the processor takes τ(s, s’) time (= max (τDVFS, 
τARCH)), where τDVFS  is the transition time of dynamic voltage and 
frequency scaling (DVFS), and τARCH is the micro-architecture 
transition period, when system transits from state s to s’. 

An example of how to construct the CTMDP model of the 
processor is given next. For simplicity, we suppose that the 
processor has three micro-architectural configurations (e.g., cache 
resizing) denoted by c1, c2, and c3, and a voltage frequency (VF) 
setting chosen from a finite set of actions A = {a1, a2, a3} is 
applied to the processor, where a1 < a2 < a3 in terms of the VF 
values. Then, the abstract CTMDP model of the processor can be 
illustrated as shown in Figure 3 (a), where a node represents a 
processor state and a directed arc represents a transition between 
two states with the parameterized generator Gproc. In Figure 3 (b), 
σs,s’ = ∞ means the processor switches from state s to s’ 
immediately (i.e., s = s’), and σs,s’ = 0 means the processor can 
never switch from state s to s’. Note that upsizing cache 
configuration may require different time compared to downsizing 
the cache configuration. In addition, cache downsizing occurs at 

the beginning of the DVFS change because of the required cache 
partitioning time, whereas cache upsizing happens at the end of 
the DVFS change [15][16]. 
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                     (a)                                                    (b) 
Figure 3. An example of CTMDP model of a processor (a) and its 

generator matrix (b). 

3.2.2 Modeling the Application State 
Application programs can be characterized by using their 
architecture-dependent characteristics (such as the IPC and cache-
miss rate), architecture-independent characteristics (such as data 
and instruction temporal localities), or a combination of these two 
[17]. In this paper, we focus on the micro-architecture re-
configurations that affect the IPC and data cache-miss rate 
characteristics of application programs, which subsequently result 
in temperature change on the processor die. Measuring the 
architecture-independent characteristics may be achieved by 
exploiting the notion of data similarity (e.g., instruction level 
parallelism, data locality). However, it is not straightforward to 
estimate the performance of a particular architecture-independent 
enhancement; therefore, we do not consider them here. 

Inspired by these observations, we construct a CTMDP model of 
an application program. The CTMDP model consists of a state set 
R = {r1, r2, …, rp} and a generator matrix Gapp, where p is the 
number of states that are present in the application. In our 
problem setup, application state r is differentiated based on values 
of IPC and the cache-miss rate. A state transition between 
different application states takes place autonomously, and may 
initiate a change in the state of the processor. 
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                           (a)                                         (b) 
Figure 4. An example of CTMDP model of applications (a) and its 

generator matrix (b). 

An example of a four-state CTMDP model of an application, 
considering workload characteristics, is depicted in Figure 4. Here 
r1, r2, r3, and r4 represent combinations of IPC and cache-miss 
rate (η) ranges of the application, e.g., r1 = [IPC ≤ 0.85, η ≤  
0.01], r2 = [IPC ≤ 0.85, η > 0.01], r3 = [IPC > 0.85, η ≤  0.01], 
and r4 = [IPC > 0.85, η > 0.01]. Note that the threshold values for 
the IPC and η are set by the application developers. A state 
transition between different application states occurs within a 
processor. If we consider multiple processors with multiple 
applications, individual state transitions for each processor must 



be considered. The transition rate σr,r’  in Gapp includes the context 
switch time, not assuming a round-robin context switching 
architecture, controlled by the operating system. For example, if 
we make a context switch when the deadline for completing an 
application program is missed, then a state transition will occur 
with a specific transition rate. 

3.2.3 Modeling the Temperature State 
Temperature readings from thermal sensors are important to DTM 
technique, since by knowing the temperature profile of a chip, the 
TMS may be triggered to respond to chip temperature changes so 
as to avoid thermal failure/damage of the chip or to maximize 
performance of interest under temperature constraints. 

Conventionally, the junction temperature TJ of the IC can be 
estimated with 

θ= + ⋅ JAJ AT T P  (2) 

where TA is the ambient temperature (°C), P is the device power 
dissipation (W), and θJA is the thermal resistance from device 
junction to ambient (°C/W). In general, thermal failure is avoided 
by maintaining the device θJA value small enough so that the 
junction temperature TJ does not exceed a maximum value during 
operation. It is worthwhile to note that θJA cannot be modeled 
directly due to the complexity of thermal models for the package, 
cooling system, and board stack-up [6]. In addition, θJA is 
assumed to be a single parameter under the assumption that 
device power dissipation, P, is distributed uniformly across the 
die, which is not realistic assumption (i.e., uncertain behavior). To 
overcome this difficulty, we use an observation (i.e., temperature 
reading TT of the package top obtained by a thermal sensor) as 

                                      
JTJ TT T P ψ= + ⋅  (3) 

where ψJT is the junction-to-top of package thermal 
characterization parameter used as a measure of the temperature 
difference between junction and package top surface, and is 
estimated from JEDEC thermal tests [12]. The device power P, a 
major source of heat generation, is varied based on micro-
architectural configurations, which are also application 
dependent. 

To construct the temperature state of the processor, we first define 
a set of temperatures T0 < T1 < … < Tc, where T0 = Ttrig (i.e., the 
trigger temperature threshold) and Tc = Tcrit (i.e., the critical 
temperature threshold). The intervening temperature thresholds 
are defined according to the ACPI (Advanced Configuration and 
Power Interface) specification. Once the temperature of the 
processor reaches the initial trigger temperature, the thermal 
manager is awakened to consider the conditions and issue a 
thermal management decision (i.e., a system state-changing 
command), ensuring that the critical temperature threshold is not 
exceeded. Thus, the CTMDP model of the chip temperature 
includes a set of temperature states H = {h1, h2, …, hc, hc+1} and a 
generator matrix Gtemp, where c+1 is the number of states that are 
possible with a thermal sensor. Note that hi represents the 
temperature region between Ti-1 and Ti, and hc+1 represents the 
temperature region that lies beyond Tcrit. The transition rates in 
Gtemp can be calculated as the inverse of the time it takes for the 
temperature of the processor to increase (decrease) from 
temperature state hi to hi+1 (hi-1), assuming that a thermal sensor 
receives streams of continuous-valued sensor data so that state hi 
cannot evolve into state hi+2  or hi-2  directly. 

3.3 Integrated Model of a TMS 
After constructing the CTMDP models of the processor, 
application, and temperature reading, we denote by X the global 
state set of the integrated model, defined as the Cartesian product  
[18] of the state sets S, R, and H, with the generator matrix GTMS 
which contains the transition rate from a global state x = (s, r, h) 
to another x’ = (s’, r’, h’). Note that the Cartesian product is a 
direct product of sets such as S×R×H = {(s, r, h) | s ∈ S, r ∈ R, 
and h ∈ H}. The global generator matrix GTMS is calculated as the 
tensor sum [19] of generator matrices Gproc, Gapp, and Gtemp. Note 
that when two CTMDPs with generator matrices A and B are 
given, the generator matrix of the joint process is obtained by the 
tensor sum, a matrix operator, of A and B. Basically, the tensor 
sum, for example, C = A⊕B is given by C = A⊗In2 + In1⊗B, 
where n1 is the order of A, n2 is the order of B, Ini is the identity 
matrix of order ni, and ⊗ is the tensor product [19]. The tensor 
product, for example, C = A⊗B, is defined as, 

11 12 11 12
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where a11, a12, a21, and a22 are scalars. 
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                             (a)                                                      (b) 
Figure 5. An example of CTMDP model of a TMS (a) and its 

generator matrix (b). 

An example of the integrated CTMDP model that captures 
temperature evolution is provided in Figure 5, assuming that we 
have two states for processor (s1, s2), application (r1, r2), and 
temperature (h1, h2), for simplicity. For example, if a micro-
architectural configuration change from s1 to s2 takes place given 
application r1 and temperature reading h1, the TMS transits from 
x1 to x6 via x5, where the temperature in the end evolves into h2. 

4. DYNAMIC THERMAL MANAGEMENT 
In this section, mathematical formulation of the DTM problem 
that maximizes the performance metric subject to no exceeding a 
critical temperature threshold is constructed. 

4.1 Optimal DTM Policy 
After determining the relevant parameters for each state x ∈ X and 
each arc in the CTMDP model of the TMS, we set up a 
mathematical programming model to solve the DTM problem as a 
linear program as below. The goal is to find an optimal state s ∈ S 
which consists of action and micro-architectural configuration (a, 
c), while minimizing the energy cost of the system for a given 
level of performance and given an application r under tight 
temperature constraints. We call the tuple (a, c) a command since 
the TM controls the micro-architectural configuration and the VF 
setting, which in turn affect power dissipation of the processor, 
and thereby the resulting temperature. 
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where xs
xf is the frequency that the system enters into state x with 

command sx, xs
xτ is the expected duration of time that the system 

stays in state x when command sx is taken, xs
xg is the energy cost 

of the system for a given level of performance (i.e., the energy-
delay-squared product, ED2P, which captures the power-
performance-efficiency under voltage scaling [8] and is 
independent of the clock frequency) when the system is in state x 
and command sx is chosen, '

',
xs

x xp  is the probability that the next 

system state is x’ if the system is currently in state x and 
command sx is taken, δ(h(x), hc+1) is 1 if h(x) (i.e., current h of 
state x) = hc+1 (i.e., temperature beyond Tcrit) or 0 otherwise, and 
Prcrit is a pre-defined threshold probability (i.e., the probability of 
exceeding the critical temperature threshold). 

, ''
1/ xx s

x xx x
s
x στ

≠
= ∑ .  

The ED2P metric may also be written as 

2

3 3

Pwr Pwr
ED P

Perf IPC
= ≅  (9) 

where Pwr denotes the processor power consumption, and the 
processor performance is measured as the number of instructions 
per cycle (IPC). 3Pwr IPC  is an excellent figure of merit to 
capture the energy cost of a given level of processor performance 
[8]. Note that we focus on AC line powered systems that strive to 
deliver maximum performance while operating under temperature 
constraints. Specifically, the purpose of this optimization problem 
is to maximize the system’s power-performance-efficiency while 
constraining the probability that the peak temperature is greater 
than Tcrit to be less than a pre-defined probability value, Pcrit. 

4.2 Online DTM 
In many cases, we are unable to know the actual characteristics of 
the applications which are running on the processor in advance. 
Thus, we must also develop an online DTM technique by 
constructing a pre-characterized configuration-command mapping 
table, where the entries of this mapping table correspond to 
various combinations of application types and temperature 
readings. Figure 6 illustrates how the thermal manager interacts 
with the applications and the temperature readings. In this figure, 
the pre-characterized mapping table is obtained through extensive 
offline simulation during design time, considering every possible 
combination of states for processor, applications, and temperature 
readings. It is worthwhile to note that the thermal manager is 
initiated only when the temperature exceeds the initial trigger 
temperature threshold Ttrig and then controls the performance of 
the processor by limiting critical temperature. More precisely, the 
thermal manager receives the states of current application and 
temperature when the temperature exceeds Ttrig, and issues an 

optimal micro-architectural configuration and action set (i.e., 
command) to the processor. 
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Figure 6. Online thermal management technique. 

5. EXPERIMENTAL RESULTS 
Experiments have been designed to evaluate the effectiveness of 
the proposed modeling technique and assess the performance of 
our optimization method. We use abstract models of the Intel 
Core Duo processor [20], which provides dynamic L2 cache 
resizing mechanism, to construct a TMS. Table 1 shows the 
transition time (normalized) for the CTMDP model of the 
processor, assuming that the system has S = {s1, s2, s3, s4}, where 
each state set s = (a, c) is a combination of a1 = [1.3V 1.8GHz], a2 
= [1.35V 2.3GHz], c1 = [2MB L2 cache], and c2 = [4MB L2 
cache]. Note that due to the limitations of the simulation 
environment (e.g., Vtune performance analyzer [21]), we only 
consider a variable cache for the architectural configuration set 
(i.e., other configurable resources such as register file, reorder 
buffer, and load/store queue are not considered). Note that 
information about dynamic cache resizing time and voltage and 
frequency control lock time is obtained from [4][20]. 

Table 1. Transition times for the CTMDP model of the processor. 
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To simplify the experimental setup, we consider R = {r1, r2, r3, 
r4}, where each r is a combination of two IPC ranges and two L2 
cache miss rate (η) ranges: IPC ≤ 0.85, IPC > 0.85; η ≤ 0.01, and 
η > 0.01, based on the performance distribution for application 
programs as shown in Figure 1. The initial trigger temperatures 
threshold is defined as Ttrig = 60°C, with an ambient temperature 
of TA = 40°C, based on the thermal design guideline, where we 
use the thermal performance data of a 35x35mm 478-pin micro-
FCPGA package [20] to obtain temperature states. The on-chip 
temperature is estimated by utilizing Tchip = TA + P⋅(θJA – ΨJT) 
based on the parameter values of the package. The device power 
dissipation P can be assumed to be a normally distributed random 
variable with some known mean value and standard deviation.  

Figure 7 shows the results of the proposed DTM technique, where 
we randomly chose a sequence of 100 programs of SPEC 
CPU2000 (cf. Figure 1) with Pcrit set to 0.2 and Tcrit set to 71°C. 
An optimal architectural configuration and action set is selected 
and provided to the processor when an input (i.e., application and 



 
temperature state) is given to the mapping table, where the entries 
of this table correspond to various combinations of inputs and 
performance constraints. It is clearly seen that the peak power 
consumption, which results in the temperaure increase, is limited 
by constraining the probability that the peak temperature of the 
system is greater than Tcrit to be less than Pcrit in our DTM policy. 
The time steps are abstractly defined to represent the peak power 
value of each program run. As expected, constraining the power 
dissipation causes some performance (ED2P) degradation. It, 
however, guarantees the thermal safety of the system. 
 

critPcritP

Figure 7. The effectiveness of the proposed DTM technique. 

We investigated the performance-efficiency of the proposed DTM 
technique, which we call stochastic DTM, or SDTM for short. We 
assumed two voltage-frequency (VF) change commands are 
available (where a1 < a2 in terms of VF values). For comparison 
purpose, we also implemented a greedy DTM policy. 
Greedy: Apply the following VF assignment strategy  

- Use a2 at low temperatures, i.e., Ttrig ≤ T < (Ttrig + Tcrit)/2;  
- Use a1 at high temperatures, i.e., (Ttrig + Tcrit)/2 ≤ T < Tcrit. 

SDTM: Apply the optimal DTM commands, based on the 
mathematical program formulation of the TMS.  

The Greedy policy gives considerable performance benefit, 
similar to clock throttling techniques which throttle clock and 
flush pipelines under temperature constraints. The simulation 
results in Table 2 (normalized), which varies the values of Tcrit,  
demonstrate that, compared to the Greedy policy, the SDTM 
policy which allows exceeding Tcrit to the degree of Pcrit achieves 
performance savings of up to 16.1% (average) at the cost of 3.5% 
(average) power penalty. However, it indicates that as we move 
Pcrit to smaller values (e.g., 0.05), we can achieve 13.9% (average) 
performance savings with little impact on the power metric. 

6. CONCLUSION 
We introduced a new technique for modeling and solving the 
DTM problem for multi-core systems. The proposed modeling 
technique, based on Markov decision processes captures dynamic 

characteristics of processor, applications, and die temperatures. 
From the mathematical model, we can calculate the optimal DTM 
policy, which maximizes the power-performance-efficiency under 
a peak temperature constraint. 
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Table 2. Power and performance comparisons between Greedy and SDTM techniques. 
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