
Stochastic Modeling of a Thermally-Managed
Multi-Core System

Hwisung Jung
Department of EE-Systems

University of Southern California
Los Angeles, CA
hwijung@usc.edu

Peng Rong
ASIC Development

Brocade Communications Systems
San Jose, CA

prong@brocade.com

Massoud Pedram
Department of EE-Systems

University of Southern California
Los Angeles, CA

pedram@ceng.usc.edu

ABSTRACT
Achieving high performance under a peak temperature limit is a
first-order concern for VLSI designers. This paper presents a new
abstract model of a thermally-managed system, where a stochastic
process model is employed to capture the system performance and
thermal behavior. We formulate the problem of dynamic thermal
management (DTM) as the problem of minimizing the energy
cost of the system for a given level of performance under a peak
temperature constraint by using a controllable Markovian decision
process (MDP) model. The key rationale for utilizing MDP for
solving the DTM problem is to manage the stochastic behavior of
the temperature states of the system under online re-configuration
of its micro-architecture and/or dynamic voltage-frequency
scaling. Experimental results demonstrate the effectiveness of the
modeling framework and the proposed DTM technique.

Categories and Subject Descriptors
D.8.2 [Performance and Reliability]: Performance Analysis and
Design Aides

General Terms
Algorithms, Design, Performance

Keywords
Dynamic thermal management, stochastic processes, uncertainty

1. INTRODUCTION
Ongoing advances in CMOS process technologies and VLSI
designs have resulted in the introduction of high-performance
multi-core systems on a chip (SoC). Thermal control in such
systems has become a first-order concern due to the increased
power density and thermal vulnerability of the chip. Localized
heating is a frequent occurrence in SoC designs. Power
dissipation is spatially non-uniform across the chip, resulting in
emergence of hot spots and spatial temperature gradients that can
cause accelerated aging, timing errors (setup time violations), or
even physical damage to the chip. To solve this, dynamic thermal
management (DTM) techniques, which attempt to ensure thermal

safety by employing runtime mechanisms to control power
density and to prohibit excessive local heating, have been
proposed as a class of micro-architectural solutions and control
strategies, which seek to enable the highest SoC performance
while meeting peak temperature constraints.

As reported in [1]-[5], the problem of thermal modeling and
management has received a lot of attention. The work presented
in [1] relies on a compact thermal model to achieve a
temperature-aware design methodology. A thermal control
mechanism used to cool the microprocessor’s temperature has
been derived in [2]. Predictive thermal management [3], which
exploits certain properties of multimedia applications, is an
example of online strategies for thermal management. In [4],
design guidelines for power and thermal management for high-
performance microprocessors are provided. A summary of
research that combine interconnect thermal effects and reliability
measures is given in [5].

Much of the past work has examined techniques for thermal
modeling and management, but these techniques may be
ineffective to reduce chip temperature of multi-core (MC)
systems because the configurability of the micro-architecture
depending on the target application and the uncertainty in
temperature measurement (erroneous or noisy temperature
reports) have often not been considered. Furthermore, thermal
models, based on equivalent circuit models, cannot adequately
model heat generation and diffusion in structures with complex
shapes and boundary conditions. Indeed, it is extremely difficult
to obtain the exact solution of the heat equations that arise from
realistic die conditions [6]. These difficulties render the problem
of identifying hot spots stochastic.

In this paper, we present a stochastic model of a thermally-
managed MC system (which we shall call TMS, for short) using a
Markov decision process (MDP) model. Recall that MDP, which
provides a robust theoretical framework for resource management
problems, is a theory of modeling the sequential decision making
process [7]. The key rationale for utilizing MDP for solving the
DTM problem in MC systems is to manage the stochastic
behavior of the temperature states of the system under dynamic
re-configuration of its micro-architecture (which may take place
in response to application program characteristics), while
maximizing the system performance subject to the constraint that
a critical temperature threshold is not exceeded locally or
globally.

The remainder of this paper is organized as follows. Section 2
provides some preliminaries of the paper, while section 3
describes the details of the proposed models for a TMS. Section 4

This research is supported in part by the National Science Foundation
under grant no. 0509564.

presents a DTM problem formulation. Experimental results and
conclusions are given in section 5 and section 6.

2. PRELIMINARIES
A modern computing system, which typically utilizes multi-cores
to achieve high performance, exhibits different thermal profiles
under different application programs due to its re-configurable
micro-architecture. For example, its cache size varies drastically,
depending on the characteristics of the running threads (i.e.,
application programs), where these adaptive caches adjust from
small sizes with fast access time to higher capacity but slower and
more power hungry configurations. As expected, larger cache
configurations, which are more prominent for dual-thread
workloads, provide higher power dissipation than smaller size
cache. This in turn dynamically changes the temperature profile
of the SoC during program execution. Details of the functionality
of the MC systems and algorithms for changing the micro-
architectural configuration on-the-fly fall outside the scope of the
present paper. Interested readers may refer to [8].

Application programs tend to exhibit different characteristics as a
function of the program phase they are in [9]. This is in turn
affects the computational workload of the processor, causes a new
micro-architectural configuration to be employed, which in turn
results in a different thermal profile on the chip. Figure 1 shows
the obtained IPC (Instruction per Cycle) by running various
application programs (e.g., SPEC CPU2000 [10]) on the Intel
Core Duo processor with a typical architectural specification (cf.
[11]). In this figure, IPCs for applications are compared to L2
cache miss rate, where average IPC for CPU2000 benchmarks is
measured as 0.85. It is clearly seen that higher L2 cache miss rate
accounts for its low IPC.

bz
ip

m
gr

id

gz
ip

m
cf

pa
rs

er vp
r

ar
t

eq
ua

ke

ga
lg

el

m
es

a

bz
ip

m
gr

id

gz
ip

m
cf

pa
rs

er vp
r

ar
t

eq
ua

ke

ga
lg

el

m
es

a

Figure 1. IPC vs. L2 cache miss rate on Intel Core Duo processor.

An integrated circuit (device) is typically allowed to operate when
the ambient air temperature, TA, surrounding the device package,
is within the range of 0°C to 70°C [12]. It is expedient to define
the critical temperature threshold, Tcrit, as the temperature above
which a chip is in thermal violation resulting in timing errors or
accelerated device/interconnect aging, and a trigger temperature
threshold, Ttrig, as the temperature above which DTM techniques
are employed. A thermal manager employs temperature reduction
mechanisms when the system temperature exceeds a pre-defined
temperature threshold (i.e., the trigger temperature).

Temperature reading can be performed by either external or
internal thermal sensors. External thermal sensors, e.g.,
thermocouples, incur a rather large time delay in reading the
temperature and tend to produce less accurate temperature
measurements. Internal thermal sensors, e.g., solid state sensors,
which may be deployed in larger numbers across a chip, have
been developed in pursuit of higher accuracy. However, there still
remain inaccuracies associated with the solid state sensors. For
example, current biased temperature sensors are in general
sensitive to noise on power and ground lines, and thus the sensor
output for low temperature reading is affected by process
variations, etc.

3. SYSTEM MODELING
We present a stochastic modeling technique to construct a TMS
by utilizing a continuous-time Markov decision process
(CTMDP).

3.1 Background
A CTMDP is a controllable continuous-time Markov process,
which satisfies Markovian property [7] and takes a set of state s ∈
S, where state transition rates are controlled by actions a ∈ A. We
consider a cost function which assigns a value to each state and
action pair by adopting a conventional approach, i.e., when the
system makes a transition from state s to another state s’, it
receives a cost.

Given a CTMDP with n states, its generator matrix G is defined
as an n×n matrix, where an entry σs,s’ in G is called the transition
rate from state s to another state s’, which can be calculated as

, ' (',) (1 / (, '))() , 's s a s a s s s sσ δ τ⋅= ≠ (1)

where τ(s, s’) is a transition time from s to s’, and δ(s’, a) is 1 if s’
is the destination state of action a or 0 otherwise. We can
calculate the limiting distribution (steady) state probabilities of
the CTMDP from its generator matrix. If state transition rates are
controlled by actions chosen from a finite set of action A, a policy
is defined as a set of state-action pairs for all the states of the
CTMDP. The details of the CTMDP are omitted here. Interested
readers may refer to [7].
The exponential distribution for state transition times, a prominent
property of CTMDP model, is sometimes insufficient to model
practical cases, especially when we model the first request arrival
in the idle state period [13], where the inter-arrival times of
service requests are in this case generally distributed. However, it
will not hurt the quality of the present paper if we assume that the
task inter-arrival times are exponentially distributed during the
active state period since thermal management is only in effect
during the program execution. Furthermore, the burst of program
execution on a processor follows exponential distribution [14].

3.2 Component Models
We present a CTMDP-based model of a TMS to optimally solve
the DTM problem. Figure 2 shows an abstract model of a TMS,
which comprises of three components: processor, application
program, and thermal sensor. In this paper, for simplicity we
assume that each application is executed by one processor and
that individual thermal sensors measure temperatures of each and
every processor in the MC system. A new application may cause
micro-architectural re-configuration of the corresponding
processor in order to improve the overall performance. A thermal

manager (TM) receives state (phase) of the application, reads
temperature data from the thermal sensor, and issues commands
to the processor under its control to manage the temperature rise
above Ttrig. There is one TM assigned to each processor. Notice
that Ri, Sj, and Hk represent the state sets of the application
program (i = 1, 2, …, l), the processor (j = 1, 2, …, m), and the
temperature (k = 1, 2, …, n), respectively, where l, m, and n are
the number of applications, processors, and thermal sensors
available within a MC system. Next, we construct the CTMDP
model of a single processor system for simplicity. The CTMDP
model of a MC system can be constructed in the same manner.

S

Thermal manager

Processor

jS
Thermal sensor

kH
Application

iR
S

Thermal manager

Processor

jS
Thermal sensor

kH
Application

iR

Figure 2. Abstract model of a thermal-managed MC system.

3.2.1 Modeling the Processor State
The CTMDP model of the processor is constructed as follows.
Assume that each state s ∈ S represents a combination of a micro-
architectural configuration c ∈ C (e.g., register file sizing, cache
sizing, or float-point-unit disabling) and an action a ∈ A (e.g.,
operating voltage-frequency (VF) setting), where there are micro-
architectural configuration set C = {c1, c2, …, cu} and action set A
= {a1, a2, …, av} available to the processor. Thus, the CTMDP
model of the processor includes a state set S = {s1, s2, …, sw} and
a parameterized generator matrix Gproc, where w is the numbers of
states of the processor, i.e., w = u·v. A state transition out of some
state s is controlled by either an action a ∈ A or a configuration
change c ∈ C. Any state transition takes a certain amount of time
to complete, where this latency overhead ranges from several
clock cycles to hundreds of milli-seconds. A typical micro-
architecture re-configuration latency, the duration between the
time a decision is made to change the micro-architectural
configuration and the time of actual configuration, takes up to
tens of clock cycles [16]. Thus, a state transition time in the
CTMDP model of the processor takes τ(s, s’) time (= max (τDVFS,
τARCH)), where τDVFS is the transition time of dynamic voltage and
frequency scaling (DVFS), and τARCH is the micro-architecture
transition period, when system transits from state s to s’.

An example of how to construct the CTMDP model of the
processor is given next. For simplicity, we suppose that the
processor has three micro-architectural configurations (e.g., cache
resizing) denoted by c1, c2, and c3, and a voltage frequency (VF)
setting chosen from a finite set of actions A = {a1, a2, a3} is
applied to the processor, where a1 < a2 < a3 in terms of the VF
values. Then, the abstract CTMDP model of the processor can be
illustrated as shown in Figure 3 (a), where a node represents a
processor state and a directed arc represents a transition between
two states with the parameterized generator Gproc. In Figure 3 (b),
σs,s’ = ∞ means the processor switches from state s to s’
immediately (i.e., s = s’), and σs,s’ = 0 means the processor can
never switch from state s to s’. Note that upsizing cache
configuration may require different time compared to downsizing
the cache configuration. In addition, cache downsizing occurs at

the beginning of the DVFS change because of the required cache
partitioning time, whereas cache upsizing happens at the end of
the DVFS change [15][16].

 s1

a1, c1

s2

a1, c2 a1, c3

a2, c1 a2, c2 a2,c3

a3, c1 a3, c2 a3, c3

s3

s4 s5
s6

s7 s8 s9

proc

0.6 0.2 0.3 0 0 0.1 0 0
0.4 0.1 0 0.4 0 0 0.1 0
0.2 0.3 0 0 0.2 0 0 0.3
0.6 0 0 0.3 0.1 0.1 0 0
0 0.5 0 0.2 0.2 0 0.1 0
0 0 0.6 0.3 0.2 0 0 0.2

0.3 0 0 0.5 0 0 0.2 0.4
0 0.1 0 0 0.7 0 0.2 0.2
0 0 0.4 0 0 0.3 0.2 0.3

∞⎡ ⎤
⎢ ⎥∞⎢ ⎥
⎢ ⎥∞
⎢ ⎥∞⎢ ⎥
⎢ ⎥= ∞
⎢ ⎥

∞⎢ ⎥
⎢ ⎥∞
⎢ ⎥

∞⎢ ⎥
⎢ ⎥∞⎢ ⎥⎣ ⎦

G

s1

a1, c1

s2

a1, c2 a1, c3

a2, c1 a2, c2 a2,c3

a3, c1 a3, c2 a3, c3

s3

s4 s5
s6

s7 s8 s9

proc

0.6 0.2 0.3 0 0 0.1 0 0
0.4 0.1 0 0.4 0 0 0.1 0
0.2 0.3 0 0 0.2 0 0 0.3
0.6 0 0 0.3 0.1 0.1 0 0
0 0.5 0 0.2 0.2 0 0.1 0
0 0 0.6 0.3 0.2 0 0 0.2

0.3 0 0 0.5 0 0 0.2 0.4
0 0.1 0 0 0.7 0 0.2 0.2
0 0 0.4 0 0 0.3 0.2 0.3

∞⎡ ⎤
⎢ ⎥∞⎢ ⎥
⎢ ⎥∞
⎢ ⎥∞⎢ ⎥
⎢ ⎥= ∞
⎢ ⎥

∞⎢ ⎥
⎢ ⎥∞
⎢ ⎥

∞⎢ ⎥
⎢ ⎥∞⎢ ⎥⎣ ⎦

G

 (a) (b)
Figure 3. An example of CTMDP model of a processor (a) and its

generator matrix (b).

3.2.2 Modeling the Application State
Application programs can be characterized by using their
architecture-dependent characteristics (such as the IPC and cache-
miss rate), architecture-independent characteristics (such as data
and instruction temporal localities), or a combination of these two
[17]. In this paper, we focus on the micro-architecture re-
configurations that affect the IPC and data cache-miss rate
characteristics of application programs, which subsequently result
in temperature change on the processor die. Measuring the
architecture-independent characteristics may be achieved by
exploiting the notion of data similarity (e.g., instruction level
parallelism, data locality). However, it is not straightforward to
estimate the performance of a particular architecture-independent
enhancement; therefore, we do not consider them here.

Inspired by these observations, we construct a CTMDP model of
an application program. The CTMDP model consists of a state set
R = {r1, r2, …, rp} and a generator matrix Gapp, where p is the
number of states that are present in the application. In our
problem setup, application state r is differentiated based on values
of IPC and the cache-miss rate. A state transition between
different application states takes place autonomously, and may
initiate a change in the state of the processor.

r1 r2

r3 r4

app

0.3 0.4 0.3
0.2 0.5 0.3
0.4 0.2 0.5
0.3 0.4 0.1

∞

∞

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

r1 r2

r3 r4

app

0.3 0.4 0.3
0.2 0.5 0.3
0.4 0.2 0.5
0.3 0.4 0.1

∞

∞

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

 (a) (b)
Figure 4. An example of CTMDP model of applications (a) and its

generator matrix (b).

An example of a four-state CTMDP model of an application,
considering workload characteristics, is depicted in Figure 4. Here
r1, r2, r3, and r4 represent combinations of IPC and cache-miss
rate (η) ranges of the application, e.g., r1 = [IPC ≤ 0.85, η ≤
0.01], r2 = [IPC ≤ 0.85, η > 0.01], r3 = [IPC > 0.85, η ≤ 0.01],
and r4 = [IPC > 0.85, η > 0.01]. Note that the threshold values for
the IPC and η are set by the application developers. A state
transition between different application states occurs within a
processor. If we consider multiple processors with multiple
applications, individual state transitions for each processor must

be considered. The transition rate σr,r’ in Gapp includes the context
switch time, not assuming a round-robin context switching
architecture, controlled by the operating system. For example, if
we make a context switch when the deadline for completing an
application program is missed, then a state transition will occur
with a specific transition rate.

3.2.3 Modeling the Temperature State
Temperature readings from thermal sensors are important to DTM
technique, since by knowing the temperature profile of a chip, the
TMS may be triggered to respond to chip temperature changes so
as to avoid thermal failure/damage of the chip or to maximize
performance of interest under temperature constraints.

Conventionally, the junction temperature TJ of the IC can be
estimated with

θ= + ⋅ JAJ AT T P (2)

where TA is the ambient temperature (°C), P is the device power
dissipation (W), and θJA is the thermal resistance from device
junction to ambient (°C/W). In general, thermal failure is avoided
by maintaining the device θJA value small enough so that the
junction temperature TJ does not exceed a maximum value during
operation. It is worthwhile to note that θJA cannot be modeled
directly due to the complexity of thermal models for the package,
cooling system, and board stack-up [6]. In addition, θJA is
assumed to be a single parameter under the assumption that
device power dissipation, P, is distributed uniformly across the
die, which is not realistic assumption (i.e., uncertain behavior). To
overcome this difficulty, we use an observation (i.e., temperature
reading TT of the package top obtained by a thermal sensor) as

JTJ TT T P ψ= + ⋅ (3)

where ψJT is the junction-to-top of package thermal
characterization parameter used as a measure of the temperature
difference between junction and package top surface, and is
estimated from JEDEC thermal tests [12]. The device power P, a
major source of heat generation, is varied based on micro-
architectural configurations, which are also application
dependent.

To construct the temperature state of the processor, we first define
a set of temperatures T0 < T1 < … < Tc, where T0 = Ttrig (i.e., the
trigger temperature threshold) and Tc = Tcrit (i.e., the critical
temperature threshold). The intervening temperature thresholds
are defined according to the ACPI (Advanced Configuration and
Power Interface) specification. Once the temperature of the
processor reaches the initial trigger temperature, the thermal
manager is awakened to consider the conditions and issue a
thermal management decision (i.e., a system state-changing
command), ensuring that the critical temperature threshold is not
exceeded. Thus, the CTMDP model of the chip temperature
includes a set of temperature states H = {h1, h2, …, hc, hc+1} and a
generator matrix Gtemp, where c+1 is the number of states that are
possible with a thermal sensor. Note that hi represents the
temperature region between Ti-1 and Ti, and hc+1 represents the
temperature region that lies beyond Tcrit. The transition rates in
Gtemp can be calculated as the inverse of the time it takes for the
temperature of the processor to increase (decrease) from
temperature state hi to hi+1 (hi-1), assuming that a thermal sensor
receives streams of continuous-valued sensor data so that state hi
cannot evolve into state hi+2 or hi-2 directly.

3.3 Integrated Model of a TMS
After constructing the CTMDP models of the processor,
application, and temperature reading, we denote by X the global
state set of the integrated model, defined as the Cartesian product
[18] of the state sets S, R, and H, with the generator matrix GTMS
which contains the transition rate from a global state x = (s, r, h)
to another x’ = (s’, r’, h’). Note that the Cartesian product is a
direct product of sets such as S×R×H = {(s, r, h) | s ∈ S, r ∈ R,
and h ∈ H}. The global generator matrix GTMS is calculated as the
tensor sum [19] of generator matrices Gproc, Gapp, and Gtemp. Note
that when two CTMDPs with generator matrices A and B are
given, the generator matrix of the joint process is obtained by the
tensor sum, a matrix operator, of A and B. Basically, the tensor
sum, for example, C = A⊕B is given by C = A⊗In2 + In1⊗B,
where n1 is the order of A, n2 is the order of B, Ini is the identity
matrix of order ni, and ⊗ is the tensor product [19]. The tensor
product, for example, C = A⊗B, is defined as,

11 12 11 12

21 2221 22

,⊗ = =
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

a a a a
if

a aa a

B B
A B A

B B
 (4

)

where a11, a12, a21, and a22 are scalars.

x1 x3

x5 x6 x8

s1, r1, h1

s2, r2, h2s2, r1, h2

s1, r2, h2s1, r2, h1

s2, r1, h1
s2, r2, h1

x7

x2

s1, r1, h2

x4

TMS

0.7 0.3 0 0.1 0 0 0
0.8 0 0.3 0 0.1 0 0
0.4 0 0.7 0 0 0.1 0

0 0.4 0.8 0 0 0 0.1
0.2 0 0 0 0.7 0.3 0

0 0.2 0 0 0.8 0 0
0 0 0.2 0 0.4 0 0.7
0 0 0 0.2 0 0.4 0.8

∞

∞

∞

∞

∞

∞

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G

x1 x3

x5 x6 x8

s1, r1, h1

s2, r2, h2s2, r1, h2

s1, r2, h2s1, r2, h1

s2, r1, h1
s2, r2, h1

x7

x2

s1, r1, h2

x4

TMS

0.7 0.3 0 0.1 0 0 0
0.8 0 0.3 0 0.1 0 0
0.4 0 0.7 0 0 0.1 0

0 0.4 0.8 0 0 0 0.1
0.2 0 0 0 0.7 0.3 0

0 0.2 0 0 0.8 0 0
0 0 0.2 0 0.4 0 0.7
0 0 0 0.2 0 0.4 0.8

∞

∞

∞

∞

∞

∞

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G

 (a) (b)
Figure 5. An example of CTMDP model of a TMS (a) and its

generator matrix (b).

An example of the integrated CTMDP model that captures
temperature evolution is provided in Figure 5, assuming that we
have two states for processor (s1, s2), application (r1, r2), and
temperature (h1, h2), for simplicity. For example, if a micro-
architectural configuration change from s1 to s2 takes place given
application r1 and temperature reading h1, the TMS transits from
x1 to x6 via x5, where the temperature in the end evolves into h2.

4. DYNAMIC THERMAL MANAGEMENT
In this section, mathematical formulation of the DTM problem
that maximizes the performance metric subject to no exceeding a
critical temperature threshold is constructed.

4.1 Optimal DTM Policy
After determining the relevant parameters for each state x ∈ X and
each arc in the CTMDP model of the TMS, we set up a
mathematical programming model to solve the DTM problem as a
linear program as below. The goal is to find an optimal state s ∈ S
which consists of action and micro-architectural configuration (a,
c), while minimizing the energy cost of the system for a given
level of performance and given an application r under tight
temperature constraints. We call the tuple (a, c) a command since
the TM controls the micro-architectural configuration and the VF
setting, which in turn affect power dissipation of the processor,
and thereby the resulting temperature.

mimimize x x x

x

s s s
x x xs x s

f gτ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑∑ (5)

s.t. ' '

'

',
'

,x x x

x x

s s s
x x x x

s x x s

x Xf f p
≠

∀ ∈=∑ ∑∑ (6)

1x x

x

s s
x x

x s

f τ =∑∑ (7)

1((),) Prx x

x

c crit
s s

x x
x s

f h x hτ δ + <∑∑ (8)

where xs
xf is the frequency that the system enters into state x with

command sx, xs
xτ is the expected duration of time that the system

stays in state x when command sx is taken, xs
xg is the energy cost

of the system for a given level of performance (i.e., the energy-
delay-squared product, ED2P, which captures the power-
performance-efficiency under voltage scaling [8] and is
independent of the clock frequency) when the system is in state x
and command sx is chosen, '

',
xs

x xp is the probability that the next

system state is x’ if the system is currently in state x and
command sx is taken, δ(h(x), hc+1) is 1 if h(x) (i.e., current h of
state x) = hc+1 (i.e., temperature beyond Tcrit) or 0 otherwise, and
Prcrit is a pre-defined threshold probability (i.e., the probability of
exceeding the critical temperature threshold).

, ''
1/ xx s

x xx x
s
x στ

≠
= ∑ .

The ED2P metric may also be written as

2

3 3

Pwr Pwr
ED P

Perf IPC
= ≅ (9)

where Pwr denotes the processor power consumption, and the
processor performance is measured as the number of instructions
per cycle (IPC). 3Pwr IPC is an excellent figure of merit to
capture the energy cost of a given level of processor performance
[8]. Note that we focus on AC line powered systems that strive to
deliver maximum performance while operating under temperature
constraints. Specifically, the purpose of this optimization problem
is to maximize the system’s power-performance-efficiency while
constraining the probability that the peak temperature is greater
than Tcrit to be less than a pre-defined probability value, Pcrit.

4.2 Online DTM
In many cases, we are unable to know the actual characteristics of
the applications which are running on the processor in advance.
Thus, we must also develop an online DTM technique by
constructing a pre-characterized configuration-command mapping
table, where the entries of this mapping table correspond to
various combinations of application types and temperature
readings. Figure 6 illustrates how the thermal manager interacts
with the applications and the temperature readings. In this figure,
the pre-characterized mapping table is obtained through extensive
offline simulation during design time, considering every possible
combination of states for processor, applications, and temperature
readings. It is worthwhile to note that the thermal manager is
initiated only when the temperature exceeds the initial trigger
temperature threshold Ttrig and then controls the performance of
the processor by limiting critical temperature. More precisely, the
thermal manager receives the states of current application and
temperature when the temperature exceeds Ttrig, and issues an

optimal micro-architectural configuration and action set (i.e.,
command) to the processor.

performance
constraints

architectural
configuration

L2: 2MB

L2: 4MB

L2: 1MB

action

1.30V/2.3GHz

1.35V/2.3GHz

1.30V/1.8GHz

pre-characterized mapping table

Pcrit

0.1

0.2

Time [s]Te
m

p
[ºC

]

Tinit

Initiate the
thermal manager

Issue a command (a, c)

Application

iR
Thermal sensor

kH

performance
constraints

architectural
configuration

L2: 2MB

L2: 4MB

L2: 1MB

action

1.30V/2.3GHz

1.35V/2.3GHz

1.30V/1.8GHz

pre-characterized mapping table

Pcrit

0.1

0.2

Time [s]Te
m

p
[ºC

]

Tinit

Initiate the
thermal manager

Issue a command (a, c)

Application

iR
Thermal sensor

kH

Figure 6. Online thermal management technique.

5. EXPERIMENTAL RESULTS
Experiments have been designed to evaluate the effectiveness of
the proposed modeling technique and assess the performance of
our optimization method. We use abstract models of the Intel
Core Duo processor [20], which provides dynamic L2 cache
resizing mechanism, to construct a TMS. Table 1 shows the
transition time (normalized) for the CTMDP model of the
processor, assuming that the system has S = {s1, s2, s3, s4}, where
each state set s = (a, c) is a combination of a1 = [1.3V 1.8GHz], a2
= [1.35V 2.3GHz], c1 = [2MB L2 cache], and c2 = [4MB L2
cache]. Note that due to the limitations of the simulation
environment (e.g., Vtune performance analyzer [21]), we only
consider a variable cache for the architectural configuration set
(i.e., other configurable resources such as register file, reorder
buffer, and load/store queue are not considered). Note that
information about dynamic cache resizing time and voltage and
frequency control lock time is obtained from [4][20].

Table 1. Transition times for the CTMDP model of the processor.

0(a1, c1)

(a1, c1)

(a1, c2)

(a1, c2)

(a2, c1)

(a2, c2)

(a2, c2)(a2, c1)

1 0.8 1

5 0 5 0.8

0.8 1 0 1

5 0.8 5 0

0(a1, c1)

(a1, c1)

(a1, c2)

(a1, c2)

(a2, c1)

(a2, c2)

(a2, c2)(a2, c1)

1 0.8 1

5 0 5 0.8

0.8 1 0 1

5 0.8 5 0

To simplify the experimental setup, we consider R = {r1, r2, r3,
r4}, where each r is a combination of two IPC ranges and two L2
cache miss rate (η) ranges: IPC ≤ 0.85, IPC > 0.85; η ≤ 0.01, and
η > 0.01, based on the performance distribution for application
programs as shown in Figure 1. The initial trigger temperatures
threshold is defined as Ttrig = 60°C, with an ambient temperature
of TA = 40°C, based on the thermal design guideline, where we
use the thermal performance data of a 35x35mm 478-pin micro-
FCPGA package [20] to obtain temperature states. The on-chip
temperature is estimated by utilizing Tchip = TA + P⋅(θJA – ΨJT)
based on the parameter values of the package. The device power
dissipation P can be assumed to be a normally distributed random
variable with some known mean value and standard deviation.

Figure 7 shows the results of the proposed DTM technique, where
we randomly chose a sequence of 100 programs of SPEC
CPU2000 (cf. Figure 1) with Pcrit set to 0.2 and Tcrit set to 71°C.
An optimal architectural configuration and action set is selected
and provided to the processor when an input (i.e., application and

temperature state) is given to the mapping table, where the entries
of this table correspond to various combinations of inputs and
performance constraints. It is clearly seen that the peak power
consumption, which results in the temperaure increase, is limited
by constraining the probability that the peak temperature of the
system is greater than Tcrit to be less than Pcrit in our DTM policy.
The time steps are abstractly defined to represent the peak power
value of each program run. As expected, constraining the power
dissipation causes some performance (ED2P) degradation. It,
however, guarantees the thermal safety of the system.

critPcritP

Figure 7. The effectiveness of the proposed DTM technique.

We investigated the performance-efficiency of the proposed DTM
technique, which we call stochastic DTM, or SDTM for short. We
assumed two voltage-frequency (VF) change commands are
available (where a1 < a2 in terms of VF values). For comparison
purpose, we also implemented a greedy DTM policy.
Greedy: Apply the following VF assignment strategy

- Use a2 at low temperatures, i.e., Ttrig ≤ T < (Ttrig + Tcrit)/2;
- Use a1 at high temperatures, i.e., (Ttrig + Tcrit)/2 ≤ T < Tcrit.

SDTM: Apply the optimal DTM commands, based on the
mathematical program formulation of the TMS.

The Greedy policy gives considerable performance benefit,
similar to clock throttling techniques which throttle clock and
flush pipelines under temperature constraints. The simulation
results in Table 2 (normalized), which varies the values of Tcrit,
demonstrate that, compared to the Greedy policy, the SDTM
policy which allows exceeding Tcrit to the degree of Pcrit achieves
performance savings of up to 16.1% (average) at the cost of 3.5%
(average) power penalty. However, it indicates that as we move
Pcrit to smaller values (e.g., 0.05), we can achieve 13.9% (average)
performance savings with little impact on the power metric.

6. CONCLUSION
We introduced a new technique for modeling and solving the
DTM problem for multi-core systems. The proposed modeling
technique, based on Markov decision processes captures dynamic

characteristics of processor, applications, and die temperatures.
From the mathematical model, we can calculate the optimal DTM
policy, which maximizes the power-performance-efficiency under
a peak temperature constraint.

7. REFERENCES
[1] W. Huang, M.R. Stan, K. Skadron, K. Sankaranarayana, S. Shosh,

and S. Velusamy, “Compact Thermal Modeling for Temperature-
Aware Design,” Proc. of DAC, June, 2004.

[2] D. Brooks, and M. Martonosi, “Dynamic Thermal Management for
High Performance Microprocessor,” Proc. of HPCA, Jan., 2001.

[3] J. Srinivasan, and S. V. Adve, “Predictive Dynamic Thermal
Management for Multimedia Applications,” Proc. of ACM Int’l
Conference on Supercomputing, Jun., 2003.

[4] A. Naveh, et al., “Power and Thermal Management in Intel Core Duo
Processor,” Intel Tech. Journal, Vol. 10, Issue 2, May, 2006.

[5] P. Dadvar, and K. Skadron, “Potential Thermal Security Risks,”
Proc. of 21st IEEE Semi-Therm Symposium, Mar., 2005.

[6] M. Janicki, and A. Napieralski, “Inverse Heat Conduction Problems
in Electronics with Special Considerations of Analytical Analysis
Methods,” Proc. of Int’l Semiconductor, Vol. 2, Issue 4, Oct., 2004.

[7] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Publisher, New York, 1994.

[8] J. Silc, B. Robic, and T. Ungerer, Processor Architecture: From
Dataflow to Superscalar and Beyond, Springer, 1999.

[9] D. C. Lee, et al., “Execution characteristics of desktop applications
on Windows NT,” Proc. Int. Conf. on Computer Architecture, 1998.

[10] CPU SPEC2000 documents. http://www.spec.org.
[11] S. Birdj, et al., “Performance Characterization of SPEC CPU

Benchmarks on Intel’s Core Microarchitecture based processor,”
Proc. of 2007 SPEC Benchmark workshop, Jan., 2007.

[12] JEDEC standards. http://www.jedec.org.
[13] E. Chung, L. Benini, and G. De Micheli, “Dynamic power

management for non-stationary service requests,” Proc. of Design
Automation and Test in Europe, Apr., 1999.

[14] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, John Wiley & Sons, 2005.

[15] S. Lopez, et al., “Dynamic Capacity-Speed Tradeoffs in SMT
Processor Caches,” Proc. of High Performance Embedded
Architecture and Compiler, Jan., 2007.

[16] D. Ponomarev, G. Kucuk, and K. Ghose, “Dynamic Resizing of
Superscalar Datapath Components for Energy Efficiency,” IEEE
Trans. on Computers, Vol. 55, No. 2, Feb., 2006.

[17] A. Joshi, et al., “Measuring benchmark similarity using inherent
program characteristics,” IEEE Trans. on Computers, Vol. 55, No. 6,
Jun., 2006.

[18] M. J. Osborne, A Course in Game Theory, MIT press, 1994.
[19] M. Davio, “Kronacker products and shuffle algebra,” IEEE Trans. on

Computers, Vol. 30, No.2, 1981.
[20] Intel Core Duo processor on 65nm process: Thermal Design Guide,

Feb., 2006. http://www.intel.com.
[21] Vtune performance analyzer. http://www.intel.com/software.

Table 2. Power and performance comparisons between Greedy and SDTM techniques.

Tcrit

71°C

63°C

67°C

Greedy

Average
Power

Average
ED2P

Pcrit = 0.05

Saving (%)

Power Perf
Average
Power

Average
ED2P

Average
Power

Average
ED2P

Pcrit = 0.15

Saving (%)

Power Perf
Average
Power

Average
ED2P

Pcrit = 0.25

Saving (%)

Power Perf

SDTM

29.3 5.29

33.6

35.4

4.64

4.32

30.3

33.8

35.8

4.40

3.91

3.73

-3.0

-0.6

-1.1

16.8

15.7

13.6

31.9

33.9

36.2

4.31

3.90

3.70

-8.8

-0.9

-2.2

18.5

15.9

14.4

32.5

34.0

36.3

4.20

3.85

3.60

-10.9

-1.2

-2.5

20.6

17.0

16.7

Average
Power

Average
ED2P

Pcrit = 0.35

Saving (%)

Power Perf

32.7

34.2

36.5

4.15

3.82

3.52

-11.6

-1.7

-3.1

21.5

17.7

18.5

75°C 37.6 3.65 38.0 3.30 -1.0 9.6 38.3 3.25 -1.5 10.9 38.6 3.20 -2.6 12.3 38.9 3.01 -3.4 17.5

Tcrit

71°C

63°C

67°C

Greedy

Average
Power

Average
ED2P

Pcrit = 0.05

Saving (%)

Power Perf
Average
Power

Average
ED2P

Average
Power

Average
ED2P

Pcrit = 0.15

Saving (%)

Power Perf
Average
Power

Average
ED2P

Pcrit = 0.25

Saving (%)

Power Perf

SDTM

29.3 5.29

33.6

35.4

4.64

4.32

30.3

33.8

35.8

4.40

3.91

3.73

-3.0

-0.6

-1.1

16.8

15.7

13.6

31.9

33.9

36.2

4.31

3.90

3.70

-8.8

-0.9

-2.2

18.5

15.9

14.4

32.5

34.0

36.3

4.20

3.85

3.60

-10.9

-1.2

-2.5

20.6

17.0

16.7

Average
Power

Average
ED2P

Pcrit = 0.35

Saving (%)

Power Perf

32.7

34.2

36.5

4.15

3.82

3.52

-11.6

-1.7

-3.1

21.5

17.7

18.5

75°C 37.6 3.65 38.0 3.30 -1.0 9.6 38.3 3.25 -1.5 10.9 38.6 3.20 -2.6 12.3 38.9 3.01 -3.4 17.5

