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Abstract—The rapidly developing cloud computing and 

virtualization techniques provide mobile devices with battery 

energy saving opportunities by allowing them to offload 

computation and execute applications remotely. A mobile 

device should judiciously determine whether to offload 

computation and which portion of application should be 

offloaded to the cloud. This paper considers a mobile cloud 

computing (MCC) interaction system consisting of multiple 

mobile devices and the cloud computing system. A Bayesian 

game formulation is proposed for the MCC interaction system. 

In this game, each mobile device determines the portion of its 

service requests for remote processing in the cloud computing 

system. All the mobile devices compete for the allocated 

resources in the data center. Each mobile device is aware of its 

own service request generating rate through effective 

prediction methods. It has only partial information about the 

other mobile devices. The objective of each mobile device is to 

minimize its power consumption as well as the service request 

response time. This paper proves that pure strategy Bayesian-

Nash equilibrium in this game always exists and is unique. The 

optimal strategy for all the mobile devices achieving the 

Bayesian-Nash equilibrium is derived using convex 

optimization technique. Experimental results demonstrate the 

effectiveness of the proposed Bayesian game-based 

optimization framework. The mobile devices can achieve 

simultaneous reduction in average power consumption and 

average service request response time, by 27.3% and 63.7%, 

respectively, compared with baseline methods. 

Keywords-mobile cloud computing; mobile devices; game 

theory; Bayesian game; resource allocation 

I.  INTRODUCTION 

Cloud computing has been envisioned as the next-

generation computing paradigm for its advantages in on-

demand service, ubiquitous network access, location 

independent resource pooling, and transference of risk [1]. 

Cloud computing shifts the computation and storage 

resources from the network edges to a “Cloud” from which 

businesses and users are able to access applications from 

anywhere in the world on demand [2][3][4]. In the cloud 

computing paradigm, the capabilities of business 

applications are exposed as sophisticated services that can be 

accessed over a network. Cloud service providers are 

incentivized by the profits by charging the remote clients for 

accessing these services. Clients are attracted by the 

opportunity for reducing or eliminating costs associated with 

“in-house” local provision of these services.  

The underlying infrastructure of cloud computing 

consists of data centers and clusters of servers that are 

monitored and maintained by the cloud service providers [6]. 

These data centers have massive computation and storage 

capabilities. Service providers often end up over-allocating 

or over-provisioning their resources in these data centers in 

order to meet the clients’ response time requirements or 

other service level agreements (SLAs) [5]. Such over-

provisioning may increase the cost incurred on the data 

centers in terms of both the electrical energy cost and the 

carbon emission. Hence, optimal resource provisioning or 

allocation in the cloud computing system (or in the broader 

area of distributed computing system) is imperative in order 

to reduce the cost incurred on the data centers as well as the 

environmental impact, and has been investigated extensively 

in [7]-[13]. 

The emerging paradigm of mobile cloud computing 

(MCC) shifts the processing, memory, and storage 

requirements all together from the resource limited mobile 

devices to the resource unlimited cloud computing system 

[14]-[16]. MCC provides multiple potential advantages for 

the remote mobile devices [17][18], including improvement 

of the storage capacity for mobile users and reducing the risk 

of data and application lost on mobile devices by backing up 

users’ data in the cloud. The potentially most important 

benefit for the mobile users is the extension of battery’s 

operation time. The MCC system helps the mobile devices 

run the computation intensive applications, which typically 

consume a large amount of battery energy when running 

locally in the mobile devices. This is enabled by the recently 

developed virtualization techniques that allow the cloud to 

run mobile applications for the remote mobile devices [19]. 

This technique is referred to as computation offloading in the 

reference work [18][20].  
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The mobile devices should judiciously make decisions 

about whether to perform computation offloading and which 

portion of the running application should be offloaded to the 

cloud. Reference [18] provides an analysis and guideline on 

the conditions that computation offloading could help save 

the energy for mobile devices. It concludes that an 

application or task with high computation but limited data 

communication requirement could benefit from computation 

offloading. Reference [20] proposes MAUI to perform 

runtime dynamic control of computation offloading, by 

formulating the computation offloading problem as a linear 

programming optimization problem. Reference [21] provides 

a similar approach for the Android applications. 

Furthermore, the mobile devices should also be aware of 

other devices and the potential congestion level in the remote 

data center if all the mobile devices decide to offload their 

computations simultaneously. Reference [22] provides a 

congestion game-based optimization framework for the 

MCC system, in which each mobile device is a player and 

his strategy is to select one of the available servers in the 

cloud to offload computation. In the realistic cloud 

computing facilities, however, a centralized request 

dispatcher selects the target server for each service request 

(i.e., request for computation offloading) generated from the 

mobile devices [4]. The mobile devices do not select the 

target servers themselves. 

In this paper, we consider an MCC interaction system 

consisting of multiple mobile devices and the cloud 

computing system. Each mobile device executes an 

application and generates service requests, which could 

either be processed locally in the mobile device or remotely 

in the cloud computing system through computation 

offloading. The cloud computing system consists of multiple 

servers dedicated for processing mobile service requests 

inside a data center. Service requests from the mobile 

devices are free to be dispatched to any server in the cloud 

computing system. The cloud computing controller allocates 

a portion of resources in each server for service request 

processing. The resource allocation results in the cloud 

computing system are pre-announced to the mobile devices. 

In the MCC interaction system, each mobile device 

determines its optimal portion of service requests to be 

remotely processed in the cloud computing system. All the 

mobile devices compete for the allocated resources in the 

data center. The objective of each mobile device is to 

minimize a weighted combination of its average power 

consumption and average response time of service requests. 

Each mobile device is aware of its own service request 

generating rate through effective prediction methods. On the 

other hand, it is only aware of the probability distribution of 

the service request generating rates of the other mobile 

devices in the MCC system. Similarly, each mobile device is 

only aware of the probability distribution of the relative 

weight in the other devices between the average power 

consumption and average service request response time.  

We provide a Bayesian game-based optimization 

framework [35] for the mobile devices in the MCC system 

since each mobile device has only partial information about 

the others. Each player in the Bayesian game is a mobile 

device and its strategy is the portion of service requests for 

remote processing. All the players in the game choose its 

strategy simultaneously. We prove that the pure strategy 

Bayesian-Nash equilibrium [34][35] of this game always 

exists and is unique. The Bayesian-Nash equilibrium is the 

optimal strategy profile in the Bayesian game in the sense 

that no player can find better strategy if he deviates from the 

current strategy unilaterally [34]. We derive the optimal 

strategy of each mobile device achieving the Bayesian-Nash 

equilibrium using convex optimization method [32]. 

Experimental results demonstrate the effectiveness of the 

proposed Bayesian game-based optimization framework of 

the MCC interaction system.  

The rest of this paper is organized as follows. The MCC 

system model, including models for the mobile devices and 

the resource allocation framework in the cloud computing 

system, is presented in Section II. The Bayesian game-based 

formulation and optimization of the MCC interaction system 

are presented in Section III and Section IV, respectively. 

Experimental results are presented in Section V and the 

conclusion is in the last section. 

 

II. MOBILE CLOUD COMPUTING SYSTEM MODEL 

Consider an MCC interaction system comprised of   

distributed mobile devices and a cloud computing system. 

These mobile devices such as smartphones, tablet PCs, are 

connected to the cloud through WiFi or 3G network. Each 

mobile device in the MCC system is identified by a unique 

ID, represented by index i. Figure 1 shows the i-th (    
 ) mobile device. Each i-th mobile device executes an 

application and generates service requests, which could 

either be processed locally in the mobile device or remotely 

in the cloud computing system through computation 

offloading. 
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Figure 1.  Conceptual structure for the mobile device: local or remote 

processing? 



To find an analytical form of the average response time, 

service requests generated from the i-th mobile device are 

assumed to follow a Poisson process with an average 

generating rate of   , which is predicted based on the 

behavior of the application. To be more realistic, each i-th 

mobile device knows its own    value, whereas it is only 

aware of the probability distribution of the     values of the 

other mobile devices in the MCC system. 

The i-th mobile device chooses to offload each service 

request for remote processing in the cloud with probability 

  
 , where the superscript   stands for ‘mobile’. We name 

  
  the offloading probability of the i-th mobile device. 

These probability values for mobile devices are the 

optimization variables in the MCC optimization framework. 

According to the properties of the Poisson distribution [30], 

service requests that are generated from the i-th mobile 

device and processed remotely in the cloud follow a Poisson 

process with an average rate of   
    , called the offloading 

rate. The service requests that are generated from the i-th 

mobile device and processed locally in the device follow a 

Poisson process with an average rate of (    
 )    . When 

  
  becomes larger, the average response time for the locally 

processed service requests decreases while the average 

response time for remotely processed requests increases (due 

to the average delay increasing in sending/receiving a service 

request and request processing in the cloud.) In the 

perspective of power consumption of the i-th mobile device, 

the power consumption in the mobile CPU (for service 

requests for local processing) decreases while the power 

consumption in the radio frequency (RF) components for 

sending the service requests increases. Therefore, it is crucial 

for each mobile device to judiciously choose the optimal   
  

considering the characteristics of service requests (i.e., 

computation and communication requirements), the 

anticipated probability distribution of offloading rate    
      

of the other mobile devices, as well as the anticipated 

congestion level in the data center. 

Let   
  denote the average service request processing rate 

in the i-th mobile device. Then the average response time of 

the locally processed service requests in the i-th mobile 

device is given by: 

  
 (  

    )  
 

  
  (    

 )    

 (1) 

Let   
  denote the average speed in service request sending in 

the i-th mobile device, where the superscript   stands for 

‘sending’. We calculate as follows the average time for 

service request to wait in the mobile device before it is 

completely sent out: 

  
 (  

    )  
 

  
    

    

 (2) 

  
  is proportional to the wireless channel capacity from the 

mobile device to the access point [25]. 

The power consumption in the i-th mobile device 

consists of two parts: (i) power consumption in the mobile 

CPU for local service request processing, and (ii) power 

consumption in the RF components (e.g., WiFi, 3G 

components) for sending the service requests to the cloud 

[28][29]. Both the CPU power consumption and the RF 

components power consumption can be further separated 

into a dynamic power consumption part when the CPU or RF 

components are active (i.e., when they are processing or 

sending service requests) and a static power consumption 

part. The average dynamic power consumption in the CPU 

of the i-th mobile device, denoted by       
    

(  
    ) , is 

proportional to the portion of time that the CPU is active, 

given by (    
 )       

 . We calculate       
    

(  
    ) 

using: 

      
    

(  
    )  

(    
 )    

  
        

       
 (3) 

where       
       

 is the dynamic power consumption when the 

mobile CPU is active. Similarly, the average dynamic power 

consumption in the RF components of the i-th mobile device 

is given by: 

     
    

(  
    )  

  
    

  
 

      
       

 (4) 

On the other hand, the (average) static power 

consumptions in the CPU and the RF components of the i-th 

mobile device are constant values denoted by       
     and 

     
    , respectively. The overall power consumption in the i-

th mobile device is given by 

         (  
    )        

    
(  

    )       
    

(  
    ) 

       
          

     
(5) 

Figure 2 shows the structure of the target resource 

allocation system in cloud computing with a service request 

pool, a data center as the service provider as well as a central 

resource management node. The data center consists of   

potentially heterogeneous servers that are dedicated for 

service request processing from the mobile devices (clients). 

We use j as the index of the servers in the data center. 
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Figure 2.  Conceptual structure of the resource allocation system in cloud 

computing. 



The service request pool contains the service requests 

generated from all the remote mobile devices. According to 

the properties of the Poisson distribution [30], the total 

service request generating rate of the request pool is given by 

∑   
    

 
   . A service request can be dispatched to any 

server in the data center. The request dispatcher assigns a 

request to the j-th server with probability   
 , where the 

superscript   stands for ‘cloud’. According to the properties 

of the Poisson distribution [30], the service requests arriving 

at the j-th server follow a Poisson process with an average 

arrival rate of   
  ∑   

    
 
   . As long as a service request 

is dispatched to a server, the server creates a dedicated 

virtual machine (VM) for that service request, loads the 

application executable and starts execution. 

Each j-th server in the cloud computing system allocates 

a portion of its total resources, denoted by   
  (    

   ), 

for servicing the service requests generated from mobile 

devices. By using the well-known formula in M/M/1 queues 

[31], the average processing time of the service requests 

dispatched to that server is calculated as 

  
 (  

    
      )  

 

  
    

    
  ∑   

    
 
   

 (6) 

where   
  denotes the average service request processing 

speed when all the resources in the server are allocated for 

request processing.  

The data center sends back the response to a service 

request after finishing processing it. We calculate as follows 

the average time for the response to wait in the data center 

before it is completely sent out: 

  (    )  
 

   ∑   
    

 
   

 (7) 

where the superscript   stands for ‘receiving’ (i.e., the 

mobile device receives the response from the data center.) 

Therefore, the average response time of a service request 

generated from the i-th mobile device (either processed 

locally or remotely) is given by: 

  
   (          )  (    

 )    
 (  

    )    
   

(  
 (  

    )  ∑  
    

 (  
    

      )

 

   

   (    )) 
(8) 

where    {  
    

      
 } and    {  

    
      

 }. 

 

III. GAME THEORETIC PROBLEM FORMULATION 

We consider the MCC interaction system comprised of 

the   mobile devices and the cloud computing system. We 

assume that the request dispatching and resource allocation 

results in the cloud computing system, i.e., the    and    

vectors, are pre-announced to all the mobile devices. Then 

each of the mobile devices will determine the optimal 

portion   
  of its total service requests for remote processing 

in the cloud, and compete for the allocated resources in the 

data center. We provide a Bayesian game-based optimization 

framework for the mobile devices in the MCC system in the 

rest of this section. Each player in the Bayesian game is a 

mobile device and his strategy is the portion   
  for remote 

processing. All the players in the game choose strategy 

simultaneously. The objective of each i-th mobile device is 

to minimize the following objective function: 

          (    )           (9) 

where        and          are the expectation values of 

the average power consumption and average service request 

response time of the i-th mobile device, respectively, since 

each i-th mobile device has only partial information about 

the other devices. The weight coefficient    does not have to 

be the same for a mobile device at all times. For example, 

when a mobile device's battery is full, it could reduce the 

value of    because the battery energy is not a bottleneck at 

this time; when its battery energy drops below a critical 

level, it could increase the weight on the power 

consumption and perhaps offload more computation. For the 

sake of reality, each i-th mobile device is only aware of the 

probability distribution of the relative weight     values of 

the other mobile devices in the MCC system. 

Let    {     }  denote the type of the i-th mobile 

device. Type of players is an important standard term in the 

context of Bayesian game [34]. Each player in a Bayesian 

game has only partial information about the types of the 

other players. In our case, the type of a player in the 

Bayesian game is in a continuous space. Let     
{                      }  denote the types of all the 

mobile devices in the MCC system other than the i-th one. In 

a similar way, we define    ,    , and    
 . We use 

    (   )  to denote the probability distribution of    , 

which is the joint probability distribution of     and    . 

The i-th mobile device is aware of such probability 

distribution     (   ) of other devices. 

In the Bayesian game formulation, each player chooses 

potentially different strategies when its type is different. 

Hence, we use    
 (   ) to denote    

  when the (joint) type 

of all the mobile devices other than the i-th one is given by 

   . Please note that we implicitly assume pure strategy here 

for each mobile device in the Bayesian game. Then based on 

(9), we derive the cost function
1
 of the i-th mobile device, 

denoted by      (         
     

 (   ))  when   ,    ,   
 , 

and    
 (   ) are all given: 

                                                           
1  which is the inverse value of the payoff function or utility 

function in the standard game theory context. 



     (         
     

 (   ))   

            (  
    )  (    )    

   (    ) 
(10) 

where   
   (    )  is equivalent to   

   (          ) 

defined in (8) since    and    are given in prior to the 

mobile devices.      (         
     

 (   ))  is a linear 

combination of the mobile device's power consumption 

         (  
    )  and the average request response time 

  
   (    ). The first term of (10),             (  

    ), 

depends only on    and   
 ; while the second term of (10), 

(    )    
   (    ), depends on all of the   ,    ,   

 , 

and    
 (   ) parameters

2
. 

In the Bayesian game formulation, each i-th mobile 

device minimizes an expectation value of 

     (         
     

 (   )) over    , given by: 

     (     
     

 ( ))   

∫     (         
     

 (   ))      (   )      

   

 
(11) 

In Bayesian games, player (mobile device) i has knowledge 

of its own type   , chooses the best-suited strategy   
  based 

on the anticipation of the strategy profile    
 ( ) of the other 

players [34][35]. Please note that    
 ( ) denotes the mapping 

from any     to    
  of the other players than player i. We 

provide the optimization procedure for each i-th mobile 

device in the Bayesian game in Section IV. 

For each mobile device in the MCC interaction system, 

decision making intervals can be defined based on the 

behavior of the dynamic parameters in the system. This is 

because the solution found by the presented algorithm is 

acceptable only when the parameters used to find the 

solution are approximately valid. Although some small 

changes in the parameters can be effectively tracked and 

responded to by proper reactions of the computation 

offloading manager in the mobile devices, large changes 

cannot be handled in this way. In the remainder of this paper, 

the computation offloading optimization problem at each 

decision epoch is presented and a solution is provided, but 

we do not discuss the estimation, prediction, and dynamic 

changes in the system because these issues are out of the 

scope of this paper.  

 

IV. GAME THEORETIC OPTIMIZATION 

As the mobile devices are considered to be non-

cooperative among each other in the Bayesian game derived 

                                                           
2 It may be not obvious to see how   

   (    ) depends on    . 

In fact,   
   (    ) depends on    

 (   ), which further depends 

on    . 

in Section III for the MCC system, we are interested in the 

existence and uniqueness of the pure strategy Bayesian-Nash 

equilibrium [34][35]. Bayesian-Nash equilibrium is the 

optimal strategy profile in the Bayesian game in the sense 

that no player can find better strategy if he deviates from the 

current strategy unilaterally [34]. In other words, no player 

(mobile device) will have incentive to leave this strategy. 

Therefore, the Bayesian-Nash equilibrium is of particular 

interest to a non-cooperative Bayesian game. In this section, 

we first prove the existence and uniqueness of the Bayesian-

Nash equilibrium in the Bayesian game derived in Section III 

for the MCC system. Next, we provide the optimization 

method for each mobile device in the MCC system in order 

to achieve such Bayesian-Nash equilibrium.  

In the Bayesian game, each mobile device i determines 

its portion   
  (    

   ) of service requests for remote 

processing in the cloud, in order to minimize the objective 

function      (     
     

 ( ))  as defined in (11). The 

constraints on   
  are given as follows: 

    
           (12) 

(    
 )       

           (13) 

  
       

           (14) 

  
  ∑  

    

 

   

   
    

           (15) 

∑  
    

 

   

      (16) 

where     is a small positive number, which is 

incorporated to make the domain of    a closed set 

(important for the proof of the existence of the Bayesian-

Nash equilibrium.) Constraints (13), (14), (15), and (16) are 

derived from equations (1), (2), (6), and (7), respectively. We 

name the Bayesian game the Offloading Probability 

Decision (OPD) game for each mobile device. 

In the following, we prove the existence and uniqueness 

of the pure strategy Bayesian-Nash equilibrium in the OPD 

game. 

Theorem I (Pure Strategy Bayesian-Nash Equilibrium in 

the OPD Game): The pure strategy Bayesian-Nash 

equilibrium in the OPD game exists and is unique.  

Proof: The original OPD game satisfies: (i) The strategy 

spaces and type spaces are continuous; (ii) The strategy sets 

(constrained by (13) – (16)) and the type sets are compact 

(since both sets are in the Euclid space and are closed) and 

convex; (iii) The cost function      (         
     

 (   )) 

is continuous and strictly convex in each player’s own 

strategy   
 . Then the agent-normal form of the OPD game is 

a strictly concave game with (i) a strictly concave utility 

(payoff) function for each player to maximize, and (ii) a 



closed convex domain for the strategy profile. In this case, 

the existence and uniqueness of the pure strategy Nash 

equilibrium are directly resulted from the first and third 

theorem in [24]. We know from [36] that this conclusion 

leads to the existence and uniqueness of the pure strategy 

Bayesian-Nash equilibrium in the original OPD game.          

Each mobile device finds its optimal strategy achieving 

the Bayesian-Nash equilibrium of the corresponding OPD 

game using standard convex optimization technique 

[32][33], with detailed procedure shown in Algorithm 1.  

In Algorithm 1, deriving the       (       
      

 ( )) 

function will have NP complexity when we integrate 

      (            
      

 (    ))  over      using equation 

(11). We make this problem polynomial-time solvable as 

follows. Remember that only the term  
  
   (    )  in 

      (            
      

 (    ))  depends on      and 

    
 (    )  since it depends on ∑   

    
 
       

      

∑   
        . Therefore, we first calculate the probability 

distribution of ∑   
         from      and     

 (    ) , and 

then integrate       (            
      

 (    ))  over 

∑   
         to derive the       (       

      
 ( )) function 

with given     
 ( ). This overall procedure has polynomial 

time complexity. 

 

Algorithm 1: Finding the Bayesian-Nash Equilibrium in the 

OPD Game for Each Mobile Device i. 

Initialize   
 ( )  (the offloading probability of the i-th mobile 

device itself for different   ) as well as    
 ( ) (the anticipation of 

the offloading probabilities of other mobile devices for different 

   .) 

Do the following procedure iteratively: 

For each       : 

For each type     (discretization is needed here): 

Derive the       (       
      

 ( ))  function using 

equation (11). 

Find the optimal    
 (   ) (i.e., the best response of the 

  -th mobile device) when the type is    , by solving the 

convex optimization problem for the   -th mobile 

device with objective function       (       
      

 ( )) 

and constraints (12) – (16).  

Update    
 (   ) to be the new value. 

End 

End 

Until the solution converges. 

 

V. EXPERIMENTAL RESULTS 

In this section, we implement the interaction system of 

multiple mobile devices and the cloud computing system and 

demonstrate the effectiveness of the proposed game theory-

based optimization framework. 

We consider an MCC interaction system comprised of 

     (we will change this parameter later) mobile 

devices, as well as a cloud computing infrastructure. The 

data center in the cloud computing system consists of 10 

servers. We use normalized amounts of most of the 

parameters in the MCC interaction system instead of their 

actual values. To make the solution practical, we assume that 

the type    {     } of each mobile device takes discrete 

levels. The average service request generating rate    of 

each mobile device is a uniformly distributed random 

variable over values 0.5, 0.75, 1, 1.25, 1.5. The relative 

weight    is uniformly distributed over values 0, 0.1, 0.2, 

0.4, 1. Each mobile device is only aware of its own type   , 

while it knows the probability distribution of the types of 

other mobile devices. The average service request 

processing rate   
  in the mobile CPU is 1.6. The average 

service request sending rate   
  in every mobile device is 2. 

The maximum dynamic power consumption values in each 

mobile CPU and RF components,       
       

 and      
       

, 

are uniformly distributed between 4 and 6, and between 1 

and 1.5, respectively. The static power consumption values 

in each mobile CPU and RF components,       
     and      

    , 

are uniformly distributed between 2 and 3, and between 1 

and 1.5, respectively. In the cloud computing system, the 

maximum average service request processing rate   
  in each 

server (i.e., when all its resources are allocated for request 

processing) is 3. The average response sending rate    in the 

cloud computing system is 50. We assume that all the 

resources in the 10 servers are allocated for mobile request 

processing. The resource allocation results in the cloud 

computing system are announced to the mobile devices. 

In the first experiment, we test on the MCC interaction 

system and compare the expected average power 

consumption and the expected average request response time 

of all the mobile devices using the Bayesian game-based 

optimization framework and using the two baseline methods. 

These expectation values are averaged over all the mobile 

devices, where the type    of each mobile device is a 

random variable as discussed before. In the first baseline 

system, service requests generated from all the mobile 

devices are processed locally. In the second baseline system, 

the mobile devices send all the service requests to the cloud 

computing system for remote processing. 

Table I illustrates comparison results on the expected 

average power consumption, the expected average request 

response time, as well as the expected value of the objective 

function (9) in the mobile devices. This objective function 

shows a desirable tradeoff of power consumption and service 

request response time in the mobile devices. We have the 



following observations: (i) When comparing with Baseline 1, 

the mobile devices can achieve simultaneous reduction in 

expected average power consumption and expected average 

service request response time, by 27.3% and 63.7%, 

respectively, when using the proposed Bayesian game-based 

optimization framework. This is because the mobile devices 

have high power consumption in the mobile CPU and large 

service request response time due to congestion in request 

processing, if all the service requests are processed locally. 

(ii) The mobile device can achieve significant expected 

average service request response time reduction, by 50.7%, 

compared with Baseline 2. However, the mobile devices 

cannot achieve reduction in expected average power 

consumption compared with Baseline 2 because offloading 

all the service requests for remote processing turns out to be 

the most energy-efficient policy for the mobile devices, 

although it may incur significant delay. (iii) With respect to 

the expected value of the objective function (9), the proposed 

Bayesian game-based optimization framework achieves 

52.4% and 29.0% reduction compared with the two baseline 

systems, respectively, demonstrating the effectiveness of the 

proposed Bayesian game-based optimization framework. 

 

Table I: Comparison on the expected average power consumption, 

expected average response time, and expected value of objective 

function (9) among the proposed system and baselines. 

 
Proposed 

System 
Baseline 1 Baseline 2 

Power 5.3544 7.3580 4.4120 

Response time 1.4819 4.0833 3.0083 

Objective function 2.4741 5.1967 3.4855 

 

In the second experiment, we change the number   of 

mobile devices in the MCC interaction system. We test on 

the MCC interaction system under the Bayesian game-based 

optimization framework, and compare the expected average 

power consumption and the expected average service request 

response time of each mobile device with respect to the 

number  . In this experiment, the average service requests 

generating rate    of each mobile device is uniformly 

distributed over 0.8, 1, 1.2, 1.4, and 1.5. Figure 3 illustrates 

the results of this experiment. We can observe from Figure 3 

that the expected average power consumption only slightly 

increases with the increase of   (also subject to the random 

fluctuation of parameters such as       
       

 and      
       

 of 

each mobile device.) On the other hand, the expected 

average service request response time increases with the 

increase of  . This is because of the increasing in the 

congestion level and therefore the increasing in the average 

service request response time in the data center when   is 

increased. The mobile devices are aware of the congestion 

and assign more service requests for local processing, which 

in turn increases their power consumption levels. 

 
Figure 3.  The expected average power consumption and the expected 

average response time versus the number of mobile devices using the 
proposed Bayesian game-based optimization framework. 

 

VI. CONCLUSION 

Cloud computing and virtualization techniques provide 

mobile devices with battery energy saving opportunities by 

allowing them to offload computation and execute 

applications remotely. In this paper, we consider an MCC 

interaction system consisting of multiple mobile devices and 

the cloud computing system. We provide a Bayesian game 

formulation for the MCC interaction system. In this game, 

each mobile device determines the portion of its service 

requests for remote processing in the cloud computing 

system. All the mobile devices compete for the allocated 

resources in the data center. Each mobile device is aware of 

its own service request generating rate through effective 

prediction methods. It has only partial information about the 

other mobile devices. The objective of each mobile device is 

to minimize its power consumption as well as the service 

request response time. We prove that the pure strategy 

Bayesian-Nash equilibrium in this game always exists and is 

unique. We derive the optimal strategies for all the mobile 

devices in the Bayesian game achieving such equilibrium 

using convex optimization approach. Experimental results 

demonstrate the effectiveness of the proposed Bayesian 

game-based optimization framework of the MCC system.  
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