

1

Chapter 1:

PROBABILISTIC ERROR PROPAGATION IN
A LOGIC CIRCUIT USING THE BOOLEAN

DIFFERENCE CALCULUS

Nasir Mohyuddin
Department of Electrical Engineering – Systems
University of Southern California
Los Angeles, CA 90089, USA
mohyuddi@usc.edu

Ehsan Pakbaznia
Department of Electrical Engineering – Systems
University of Southern California
Los Angeles, CA 90089, USA
pakbazni@usc.edu

Massoud Pedram
Department of Electrical Engineering – Systems
University of Southern California
Los Angeles, CA 90089, USA
pedram@usc.edu

2

Table of Contents
Chapter 1:..1

1.1 Introduction...3
1.2 Error Propagation Using Boolean Difference Calculus....................................5

1.2.1 Partial Boolean difference...5
1.2.2 Total Boolean difference...5
1.2.3 Signal and error probabilities..7

1.3 Proposed Error Propagation Model ..7
1.3.1 Gate Error Model ..7
1.3.2 Error Propagation in 2-to-1 Mux Using BDEC11
1.3.3 Circuit Error Model...13

1.4 Practical Considerations..14
1.4.1 Output error expression...14
1.4.2 Reconvergent Fanout ..15

1.5 Simulation Results ..18
1.6 Extensions to BDEC ...22

1.6.1 Soft Error Rate (SER) estimation using BDEC22
1.6.2 BDEC for asymmetric erroneous transition probabilities.......................23
1.6.3 BDEC applied to Emerging Nano Technologies24

1.7 Conclusions...24
Bibliography ...24

3

Abstract

A gate level probabilistic error propagation model is presented which
takes as input the Boolean function of the gate, input signal probabilities,
the error probability at the gate inputs, and the gate error probability and
generates the error probability at the output of the gate. The presented
model uses the Boolean difference calculus and can be efficiently
applied to the problem of calculating the error probability at the primary
outputs of a multi-level Boolean circuit with a time complexity which is
linear in the number of gates in the circuit. This is done by starting from
the primary inputs and moving toward the primary outputs by using a
post-order—reverse Depth First Search (DFS)—traversal. Experimental
results demonstrate the accuracy and efficiency of the proposed approach
compared to the other known methods for error calculation in VLSI
circuits.

Keywords
Signal probability, Error probability, Co-factor, Partial Boolean
Difference, Re-convergent fanout, Spatial correlations.

1.1 Introduction
As CMOS hits nano-scale regime, device failure mechanisms such as cross talk,

manufacturing variability, and soft error become significant design concerns. Being
probabilistic by nature, these failure sources have pushed the CMOS technology toward
stochastic CMOS [1]. For example, capacitive and inductive coupling between parallel
adjacent wires in nano-scale CMOS Integrated Circuits (ICs) are the potential sources
of crosstalk between the wires. Crosstalk can indeed cause flipping error on the victim
signal [2]. In addition to the probabilistic CMOS, promising nanotechnology devices
such as quantum dots are used in technologies such as Quantum Cellular Automata
(QCA). Most of these emerging technologies are inherently probabilistic. This has made
reliability analysis an essential piece of circuit design. . Reliability analysis will be even
more significant in designing reliable circuits using unreliable components [3][4].

Circuit reliability will thus be an important tradeoff factor which has to be taken
care of similar to traditional design tradeoff factors such as performance, area, and
power. To include the reliability into the design tradeoff equations, there must exist a
good measure for the circuit reliability, and there must exist fast and robust tools that,
similar to timing analyzer and power estimator tools, are capable of estimating circuit
reliability at different design levels. In [5] authors have proposed a Probabilistic
Transfer Matrix (PTM) method to calculate the output signal error probability for a
circuit while [6] presents a method based on the Probabilistic Decision Diagrams
(PDDs) to perform this task.

4

In this chapter we first introduce a probabilistic gate level error propagation model
based on the concept of Boolean difference to propagate errors from inputs to output of
a general gate. We then apply this model to account for the error propagation in a given
circuit and finally estimate the error probability at the circuit outputs. Note that in the
proposed model a gate’s Boolean function is used to determine the error propagation in
the gate. An error at an output of a gate is due to its input(s) and/or the gate itself being
erroneous. The internal gate error in this work is modeled as an output flipping event.
This means that, when a faulty gate makes an error, it flips (changes a “1” to a “0” and a
“0” to a “1”) its output value that it would have generated given the inputs, Von
Neumann error model. In the rest of this chapter, we call our circuit error estimation
technique the Boolean Difference-based Error Calculator, or BDEC for short, and we
assume that a defective logic gate produces the wrong output value for every input
combination. This is a more pessimistic defect model than the stuck-at-fault model.

Authors in [5] use a PTM matrix for each gate to represent the error propagation
from the input(s) to the output(s) of a gate. They also define some operations such as
matrix multiplication and tensor product to use the gate PTMs to generate and
propagate error probability at different nodes in a circuit level-by-level. Despite of its
accuracy in calculating signal error probability, PTM technique suffers from the
extremely large number of computational-intensive tasks namely regular and tensor
matrix products. This makes the PTM technique extremely memory intensive and very
slow. In particular, for larger circuits, size of the PTM matrices grows too fast for the
deeper nodes in circuit making PTM an inefficient or even infeasible technique of error
rate calculation for a general circuit. References [8] and [9] developed a methodology
based on probabilistic model checking (PMC) to evaluate the circuit reliability. The
issue of excessive memory requirement of PMC when the circuit size is large was
successfully addressed in [10]. However, the time complexity still remains a problem.
In fact, the authors of [10] show that the run time for their space-efficient approach is
even worse than that of the original approach.

Boolean difference calculus was introduced and used by [11] and [12] to analyze
single faults. It was then extended by [13] and [14] to handle multiple fault situations,
however, they only consider stuck-at-faults and they do not consider the case when the
logic gates themselves can be erroneous and hence a gate-induced output error may
nullify the effect of errors at the gate’s input(s). In [15] authors use Bayesian networks
to calculate the output error probabilities without considering the input signal
probabilities.

The author in [6] uses probabilistic decision diagrams (PDD) to calculate the error
probabilities at the outputs using probabilistic gates. While PDDs are much more
efficient than PTM for average case, the worst-case complexity of both PTM and PDD-
based error calculators is exponential in the number of inputs in the circuit.

In contrast, we will show in section 1.5 that BDEC calculates the circuit error
probability much faster than PTM while achieving as accurate results as PTM’s. We
will show that BDEC requires a single pass over the circuit nodes using a post-order
(reverse DFS) traversal to calculate the errors probabilities at the output of each gate as

5

we move from the primary inputs to the primary outputs; hence, complexity is O (N)
where N is the number of the gates in the circuit, and O (.) is the big O notation.

1.2 Error Propagation Using Boolean Difference Calculus
Some key concepts and notation that will be used in the remainder of this chapter

are discussed next.

1.2.1 Partial Boolean difference
The partial Boolean difference of function f(x1, x2, …, xn) with respect to one

variable or a subset of its variables [14] is defined as:

() 1 2 1 2

1 2 1 2

...

i i

i i i i i ik k

k k

x x
i

x x x x x x
i i i i i i

f
f f

x
f f

f f
x x x x x x

∂ = ⊕
∂

∂ ∂= = ⊕
∂ ∂

 (1.1)

where ⊕ represents XOR operator and
ixf is the co-factor of f with respect to xi, i.e.,

1 1 1

1 1 1

(,..., , 1, ,...,)

(,..., , 0, ,...,)
i

i

x i i i n

x i i i n

f f x x x x x

f f x x x x x

− +

− +

= =

= =
 (1.2)

Higher order co-factors of f can be defined similarly. The partial Boolean
difference of f with respect to xi expresses the condition (with respect to other variables)
under which f is sensitive to a change in the input variable xi. More precisely, if the
logic values of {x1, …, xi-1, xi+1, …, xn} are such that ∂f/∂xi = 1, then a change in the
input value xi, will change the output value of f.. However, when ∂f/∂xi = 0, changing
the logic value of xi will not affect the output value of f.

It is worth mentioning that the order-k partial Boolean difference defined in
Equation 1.1 is different from the kth Boolean difference of function f as used in [13],
which is denoted by

1
...

k

k
i if x x∂ ∂ ∂ . For example, the 2nd Boolean difference of function

f with respect to xi and xj is defined as:

2

i j i j i j i jx x x x x x x x
i j i j

f f
f f f f

x x x x

 ∂ ∂ ∂= = ⊕ ⊕ ⊕ ∂ ∂ ∂ ∂ (1.3)

Therefore, ∂2f/∂xi∂xj≠∂f/∂(xixj).

1.2.2 Total Boolean difference
Similar to the partial Boolean difference that shows the conditions under which a

Boolean function is sensitive to change of any of its input variables, we can define total
Boolean difference showing the condition under which the output of the Boolean
function f is sensitive to the simultaneous changes in all the variables of a subset of

6

input variables. For example, the total Boolean difference of function f with respect to
xixj is defined as:

() ()
() () ()i j i j i j i j

i j i j i j

f f f
x x x x x x x x

x x x x x x

∆ ∂ ∂= + + +
∆ ∂ ∂

 (1.4)

where �f/�(xixj) describes the conditions under which the output of f is sensitive to a
simultaneous change in xi and xj. That is, the value of f changes as a result of the
simultaneous change. Some examples for simultaneous changes in xi and xj are
transitioning from xi=xj=1 to xi=xj=0 and vice versa, or from xi=1, xj=0 to xi=0, xj=1
and vice versa. However, transitions in the form of xi=xj=1 to xi=1, xj=0 or xi=1, xj=0
to xi=0, xj=0 are not simultaneous changes. Note that ∂f/∂(xixj) describes the conditions
when a transition from xi=xj=1 to xi=xj=0 and vice versa changes the value of function
f.

It can be shown that the total Boolean difference in Equation 1.4 can be written in
the form of:

()
2

i j i ji j

f f f f

x x x xx x

∆ ∂ ∂ ∂= ⊕ ⊕
∂ ∂ ∂ ∂∆

 (1.5)

The total Boolean difference with respect to three variables is:

()

()

()

()

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3

1 2 3 1 2 3
1 2 3

1 2 3 1 2 3
1 2 3

() ()

()

()

()

f f
x x x x x x

x x x x x x

f
x x x x x x

x x x

f
x x x x x x

x x x

f
x x x x x x

x x x

∆ ∂= +
∆ ∂

∂+ +
∂

∂+ +
∂

∂+ +
∂ (1.6)

It is straightforward to verify that:
2

1 2 3 1 2 3 1 2

2 2 3

2 3 1 3 1 2 3

()

f f f f f

x x x x x x x x

f f f

x x x x x x x

∆ ∂ ∂ ∂ ∂= ⊕ ⊕ ⊕
∆ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂⊕ ⊕ ⊕
∂ ∂ ∂ ∂ ∂ ∂ ∂ (1.7)

In general total Boolean difference of a function f with respect to an n-variable subset of
its inputs can be written as:

()
1

1 2

2 1

2 1
0(...)

n

n

jn

j j
j mi i i

f f
m m

x x x x

− −

− −
=

∆ ∂= +
∆ ∂∑ t

 (1.8)

7

where mj’s are defined as follows:

1 2 1

1 2 1

1 2 1

0

1

2 1

...
...

... ,

n n

n n

n
n n

i i i i

i i i i

i i i i

m x x x x
m x x x x

m x x x x

−

−

−−

=
=

=
M

 (1.9)

and we have:

()
* * * *
1 2 1* * * *

1 2 1

where ...
...

j

j n n
m n n

f f
m x x x x

x x x x x
−

−

∂ ∂= =
∂ ∂
t

 (1.10)

1.2.3 Signal and error probabilities
Signal probability is defined as the probability for a signal value to be “1”. That is:

{ }Pr 1i ip x= =
 (1.11)

Gate error probability is shown by εg and is defined as the probability that a gate
generates an erroneous output, independent of its applied inputs. Such a gate is
sometimes called (1-εg)-reliable gate. Signal error probability is defined as the
probability of error on a signal line. If the signal line is the output of a gate, the error
can be either due to error at the gate input(s) or the gate error itself. We denote the error
probability on signal line xi by εi.

We are interested in determining the circuit output error rates, given the circuit
input error rates under the assumption that each gate in the circuit can fail independently
with a probability of εg. In other words, we account for the general case of multiple
simultaneous gate failures.

1.3 Proposed Error Propagation Model
In this section we propose our gate error model in the Boolean difference calculus
notation. The gate error model is then used to calculate the error probability and
reliability at outputs of a circuit.

1.3.1 Gate Error Model
Figure 1.1 shows a general logic gate realizing Boolean function f, with gate error

probability of εg. The signal probabilities at the inputs, i.e., probabilities for input
signals being 1, are p1, p2,…, pn while the input error probabilities are ε1, ε2,…, εn. The
output error probability is εz.

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz

Figure 1.1 Gate implementing function f

8

First consider the error probability equation for a buffer gate shown in Figure 1.2.
The error occurs at the output if (i) the input is erroneous and the gate is error free or (ii)
the gate is erroneous and the input is error free. Therefore, assuming independent faults
for the input and the gate, the output error probability for a buffer can be written as:

(1) (1) (1 2)z in g in g g g inε ε ε ε ε ε ε ε= − + − = + −
 (1.12)

where εin is the error probability at the input of the buffer. It can be seen from this
equation that the output error probability for buffer is independent from the input signal
probability. Note Equation1.12 can also be used to express the output error probability
of an inverter gate.

εz
εg

pin , εin εz
εg

pin , εin

Figure 1.2 A faulty buffer with erroneous input

We can model each faulty gate with erroneous inputs as an ideal (no fault) gate
with the same functionality and the same inputs in series with a faulty buffer as shown
in Figure 1.3.

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz f

(ideal)

εz
εg

p1 , ε1
p2 , ε2

pn , εn

pin

εin

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz f

(ideal)

εz
εg

p1 , ε1
p2 , ε2

pn , εn

pin

εin

Figure 1.3 The proposed model for a general faulty gate

Now consider a general two-input gate. Using the fault model discussed above, we
can write the output error probability considering all the cases of no error, single error
and double errors at the input and the error in the gate itself. We can write the general
equation for the error probability at the output, εz, as:

1 2 1 2
1 2

1 2
1 2

(1)Pr (1) Pr

(1 2)

Pr
()

z g g

in

f f

x x

f

x x

ε ε ε ε
ε ε ε

ε ε

ε

 ∂ ∂− + − ∂ ∂ = + − ∆ + ∆ 14444444244444443

 (1.13)

where Pr{.} represents the signal probability function and returns the probability of its
Boolean argument to be “1”. The first and the second terms in εin account for the error
at the output of the ideal gate due to single input errors at the first and the second inputs,
respectively. Note error at each input of the ideal gate propagates to the output of this
gate only if the other inputs are not masking it. The non-masking probability for each
input error is taken into account by calculating the signal probability of the partial

9

Boolean difference of the function f with respect to the corresponding input. The first
two terms in εin only account for the cases when we have single input errors at the input
of the ideal gate, however, error can also occur when both inputs are erroneous
simultaneously. This is taken into account by multiplying the probability of having
simultaneous errors at both inputs, i.e., ε1ε2, with the probability of this error to be
propagated to the output of the ideal gate, i.e., the signal probability of the total Boolean
difference of f with respect to x1x2.
For 2-input AND gate (f=x1x2) shown in Figure 1.4 we have:

{ } { }

{ } ()()

()

2 2 1 1
1 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2

Pr Pr , Pr Pr

Pr Pr 1 1
()

1 2

f f
x p x p

x x
f

x x x x p p p p
x x

p p p p

 ∂ ∂= = = = ∂ ∂
 ∆ = + = − − + ∆

= − + +

 (1.14)

Plugging Equation 1.14 into Equation 1.13 and after some simplifications we have:

() ()()()2 1 2 2 1 1 2 1 2 1 21 2 1 2 2AND g g p p p p p pε ε ε ε ε ε ε= + − + + − + + (1.15)

p1 , ε1
p2 , ε2

εAND2εg

p1 , ε1
p2 , ε2

εAND2εg

Figure 1.4 A 2-input faulty AND gate with erroneous inputs

Similarly, the error probability for the case of 2-input OR can be calculated as:

() () () ()()2 1 2 2 1 1 2 1 21 2 1 1 2 1OR g g p p p pε ε ε ε ε ε ε= + − − + − + − (1.16)

And for 2-input XOR gate we have:

()()2 1 2 1 21 2 2XOR g gε ε ε ε ε ε ε= + − + −
 (1.17)

It is interesting to note that the error probability at the output of the XOR gate is
independent of the input signal probabilities. Generally, the 2-inpout XOR gate exhibits
larger output error compared to 2-input OR and AND gates. This is expected since
XOR gates show maximum sensitivity to input errors (XOR, like inversion, is an
entropy-preserving function).The output error expression for a 3-input gate is:

10

1 2 3 2 3
1

2 1 3 1 3
2

3 1 2 1 2
3

1 2 3
1 2

2 3 1
2 3

1 3 2
1 3

1 2 3

(1)Pr

(1)Pr

(1)Pr

(1 2) (1)Pr
()

(1)Pr
()

(1)Pr
()

Pr
(

z g g

f

x

f

x

f

x

f

x x

f

x x

f

x x

f

x

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε

ε ε ε

ε ε ε

 ∂− − + ∂

 ∂+ − − + ∂

 ∂+ − − + ∂

 ∆= + − + − ∆

 ∆+ − ∆

 ∆+ − ∆

∆+
∆ 1 2 3)x x

 (1.18)

As an example of a 3-input gate, we can use Equation 1.18 to calculate the
probability of error for the case of 3-input AND gate. We can show that the output error
probability can be calculated as:

2 3 1 1 3 2 1 2 3

3 2 1 1 2 1 2

3 1 2 3 2 3 2 3

2 1 3 1 3 1 3

1 2 3
1 2 3

1 2 2 3 1 3 1 2 3

(1 2() 2)

(1 2) (1 2() 2)

(1 2() 2)

1 2()

4() 6

AND g g

p p p p p p

p p p p p

p p p p p

p p p p p

p p p

p p p p p p p p p

ε ε ε
ε ε

ε ε ε ε ε
ε ε

ε ε ε

+ +
 + − + +

= + − + − + +
 + − + +
 − + +

+ + + + − (1.19)

Now we give a general expression for a 4-input logic gate as:

11

(,) (, ,)

(,) , (,) ,

(, ,) , ,

1 2 3

1 Pr

1 Pr
()

= (1 2)

1 Pr
()

i j j k j k l
i j i j k i j k l i i

i j k k l
i j k i j k l i j i j

z g g

i j k l
i j k l i j k i j k

f

x

f

x x

f

x x x

ε ε ε ε ε ε ε

ε ε ε ε ε
ε ε ε

ε ε ε ε

ε ε ε

≠ ≠ ≠

≠ ≠

≠

 ∂− + − ∂

 ∆ + − + ∆ + −
 ∆ + − ∆

+

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

4
1 2 3 4

Pr
()

f

x x x x
ε

 ∆
 ∆ (1.20)

The Boolean expression for a general k-input gate can be calculated in a similar
manner.

1.3.2 Error Propagation in 2-to-1 Mux Using BDEC

We represent 2-to-1 Multiplexer (Mux) function as:f as bs= + .Using BDEC the output
error probability in terms of the gate error probability, input signal probabilities and
input error probabilities is:

()

() () ()()

()() () ()

() () () ()

()

2 1

1 1 Pr 1 1 Pr

1 1 Pr 1 Pr

1 2

1 Pr 1 Pr

Pr

a b s b a s

s a b a b s

Mux to g g

a s b b s a

a b s

f f

a b

f f

s ab

f f

as bs

f

abs

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε
ε ε ε ε ε ε

ε ε ε

 ∂ ∂ − − + − − ∂ ∂
 ∂ ∆
 + − − + − ∂ ∆
= + −

 ∆ ∆+ − + − ∆ ∆
 ∆
+ ∆

 (1.21)

Now we step wise show how to calculate various partial and total Boolean differences.

First we calculate all single variable partial Boolean differences as:

12

() ()
() () () ()
() () ()
()

()

()

. .

. . . .

.

.

.

. 1

a a

f
f f

a

s bs bs

s bs bs s bs bs

s bs bs s bs bs bs

s bs

s b s

s b s

s b

s

∂ = ⊕
∂

= + ⊕

= + + +

= + +

=

= +

= +

= +

=

() ()

() () () ()

() () ()
()

()

()

. .

. . . .

.

.

. 1

b b

f
f f

b

as s as

as s as as s as

as s as as as s as

s as

s a s

as s

s a

s

∂ = ⊕
∂

= + ⊕

= + + +

= + +

=

= +

= +

= +

=

() s s

f
f f

s

a b

∂ = ⊕
∂

= ⊕

Then we calculate two variables partial Boolean differences as:

()
1 0

1

ab ab

f
f f

ab

∂ = ⊕
∂

= ⊕
=

()

1

ab ab

f
f f

ab

s s

∂ = ⊕
∂

= ⊕
=

()
1

as as

f
f f

as

b

b

∂ = ⊕
∂

= ⊕

=

()
0

as as

f
f f

as

b

b

∂ = ⊕
∂

= ⊕
=

()
0

bs bs

f
f f

bs

a

a

∂ = ⊕
∂

= ⊕
=

()
1

bs bs

f
f f

bs

a

a

∂ = ⊕
∂

= ⊕

=

Finally we calculate three variable partial Boolean differences as:

()

1 0

1

abs abs

f
f f

abs

∂ = ⊕
∂

= ⊕
=

()

0 0

0

abs abs

f
f f

abs

∂ = ⊕
∂

= ⊕
=

()

1 1

0

abs abs

f
f f

abs

∂ = ⊕
∂

= ⊕
=

()

1 0

1

abs abs

f
f f

abs

∂ = ⊕
∂

= ⊕
=

Next we calculate total Boolean differences as:

()
()
()
()

2

1

f f f f

as a s a s

s a b

s a b

s a b

∆ ∂ ∂ ∂= ⊕ ⊕
∆ ∂ ∂ ∂ ∂

= ⊕ ⊕ ⊕

= ⊕ ⊕

= ⊕ ⊗

()
()
()

2

1

f f f f

bs b s b s

s a b

s a b

∆ ∂ ∂ ∂= ⊕ ⊕
∆ ∂ ∂ ∂ ∂

= ⊕ ⊕ ⊕

= ⊕ ⊕

()
2

0

1

f f f f

ab a b a b

s s

∆ ∂ ∂ ∂= ⊕ ⊕
∆ ∂ ∂ ∂ ∂

= ⊕ ⊕
=

13

()
()
()

()

2 2 2 3

1 1 0 0

1

f f f f f f f f

abs a b s a s b s a b a b s

s s a b

s s a b

a b

a b

∆ ∂ ∂ ∂ ∂ ∂ ∂ ∂= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
∆ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕
= ⊗

Plugging these values in Equation 1.21

()

()() ()()()
()() () ()

() ()() () ()()
()

2 1

1 1 1 1 1

1 1 Pr 1
1 2

1 Pr 1 Pr

Pr

a b s s b a s s

s a b a b s

Mux to g g

a s b b s a

a b s

p p

a b

s a b s a b

a b

ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε
ε ε ε ε ε ε

ε ε ε

− − + − − −

+ − − ⊕ + −
= + − + − ⊕ ⊗ + − ⊕ ⊕

 + ⊗
 (1.22)

1.3.3 Circuit Error Model
In this section we use the gate error model proposed in sub-section 1.3.1 to calculate the
error probability at the output of a given circuit. Given a multi-level logic circuit
composed of logic gates, we start from the primary inputs and move toward the primary
outputs by using a post-order (reverse DFS) traversal. For each gate, we calculate the
output error probability using input signal probabilities, input error probabilities, and
gate error probability and utilizing the error model proposed in sub-section 1.3.1. The
signal probability for the output of each gate is also calculated based on the input signal
probabilities and the gate function. The process of output error and signal probability
calculation is continued until all the gates are processed. For each node z in the circuit,
reliability is defined as:

1z zχ ε= −
 (1.23)

After processing all the gates in the circuit and calculating error probabilities and
reliabilities for all the circuit primary outputs, we can calculate the overall circuit
reliability. Assuming that different primary outputs of the circuit are independent, the
overall circuit reliability can be calculated as the product of all the primary outputs
reliabilities, that is:

icircuit PO
i

χ χ= ∏
 (1.24)

The case of dependent primary outputs (which is obviously a more realistic
scenario) requires calculation of spatial correlation coefficient as will be outlined

14

further on in the paper. The detailed treatment of spatial correlation coefficient
calculation however falls outside the scope of the present work.

This error propagation algorithm has a complexity of O(2kN) where k is the
maximum number of inputs to any gate in the circuit (which is small and can be upper
bounded a priori in order to give O(N) complexity) and N is the number of gates in the
circuit. This complexity should be contrasted to that of the PTM based or the PDD-
based approaches, that have a worst case complexity of O(2N). The tradeoff is that our
proposed approach based on post-order traversal of the circuit netlist and application of
Boolean difference operator results in only approximate output error and signal
probability values due to the effect of re-convergent fanout structures in the circuit,
which create spatial correlations among input signals to a gate. This problem has been
extensively addressed in the literature on improving the accuracy of signal probability
calculators [17][18]. Our future implementation of BDEC shall focus on utilizing
similar techniques (including efficient calculation of spatial correlation coefficients) to
improve the accuracy of proposed Boolean difference-based error calculation engine.

1.4 Practical Considerations
In this section we use the error models introduced in previous section to calculate the
exact error probability expression at the output of a tree-structured circuit.

1.4.1 Output error expression
For the sake of elaboration, we choose a 4-input AND gate implemented as a balanced
tree of 2-input AND gates as shown in Figure 1.5. We can calculate the output error of
this circuit by expressing the error at the output of each gate using Equation 18.

p1 , ε1
p2 , ε2

εg

p3 , ε3
p4 , ε4

εg

εAND4
εg

X

Y
Out

p1 , ε1
p2 , ε2

εg

p3 , ε3
p4 , ε4

εg

εAND4
εg

X

Y
Out

Figure 1.5 Balanced tree implementation of 4-input AND gate

Equation 1.25 provides the exact output error probability of the circuit shown in
Figure 1.5 in terms of the input signal probabilities and input error probabilities where
similar to [18] higher order exponents of the signal probabilities are reduced to first
order exponents.

15

()
()()
()()
()()
()()
()()
()()

()

4 2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4

3 4 1 2 1 2 1 2

2 4 1 3 1 3 1 3

2 3 1 4 1 4 1 4

1 4 2 3 2 3 2 3

1 3 2 4 2 4 2 4

1 2 3 4 3 4 3 4

4 1 2 3 1 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

1 2 4

AND p p p p p p p p p p p p

p p p p p p

p p p p p p

p p p p p p

p p p p p p

p p p p p p

p p p p p p

p p p p p p

ε ε ε ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

= + + +

+ − + +

+ − + +

+ − + +

+ − + +

+ − + +

+ − + +

+ − + + + +()()
() ()()
() ()()
() ()()

()

1 3 2 3 1 2 3 1 2 3

2 1 3 4 1 3 1 4 3 4 1 3 4 1 3 4

3 1 2 4 1 2 1 4 2 4 1 2 4 1 2 4

1 2 3 4 2 3 2 4 3 4 2 3 4 2 3 4

1 2 3 4

1 2 1 3 1 4 2 3 2 4 3

6

1 2 4 6

1 2 4 6

1 2 4 6

1 2

4

p p p p p p p

p p p p p p p p p p p p p

p p p p p p p p p p p p p

p p p p p p p p p p p p p

p p p p

p p p p p p p p p p p p

ε ε ε

ε ε ε

ε ε ε

ε ε ε

+ −

+ − + + + + + −

+ − + + + + + −

+ − + + + + + −

− + + +

+ + + + + +
+

()
()

4
1 2 3 4

1 2 3 1 2 4 1 3 4 2 3 4

1 2 3 4

8

14

p p p p p p p p p p p p

p p p p

ε ε ε ε

 − + + +
 + (1.25)

In Equation 1.25, without loss of generality, we assume εg=0 in order to reduce the
length of the expression.

Using symbolic notation along with higher order exponent suppression, the model
presented in section 1.3 can compute the exact output error probability in circuits with
no reconvergent fanout. We will show in next section that by sacrificing little accuracy
and using numerical values instead of symbolic notation, the computational complexity
of our gate error model becomes linear in terms of the number of gates in the circuit.

1.4.2 Reconvergent Fanout
Figure 1.6 shows an example of a circuit with reconvergent fanout. It is clear from the
figure that inputs to the final logic gate are not independent. Therefore, if the BDEC
technique discussed in Section 1.3 is applied to this circuit, the calculated output error
probability will not be accurate. In this section we describe a modification to the BDEC
technique that improves the probability of error for the circuit in the presence of
reconvergent fanout structures in the circuit.
Local reconvergent fanout such as the one depicted in Figure 1.6 can be handled by
collapsing levels of logic. For this example, we consider all the four gates in Figure 1.6
as a single super gate and then apply the BDEC technique to this super gate. For the
input to output error propagation in the original circuit, BDEC will ignore the internal
structure of the super gate and only considers the actual function implemented by the

16

super gate, 2-to-1 Mux in this case. The original implementation information can be
taken into account by properly calculating the εg value for this new 3-input super gate.

ps , εs
εMux2to1

pa , εa

pb , εb

εg

εg

εg

εg
Out

Super Gate

ps , εs
εMux2to1

pa , εa

pb , εb

εg

εg

εg

εg
Out

ps , εs
εMux2to1

pa , εa

pb , εb

εg

εg

εg

εg
Out

Super Gate

Figure 1.6 Re-convergent fanout in a 2-to-1 Multiplexer

The εg value for the collapsed gate is calculated using BDEC for the original circuit
block before collapsing but assuming that the input error probabilities are zero. For
example for the circuit in Figure 1.6 the error probability at the output of the top AND
gate and the inverter using BDEC equations described in section 1.3.1 and assuming
input error probabilities to be zero will be εg each. Similarly the error probability at the
output of the bottom AND gate will be ()()2 1 2AND g g g bpε ε ε ε= + − . Likewise we can calculate

the expression for the error probability at the output of the OR gate which in this case
will be the εg of the super gate. Equation 1.26 shows the final expression for the εg value
of the collapsed gate; note that the εg value for the collapsed gate is also a function of
the input signal probabilities. As discussed in Section 1.4.1, the error expression for the
super gate εg has been obtained after suppressing the exponents of signal probabilities
that are greater than “1” to “1”. In contrast we do not suppress the exponents of εg
values since this higher exponent may have correctly resulted from the fact that each
gate in the circuit can fail with same error probability On the other hand the higher
exponent may have arisen from the fact that the error of some multiple-fanout gate is
propagated to a reconvergent fanout point through different paths in the circuit, and
hence, the higher exponent must indeed be suppressed. So there is some inaccuracy in
our proposed method. To be able to decide precisely whether or not the exponents of εg
must be suppressed, we will have to use a unique symbol for each gate’s error
probability and propagate these unique symbols throughout the circuit while
suppressing the higher exponents of each unique symbol. The results reported in Table
1.1 have been obtained using the estimation of super gate’s εg from our implementation
of BDEC in SIS [20], which does not include exponent suppression.

17

* 2 3

2 2 2 2

3 3 4

3 5 2

3 2 2 4

8 4 4

g g g g

b s g a s g a b s g

b g a s g b s g a b s g

b g a b s g b g

p p p p p p p

p p p p p p p p

p p p p p

ε ε ε ε
ε ε ε

ε ε ε ε

ε ε ε

= − +

+ − −

− + − +

+ − −
 (1.26)

Table 1.1 Output error probability with re-convergent fanout

S/N Pa Pb Ps εεεεg εεεεa εεεεb εεεεs BDEC BDEC-CLP PTM

1 0.5 0.5 0.5 0.05 0.05 0.05 0.05 0.1814 0.1835 0.1829

2 0.1 0.2 0.3 0.05 0.05 0.05 0.05 0.1689 0.1820 0.1852

3 0.5 0.6 0.7 0.05 0.05 0.05 0.05 0.1909 0.1827 0.1830

4 0.7 0.8 0.9 0.05 0.05 0.05 0.05 0.1858 0.1684 0.1668

5 0.5 0.5 0.5 0.001 0.001 0.001 0.001 0.0044 0.0044 0.0044

6 0.5 0.5 0.5 0.002 0.001 0.001 0.001 0.0072 0.0072 0.0072

7 0.5 0.5 0.5 0.01 0.01 0.01 0.01 0.0421 0.0422 0.0422

8 0.5 0.5 0.5 0.02 0.01 0.02 0.03 0.0842 0.0815 0.0814

9 0.5 0.5 0.5 0.08 0.08 0.08 0.08 0.2603 0.2645 0.2633

10 0.5 0.5 0.5 0.05 0.06 0.07 0.08 0.2027 0.2037 0.2032

Table 1.1 shows that BDEC + logic collapsing produces accurate results for the
circuit in Figure 1.6. Table 1.2 shows the comparison of percent error for BDEC and
BDEC + collapsing as compared to PTM. If the reconvergent fanout extends over
multiple circuit levels then multiple level collapsing can be used but after few levels,
the computational complexity of computing output error probability of a super gate with
many inputs will become prohibitive and a trade-off between accuracy and complexity
will have to be made.

Table 1.2 Percent error reduction in output error probability using BDEC +Collapsing

S/N Pa Pb Ps εεεεg εεεεa εεεεb εεεεs
BDEC
Error

BDEC-CLP
Error

1 0.5 0.5 0.5 0.05 0.05 0.05 0.05 0.84% 0.33%

2 0.1 0.2 0.3 0.05 0.05 0.05 0.05 8.78% 1.75%

3 0.5 0.6 0.7 0.05 0.05 0.05 0.05 4.34% 0.15%

4 0.7 0.8 0.9 0.05 0.05 0.05 0.05 11.39% 0.94%

5 0.5 0.5 0.5 0.001 0.001 0.001 0.001 0.02% 0.01%

6 0.5 0.5 0.5 0.002 0.001 0.001 0.001 0.01% 0.01%

7 0.5 0.5 0.5 0.01 0.01 0.01 0.01 0.21% 0.08%

8 0.5 0.5 0.5 0.02 0.01 0.02 0.03 3.48% 0.12%

9 0.5 0.5 0.5 0.08 0.08 0.08 0.08 1.13% 0.46%

10 0.5 0.5 0.5 0.05 0.06 0.07 0.08 0.25% 0.24%

11 - - - - - - Average 3.05% 0.41%

18

In passing, we point out that the correlation coefficient method and partial collapse
methods both tackle the same problem, that is, how to account for the correlations due
to reconvergent fanout structures in VLSI circuits. The tradeoff is that the correlation
coefficient method has high complexity due to the requirement to calculate and
propagate all correlation coefficients along with signal and error probabilities whereas
the partial collapse has high complexity due to the need to calculate output signals and
error probabilities of super gates with a large number of inputs. In practice, the partial
collapse of 2 or 3 levels of logic into each node (super gate) or the computation of only
pair wise spatial correlations is adequate and provides high accuracy.

1.5 Simulation Results
In this section we present some simulation results for the proposed circuit

reliability technique and we compare the results of our approach with those of PTM and
PGM [19].

 We implemented the proposed error calculator and algorithm (BDEC) in SIS [20].
SIS has been widely used by logic synthesis community for designing combinational
and sequential logic circuits. We extended existing logic simulation in SIS with faulty
circuit simulation based on Monte Carlo simulation technique. We attached a
probability function with each node which flips the correct output of the node with a
predefined error probability. We used this Monte Carlo simulation to form a reference
to compare BDEC results for medium and large circuits.

We added a new BDEC module to the existing SIS package. While simulating a
logic circuit, BDEC module models each gate as a probabilistic gate. We used the
built-in co-factor function in SIS to develop partial Boolean difference and total
Boolean difference functions that are used to propagate single and simultaneous
multiple errors from the inputs to the output of the gate respectively. We have also
implemented level collapsing to overcome the inaccuracies introduced because of local
reconvergent fanouts. Note that while collapsing levels of logic, we do not change the
original logic network; instead, we simply recalculate and update the error and signal
probability at the output of the nodes that have reconvergent fanout structures inside
their corresponding super gate.

In the past, SIS has been used to apply various delay, area and power level
optimizations to logic circuits. By incorporating BDEC module to SIS, we expect that
researches will be able to use SIS to develop reliability-aware optimizations for logic
circuits. For example, given a library of gates with different levels of reliability, design
a circuit with given functionality that minimizes area, delay and power overheads while
meeting a given reliability constraint.

Regarding simulation results in this section, for simplicity, but without loss of
generality, we assume all gates in a circuit have the same gate error probability εg. All
primary inputs are assumed to be error free and spatiotemporally uncorrelated.
Moreover, signal probability for all the inputs were set to 0.5. The gate error probability
was set to 0.05. We thus present results that show how efficiently BDEC can calculate
the output reliability for circuits with high primary input count. Running our MATLAB

19

7.1-based implementation of PTM on a computer system with 2GBytes of RAM, we
observed that typically for circuits with 16 or more inputs, PTM reported out of
memory error. BDEC, however, does the calculations much faster and more efficient
than PTM.

Table 1.3 shows the results for reliability calculation for some tree-structured
circuits. For example, “8-Input XOR BT” (BT for Balanced Tree) refers to 8-input
XOR function implemented using 2-input XOR gates in three levels of logic whereas
“8-Input XOR Chain” refers to the same function realized as a linear chain of seven 2-
input XOR gates. We also show results for two 16-input circuits with balanced tree
implementation of 2-input gates having layers of 2-input AND, OR or XOR gates. First
letter of gate name is used to show the gates used in each level. For example, AOXO
means that the circuits consists of four levels of logic with AND, OR, XOR and OR
gates at the first, second, third and fourth level, respectively. Since the complexity of
the PTM approach increases with the number of primary inputs exponentially, all the
circuits in Table 1.3 are chosen to have relatively small number of primary inputs.
Second and third columns of this table compare the execution times for PTM and
BDEC, respectively, while the forth and the fifth columns compare the output reliability
for the two approaches. It can be seen that our proposed BDEC technique achieves
highly accurate reliability values, i.e., the reliability values are different than PTM ones
by at most 0.1% for the circuits reported in Table 1.3 . More importantly, Table 1.3
shows the difference between the scaling trend of the execution time in both PTM and
BDEC techniques. In PTM, the execution time increases exponentially when we move
from smaller circuits to larger circuits in Table 1.3, whereas in BDEC the change in the
execution time when we move from smaller circuits to the larger ones in Table 1.3 is
really small. For two cases, 16-input XOR chain and 16-input AND chain, the system
runs out of memory while executing PTM technique. This shows that execution of PTM
technique for even relatively small circuits needs a huge amount of system memory.

Table 1.3 Circuit reliability for tree-structured circuits having relatively small number of PIs

Execution Time (ms) Circuit Reliability
Benchmarks # of Gates

PTM BDEC PTM BDEC
8-Input XOR BT 7 0.790 0.011 0.7391 0.7391
16-Input XOR BT 15 1664.5 0.017 0.6029 0.6029
16-Input XOR Chain 15 Out of Memory 0.015 Out of Memory 0.6029
8-Input AND BT 7 0.794 0.010 0.9392 0.9382
16-Input AND BT 15 1752.2 0.017 0.9465 0.9462
16-Input AND Chain 15 Out of Memory 0.016 Out of Memory 0.9091
16-input AOXO BT 15 1769.3 0.017 0.7622 0.7616
16-input OXAX BT 15 1593.1 0.017 0.7361 0.7361

Another important advantage of the proposed BDEC technique which can be
observed from Table 1.3 is that the complexity of this technique mainly depends on the
number of the gates in the circuit; however, the complexity of PTM technique depends
on several other factors such as number of the inputs, width and depth of the circuit,
number of the wire crossovers, etc. In other words, efficiency (execution time and
memory usage) of PTM depends not only on the number of the gates in the circuit, but

20

on the circuit topology. This is a big disadvantage for PTM making it an infeasible
solution for large and/or topologically complex circuits.

It is worth mentioning that although the complexity of Boolean difference
equations increases exponentially with the number of the inputs of the function; this
does not increase the complexity of the BDEC technique. The reason is the fact that
using gates with more than few inputs, say 4, in the actual implementation of any
Boolean function is not considered as a good design practice. This makes the
complexity of calculating Boolean difference equations small. On the other hand for a
fixed library of gates, all the Boolean difference equations can be calculated offline, so,
there is no computational overhead due to calculating the Boolean difference equations
in BDEC.

Table 1.4 Circuit Reliability for Tree-Structured Circuits having relatively Large Number of PIs

Circuit # of Gates Execution Time (ms) Circuit Reliability
64-Input XOR (BT) 63 0.046 0.5007
64-Input XOR (Chain) 63 0.043 0.5007
64-Input AND (BT) 63 0.054 0.9475
64-Input AND (Chain) 63 0.051 0.9091
64-Input AOXAOXBT 63 0.054 0.6314
64-Input XAOXAOBT 63 0.053 0.9475
16-Bit RCA 80 0.115 0.0132
32-Bit RCA 160 0.216 0.0002
I1 46 0.054 0.3580
C18 6 0.013 0.8032

Table 1.4 shows the results, execution time and reliability calculation for some of
synthesized tree-structured circuits with relatively larger number of inputs. Since the
complexity of the PTM is really high for these circuits we only show the results for
BDEC. Some of the circuits in Table 1.4 are the larger versions of the circuits reported
in Table 1.3. We have also included 16 and 32-bit ripple carry adder (RCA) circuits.
Results for two benchmark circuits, I1 and C18, are also included in this table.

From the results of Table 1.3 and Table 1.4 we note that circuits that use more
XOR gates will incur smaller output reliability under a uniform gate failure probability.
Furthermore, moving XOR gates closer to the primary outputs results in lower output
reliability. Therefore, in order to have more reliable designs, we must have lower XOR
gates close to the primary outputs.

Table 1.5 Circuit Reliability and Efficiency of BDEC Compared to PGM and PTM

Execution Time
(ms)

Circuit Reliability
(εεεεg=0.05)

% Error Compared
to PTM Circuit

BDEC PTM BDEC PGM PTM BDEC PGM
2-4 Decoder 0.014 6.726 0.7410 0.7397 0.7479 0.92% 1.10%
FA1 0.013 2.399 0.7875 0.7898 0.8099 2.77% 2.48%
FA2 0.017 3.318 0.6326 0.5933 0.6533 3.17% 9.18%
C17 0.012 2.304 0.7636 0.7620 0.7839 2.59% 2.79%
Comp. 0.014 0.937 0.7511 0.7292 0.8264 9.11% 11.76%
Avg. Err. - - - - - 3.71% 5.46%

21

Table 1.5 compares the results for PTM, PGM [19], and BDEC for some more
general circuits. Note FA1 and FA2 are two different implementations of full adder
circuit. The former is XOR/AND implementation and the latter is NAND only
implementation. Also Comp. is a two-bit comparator circuit. We report the results for
our implementation of PTM and BDEC; however, since we were not able to produce
the results of PGM, we took the reported results in [19]. As it can be seen from this
table, BDEC shows better accuracy as compared to PGM.

Table 1.6 Runtime Comparison between BDEC and PTM for some Large Benchmark Circuits

Benchmark # of Gates PIs POs BDEC Exec Time (sec) PTM Exec Times (sec)
C17 6 5 2 7.00E-06 0.313
Pcle 71 19 9 2.40E-05 4.300
z4ml 74 7 4 2.20E-05 0.840
Mux 106 21 1 2.80E-05 2.113
9symml 252 9 1 5.20E-05 696.211

Table 1.6 shows the results of running BDEC for somewhat larger benchmark
circuits. In the last column, we report the results for some of the circuits that were
analyzed in [5] to compare the run times of running PTM with that of BDEC. PTM
results were reported for technology independent benchmarks where as BDEC results
are for benchmark circuits mapped to a cell library in 65nm CMOS technology. PTM
results were generated using a system with 3GHz Pentium 4 processor where as BDEC
results are generated from a system with 2.4GHz dual core processor. One can see that
BDEC (which has very low memory usage) is orders of magnitude faster than PTM.

Table 1.7 shows how BDEC execution times linearly scale with the number of
gates. As it was mentioned in the introduction of this chapter, the worst-case time
complexity of previously proposed techniques such as PTM and PDD is exponential in
terms of the number of the gates in the circuit.

Table 1.7 Circuit Reliability for Large Benchmark Circuits

Benchmark # of Gates PIs POs
BDEC Exec Time

(µµµµ sec)
BDEC Reported

Reliability

Majority 22 5 1 9.0 0.6994
Decod 66 5 16 18.0 0.2120
Count 139 31 16 38.0 0.0707
frg1 143 28 3 48.0 0.6135
C880 442 60 26 96.0 0.0038
C3540 1549 50 22 358.0 0.0003
alu4 2492 12 8 577.0 0.0232
t481 4767 16 1 1710.0 0.8630

Table 1.8 shows how BDEC execution times and reliability calculations compared
to those of Monte Carlo (MC) simulations. We could not run PTM for larger circuits
because of out of bound memory requirements to store probability transfer matrices
hence we resorted to MC simulations. In most of the cases we ran 10000 iterations of
MC simulations where each input changed with the probability of 0.5. In the case of
higher input count we ran up to 1M iterations to get more accurate results, but the

22

execution times reported in 4th column of Table 1.8 are for 10000 iterations in each
case. Since overall circuit reliability for multi output circuits tend to be very low we
also report BDEC calculated minimum output reliability for single output in the last
column of Table 1.8.

Table 1.8 BDEC Circuit Reliability Compared to MC Simulations for Large Benchmark Circuits

1.6 Extensions to BDEC

1.6.1 Soft Error Rate (SER) estimation using BDEC
As technology scales down, the node-level capacitance (which is a measure of the

stored charge at the output of the node) and the supply voltage decrease, hence, soft
error rates are increasing exponentially [23]. Soft errors in CMOS ICs are caused by a
particle (Alpha, energetic neutron, etc.) striking a node which is holding some data
value. Soft errors in general result in discharging of a node capacitance which in a
combinational circuit means a “1” to “0” transition. This type of error is thus different
from Von Neumann error discussed so far in the paper. A soft error in SRAM can
change the logic value stored in the SRAM and thus, can be thought as a flipping error.

To use BDEC for soft error rate estimation of combinational logic circuits, we
modify the BDEC equations developed in Section 1.3.1. We still use the Boolean
Difference Calculus method to find out the conditions when an error on one or more
inputs will affect the output of the gate. We also assume a sufficiently large latching
window for a soft error so that such an error can in the worst case propagate to the
primary output(s) of the target combinational circuit. In the following, we show the
equations to calculate the soft error rate at the output of a buffer, a 2-input AND gate
and a 2-input XOR gate. Note εg, soft in the following equations means the probability
that a soft error at the output of the gate will cause the output to transition from logic
“1” to logic “0”.

Benchmark
of

Gates
POs

MC
Exec
Time
(sec)

BDEC
Exec
Time

(µµµµ sec)

MC
Reported
Reliability

BDEC
Reported
Reliability

%
Error

Min
Single
Output

Reliability
majority 22 1 0.25 2244 0.6616 0.6994 5.71 0.6994
decod 66 16 0.69 6234 0.2159 0.2120 1.81 0.8820
pcle 71 9 0.82 6899 0.2245 0.2270 1.11 0.8401
cordic 116 2 1.26 10093 0.5443 0.5299 2.65 0.7220
sct 143 15 1.54 13086 0.1310 0.130 0.76 0.7988
frg1 143 3 1.59 13864 0.5895 0.6135 4.07 0.7822
b9 147 21 1.64 14118 0.0271 0.0261 3.69 0.7223
lal 179 19 2.52 18001 0.0924 0.0990 7.14 0.8067
9symml 252 1 2.90 27225 0.7410 0.6189 16.48 0.6189
9sym 429 1 4.93 48039 0.7705 0.6398 16.96 0.6398
C5315 2516 123 33.34 267793 0.0000 0.0000 0.00 0.5822
Average - - - - - - 5.49 -

23

To calculate the soft error rate expression at the output of a buffer, we note that soft
error happens only when the input is “1” and either of the input or output is affected.
That is:

()softgsoftinsoftgsoftininsoftbuf p ,,,,, εεεεε −+=
 (1.27)

where εin, soft is the soft error rate at the input, and the term in the parentheses is the
probability of error at the input or the output.
To calculate the soft error rate at the output of a 2-input AND gate, we pay attention to
the truth table of this gate knowing that soft error can only make “1” to “0” changes.
This leads us to the fact that the only time that the output value of a 2-input AND gate is
affected by a soft error is when both inputs are “1” and an error occurs at any of the
inputs or at the output. Therefore, the soft error rate at the output of a 2-input AND gate
is written as:

+

−−−

++

=

softgsoftsoft

softgsoftsoftgsoftsoftsoft

softgsoftsoft

softAND pp

,,2,1

,,2,,1,2,1

,,2,1

21,2

εεε
εεεεεε

εεε
ε

 (1.28)

Similarly, the soft error rate at the output of a 2-input XOR gate can be calculated by
looking into its truth table and realizing that the output value can be affected by a soft
error when: (i) exactly one input is “1” and one input is “0” and soft error changes the
logic-1 input or the output, or (ii) both inputs are “1” and soft error changes one and
only one of these logic-1 inputs. Therefore, the soft error rate at the output of a 2-input
XOR gate is calculated as:

()()
() ()

() ()()softsoftsoftsoft

softgsoftsoftgsoft

softgsoftsoftgsoftsoftXOR

pp

pp

pp

,2,1,2,121

,,2,,221

,,1,,121,2

11

1

1

εεεε
εεεε

εεεεε

−+−+

−+−+

−+−=

 (1.29)

Similarly we can derive error equations for other types of gate functions.

1.6.2 BDEC for asymmetric erroneous transition probabilities
BDEC for Von Neumann fault model assumed equal probability of error for a “0”

to “1” and “1” to “0” erroneous transition. But this may not always be the case for
example in dynamic and domino logic families, the only possible erroneous transition
during the evaluate mode is from “1” to “0”. In these situations, the solution is to
independently calculate the overall circuit error probability using the low-to-high and
high-to-low probability values and gate-level error rates. Both circuit error rates are
then reported.

24

1.6.3 BDEC applied to Emerging Nano Technologies
A quantum-dot cellular automaton (QCA) [21] is a binary logic architecture which

can miniaturize digital circuits to the molecular levels and operate at very low power
levels [22]. QCA devices encode and process binary information as charge
configurations in arrays of coupled quantum dots, rather than current and voltage levels.
One unique aspect of QCA is that both wires and gates are constructed from quantum
dots. Each dot consists of a pair of electrons that can be configured in two different
ways to represent a single bit of information. Hence in QCA both gates and wire are
subject to bit-flip errors. QCAs have two main sources of error: 1) decay
(decoherence)—when electrons that store information are lost to the environment, and
2) switching error—when the electrons do not properly switch from one state to another
due to background noise or voltage fluctuations [22]. BDEC uses Von Neumann (Bit-
flip) fault model, hence it is thus well suited to calculate errors in QCAs. In QCA
wires/interconnects can also make bit-flip errors, hence BDEC must be extended to be
used for QCAs. This extension in BDEC is straightforward and requires a simple
replacement of each interconnect in the circuit with a probabilistically faulty buffer.

1.7 Conclusions
As technology scales down circuit reliability is becoming one of the main concerns

in VLSI design. In nano scale CMOS regime circuit reliability have to be considered in
the early design phases. This shows the need for fast reliability calculator tools that are
accurate enough to estimate overall circuit reliability. The presented error/reliability
calculator, BDEC, takes primary input signal and error probabilities and gate error
probabilities and computes the reliability of the circuit. BDEC benefits from a linear-
time complexity with number of the gates in the circuit. Compared to PTM which
generates accurate reliability results, BDEC generates highly accurate results that are
very close to PTM ones. We showed that the efficiency, execution time and memory
usage, of BDEC is much better than those for PTM.

 BDEC can find application in any combinatorial logic design where reliability is a
major concern. Presently BDEC can be applied to combinatorial circuits only,
sequential logic is not supported. BDEC can be easily enhanced to be applied to
sequential logic. Current version of BDEC uses level collapsing to reduce the effect of
re-convergent fanout. In future BDEC can be enhanced to use spatial correlations
between the signals to further reduce the inaccuracies introduced because of re-
convergent fanouts.

Bibliography
[1] Krishnaswamy Smita (2008) Design, Analysis, and Test of Logic Circuits under

Uncertainty, Dissertation, University of Michigan at Ann Arbor (USA)
[2] Rabey J M, Chankrakasan A, Nikolic B: Digital Integrated Circuits, Prentice Hall,

2003. pp. 445-490.

25

[3] Hu C (1999) Silicon nanoelectronics for the 21st century Nanotechnology. vol. 10, No.
2, Page(s): 113-116.

[4] Bahar R I , Lau C, Hammerstrom D, Marculescu D, Harlow J, Orailoglu A, Joyner W H
Jr., Pedram M (2007) Architectures for silicon nanoelectronics and beyond. Computer,
v 40, n 1, Page(s): 25-33.

[5] Krishnaswamy S, Viamontes G F, Markov I L , Hayes J P (2005) Accurate reliability
evaluation and enhancement via probabilistic transfer matrices. Proceedongs of Design,
Automation and Test in Europe (DATE), Page(s):282-287.

[6] Abdollahi A (2007) Probabilistic Decision Diagrams for Exact Probabilistic Analysis.
Proc. International Conference on Computer Aided Design (ICCAD)

[7] Mehta H, Borah M, Owens R M, Irwin M J (1995) Accurate estimation of
combinational circuit activity. Proc. Design Automation Conference, (DAC) Page(s):
618-622.

[8] Bhaduri D and Shukla S (2004) NANOPRISM: A tool for evaluating granularity versus
reliability trade-offs in nano architectures. in Proc. 14th ACM Great Lakes Symp.
VLSI, Page(s): 109–112.

[9] Norman G, Parker D, Kwiatkowska M, and Shukla S (2005) Evaluating the reliability
of NAND multiplexing with PRISM. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 24, no. 10, Page(s): 1629–1637

[10] Bhaduri D, Shukla S K, Graham P S, Gokhale M B (2007) Reliability Analysis of Large
Circuits Using Scalable Techniques and Tools. IEEE Trans on Circuits and Systems,
Volume 54, Issue 11, Page(s): 2447 – 2460.

[11] Sellers F F, Hsiao M Y, and Bearnson L W (1968) Analyzing Errors with the Boolean
Difference,” IEEE Transactions on Computers, vol. 17, No. 7, Page(s):676-683.

[12] Akers S B Jr (1959) On the theory of Boolean functions. SIAM J. Appl. Math., vol. 7,
Page(s):487-498.

[13] Ku C T, and Masson G M (1975) The Boolean Difference and Multiple Fault Analysis.
IEEE Trans. on Computers, vol. c-24, Page(s):62-71.

[14] Das S R, Srimani P K, and Dutta C R (1976) On Multiple Fault Analysis in
Combinational Circuits by Means of Boolean Difference. Proc. of the IEEE, vol. 64,
No. 9, pp. 1447-1449.

[15] Rejimon T, Bhanja S (2005) An accurate probabilistic model for error detection. Proc.
18th International Conference on VLSI Design, Page(s):717-722.

[16] Ercolani S, Favalli M, Damiani M, Olivo P, and Ricco B (1992) Testability Measures in
Pseudorandom Testing. IEEE Trans. on CAD, vol. 11, Page(s):794-800.

[17] Marculescu R, Marculescu D and Pedram M (1998) Probabilistic modeling of
dependencies during switching activity analysis. IEEE Trans. on Computer Aided
Design, Page(s):73-83.

[18] Parker K P, McCluskey E J (1975) Probabilistic Treatment of General Combinational
Networks. IEEE Trans on Computers,Volume 24 , Issue 6, Pages 668-670.

[19] Han J, Gao J B, Jonker P, Qi Yan and Fortes J A B (2005) Toward hardware-Redundant
Fault-Tolerant Logic for Nanoelectronics. IEEE Trans on Design and Test of
Computers, vol. 22-4 Page(s):328–339.

[20] Sentovich E M, Singh K J, Lavagno L, Moon C, Murgai R, Saldanha A, Savoj H,
Stephan P R, Brayton R K, and SangiovanniVincentelli A (1992) SIS: A system for
sequential circuit synthesis," U.C. Berkeley, Tech. Rep.

26

[21] Lent C S, Tougaw P D, Porod W, and Bernstein G H (1993) Quantum cellular
automata. Nanotechnology, vol. 4, pp. 49–57

[22] Rejimon T, Bhanja S (2006) Probabilistic Error Model for Unreliable Nano-logic Gates.
Proc. NANO, pp. 47-50

[23] Li L, Degalahal V, Vijaykrishnan N, Kandemir M, Irwin M J (2004) Soft error and
energy consumption interactions: a data cache perspective. Proceedings of the
international symposium on Low power electronics and design ISPLD’04

27

Index

2nd Boolean difference 5
2-to-1 Multiplexer 11
4-input logic gate 10
65nm 21
balanced tree 14
cell library 21
circuit reliability 13
circuit, reliability 13
CMOS 3
co-factors 5
collapsed gate 16
complexity 19
computational complexity 15
Crosstalk 3
decoherence 24
DFS 3
domino logic 23
entropy-preserving 9
error calculator 18
error propagation 4
exponent suppression 15
faulty gate 8
flipping error 3
Gate error probability 7
higher order exponents 14
ideal gate 8
input error probabilities 7
iterations 21
Local reconvergent fanout 15
logic synthesis 18
MATLAB 18
memory intensive 4
Monte Carlo simulation 18
multi-level logic circuit 13
multiple fault 4
non-masking probability 8
O(2kN) 14

offline 20
order-k partial Boolean difference 5
out of memory error. 19
output error expression 9
output error rates 7
pair wise spatial correlations 18
partial Boolean difference 5
particle 22
pessimistic defect model 4
post-order 3
Probabilistic Decision Diagrams

(PDDs) 3
Probabilistic Transfer Matrix (PTM) 3
probability function 8
Quantum 3
quantum dots 24
quantum-dot cellular automaton 24
reconvergent fanout 15
reliability constraint 18
reliability-aware optimizations 18
Signal probability 7
simultaneous errors 9
single pass 4
SIS 18
soft error rates 22
space-efficient 4
spatial correlation coefficient 13
stuck-at-fault 4
super gate 16
symbolic notation 15
tensor product 4
time complexity 4
total Boolean difference 5
Von Neumann 4
XOR gate 9
XOR operator 5

