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Abstract 

A gate level probabilistic error propagation model is presented which 
takes as input the Boolean function of the gate, input signal probabilities, 
the error probability at the gate inputs, and the gate error probability and 
generates the error probability at the output of the gate. The presented 
model uses the Boolean difference calculus and can be efficiently 
applied to the problem of calculating the error probability at the primary 
outputs of a multi-level Boolean circuit with a time complexity which is 
linear in the number of gates in the circuit. This is done by starting from 
the primary inputs and moving toward the primary outputs by using a 
post-order—reverse Depth First Search (DFS)—traversal. Experimental 
results demonstrate the accuracy and efficiency of the proposed approach 
compared to the other known methods for error calculation in VLSI 
circuits. 
 

Keywords 
Signal probability, Error probability, Co-factor, Partial Boolean 
Difference, Re-convergent fanout, Spatial correlations. 

 

1.1  Introduction   
As CMOS hits nano-scale regime, device failure mechanisms such as cross talk, 

manufacturing variability, and soft error become significant design concerns. Being 
probabilistic by nature, these failure sources have pushed the CMOS technology toward 
stochastic CMOS [1]. For example, capacitive and inductive coupling between parallel 
adjacent wires in nano-scale CMOS Integrated Circuits (ICs) are the potential sources 
of crosstalk between the wires. Crosstalk can indeed cause flipping error on the victim 
signal [2]. In addition to the probabilistic CMOS, promising nanotechnology devices 
such as quantum dots are used in technologies such as Quantum Cellular Automata 
(QCA). Most of these emerging technologies are inherently probabilistic. This has made 
reliability analysis an essential piece of circuit design. . Reliability analysis will be even 
more significant in designing reliable circuits using unreliable components [3][4].  

Circuit reliability will thus be an important tradeoff factor which has to be taken 
care of similar to traditional design tradeoff factors such as performance, area, and 
power. To include the reliability into the design tradeoff equations, there must exist a 
good measure for the circuit reliability, and there must exist fast and robust tools that, 
similar to timing analyzer and power estimator tools, are capable of estimating circuit 
reliability at different design levels. In [5] authors have proposed a Probabilistic 
Transfer Matrix (PTM) method to calculate the output signal error probability for a 
circuit while [6] presents a  method based on the Probabilistic Decision Diagrams 
(PDDs) to perform this task. 
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In this chapter we first introduce a probabilistic gate level error propagation model 
based on the concept of Boolean difference to propagate errors from inputs to output of 
a general gate. We then apply this model to account for the error propagation in a given 
circuit and finally estimate the error probability at the circuit outputs. Note that in the 
proposed model a gate’s Boolean function is used to determine the error propagation in 
the gate. An error at an output of a gate is due to its input(s) and/or the gate itself being 
erroneous.  The internal gate error in this work is modeled as an output flipping event. 
This means that, when a faulty gate makes an error, it flips (changes a “1” to a “0” and a 
“0” to a “1”) its output value that it would have generated given the inputs, Von 
Neumann error model. In the rest of this chapter, we call our circuit error estimation 
technique the Boolean Difference-based Error Calculator, or BDEC for short, and we 
assume that a defective logic gate produces the wrong output value for every input 
combination. This is a more pessimistic defect model than the stuck-at-fault model. 

Authors in [5]  use a PTM matrix for each gate to represent the error propagation 
from the input(s) to the output(s) of a gate. They also define some operations such as 
matrix multiplication and tensor product to use the gate PTMs to generate and 
propagate error probability at different nodes in a circuit level-by-level. Despite of its 
accuracy in calculating signal error probability, PTM technique suffers from the 
extremely large number of computational-intensive tasks namely regular and tensor 
matrix products. This makes the PTM technique extremely memory intensive and very 
slow. In particular, for larger circuits, size of the PTM matrices grows too fast for the 
deeper nodes in circuit making PTM an inefficient or even infeasible technique of error 
rate calculation for a general circuit. References [8] and [9] developed a methodology 
based on probabilistic model checking (PMC) to evaluate the circuit reliability. The 
issue of excessive memory requirement of PMC when the circuit size is large was 
successfully addressed in [10]. However, the time complexity still remains a problem. 
In fact, the authors of [10] show that the run time for their space-efficient approach is 
even worse than that of the original approach. 

Boolean difference calculus was introduced and used by [11] and [12] to analyze 
single faults. It was then extended by [13] and [14] to handle multiple fault situations, 
however, they only consider stuck-at-faults and they do not consider the case when the 
logic gates themselves can be erroneous and hence a gate-induced output error may 
nullify the effect of errors at the gate’s input(s). In [15] authors use Bayesian networks 
to calculate the output error probabilities without considering the input signal 
probabilities.   

The author in [6] uses probabilistic decision diagrams (PDD) to calculate the error 
probabilities at the outputs using probabilistic gates. While PDDs are much more 
efficient than PTM for average case, the worst-case complexity of both PTM and PDD-
based error calculators is exponential in the number of inputs in the circuit. 

In contrast, we will show in section 1.5 that BDEC calculates the circuit error 
probability much faster than PTM while achieving as accurate results as PTM’s. We 
will show that BDEC requires a single pass over the circuit nodes using a post-order 
(reverse DFS) traversal to calculate the errors probabilities at the output of each gate as 
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we move from the primary inputs to the primary outputs; hence, complexity is O (N) 
where N is the number of the gates in the circuit, and O (.) is the big O notation. 

1.2  Error Propagation Using Boolean Difference Calculus   
Some key concepts and notation that will be used in the remainder of this chapter 

are discussed next. 

1.2.1 Partial Boolean difference   
The partial Boolean difference of function f(x1, x2, …, xn) with respect to one 

variable or a subset of its variables [14] is defined as: 

( ) 1 2 1 2

1 2 1 2

... ...... ...

i i

i i i i i ik k

k k

x x
i

x x x x x x
i i i i i i

f
f f

x
f f

f f
x x x x x x

∂ = ⊕
∂

∂ ∂= = ⊕
∂ ∂

  (1.1) 

where ⊕  represents XOR operator and
ixf  is the co-factor of f with respect to xi, i.e.,  

1 1 1

1 1 1

( ,..., , 1, ,..., )

( ,..., , 0, ,..., )
i

i

x i i i n

x i i i n

f f x x x x x

f f x x x x x

− +

− +

= =

= =
  (1.2) 

Higher order co-factors of f can be defined similarly. The partial Boolean 
difference of f with respect to xi expresses the condition (with respect to other variables) 
under which f is sensitive to a change in the input variable xi. More precisely, if the 
logic values of {x1, …, xi-1, xi+1, …, xn} are such that ∂f/∂xi = 1, then a change in the 
input value xi, will change the output value of f.. However, when ∂f/∂xi = 0, changing 
the logic value of xi will not affect the output value of f. 

It is worth mentioning that the order-k partial Boolean difference defined in 
Equation 1.1 is different from the kth Boolean difference of function f as used in [13], 
which is denoted by

1
...

k

k
i if x x∂ ∂ ∂ . For example, the 2nd Boolean difference of function 

f with respect to xi and xj is defined as: 

2

i j i j i j i jx x x x x x x x
i j i j

f f
f f f f

x x x x

 ∂ ∂ ∂= = ⊕ ⊕ ⊕  ∂ ∂ ∂ ∂    (1.3) 

Therefore, ∂2f/∂xi∂xj≠∂f/∂(xixj). 

1.2.2  Total Boolean difference 
Similar to the partial Boolean difference that shows the conditions under which a 

Boolean function is sensitive to change of any of its input variables, we can define total 
Boolean difference showing the condition under which the output of the Boolean 
function f is sensitive to the simultaneous changes in all the variables of a subset of 
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input variables. For example, the total Boolean difference of function f with respect to 
xixj is defined as: 

( ) ( )
( ) ( ) ( )i j i j i j i j

i j i j i j

f f f
x x x x x x x x

x x x x x x

∆ ∂ ∂= + + +
∆ ∂ ∂

 (1.4) 

where �f/�(xixj) describes the conditions under which the output of f is sensitive to a 
simultaneous change in xi and xj. That is, the value of f changes as a result of the 
simultaneous change. Some examples for simultaneous changes in xi and xj are 
transitioning from xi=xj=1 to xi=xj=0 and vice versa, or from xi=1, xj=0 to xi=0, xj=1 
and vice versa. However, transitions in the form of xi=xj=1 to xi=1, xj=0 or xi=1, xj=0 
to xi=0, xj=0 are not simultaneous changes. Note that ∂f/∂(xixj) describes the conditions 
when a transition from xi=xj=1 to xi=xj=0 and vice versa changes the value of function 
f.  

It can be shown that the total Boolean difference in Equation 1.4 can be written in 
the form of: 

( )
2

i j i ji j

f f f f

x x x xx x

∆ ∂ ∂ ∂= ⊕ ⊕
∂ ∂ ∂ ∂∆

   (1.5) 

The total Boolean difference with respect to three variables is:  

( )

( )

( )

( )

1 2 3 1 2 3
1 2 3 1 2 3

1 2 3 1 2 3
1 2 3

1 2 3 1 2 3
1 2 3

1 2 3 1 2 3
1 2 3

( ) ( )

                
( )

                
( )

                
( )

f f
x x x x x x

x x x x x x

f
x x x x x x

x x x

f
x x x x x x

x x x

f
x x x x x x

x x x

∆ ∂= +
∆ ∂

∂+ +
∂

∂+ +
∂

∂+ +
∂    (1.6) 

It is straightforward to verify that: 
2

1 2 3 1 2 3 1 2

2 2 3

2 3 1 3 1 2 3

( )

                  

f f f f f

x x x x x x x x

f f f

x x x x x x x

∆ ∂ ∂ ∂ ∂= ⊕ ⊕ ⊕
∆ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂⊕ ⊕ ⊕
∂ ∂ ∂ ∂ ∂ ∂ ∂    (1.7) 

In general total Boolean difference of a function f with respect to an n-variable subset of 
its inputs can be written as: 

( )
1

1 2
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2 1
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f f
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− −

− −
=

∆ ∂= +
∆ ∂∑ t

   (1.8) 
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where mj’s are defined as follows: 

1 2 1

1 2 1

1 2 1

0
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2 1

...
...

... ,

n n

n n
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i i i i

i i i i

i i i i
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   (1.9) 

and we have:  

( )
* * * *
1 2 1* * * *

1 2 1

where ...
...

j

j n n
m n n

f f
m x x x x

x x x x x
−

−

∂ ∂= =
∂ ∂
t

  (1.10) 

1.2.3  Signal and error probabilities 
Signal probability is defined as the probability for a signal value to be “1”. That is:  

{ }Pr 1i ip x= =
    (1.11) 

Gate error probability is shown by εg and is defined as the probability that a gate 
generates an erroneous output, independent of its applied inputs. Such a gate is 
sometimes called (1-εg)-reliable gate. Signal error probability is defined as the 
probability of error on a signal line. If the signal line is the output of a gate, the error 
can be either due to error at the gate input(s) or the gate error itself. We denote the error 
probability on signal line xi by εi. 

We are interested in determining the circuit output error rates, given the circuit 
input error rates under the assumption that each gate in the circuit can fail independently 
with a probability of εg. In other words, we account for the general case of multiple 
simultaneous gate failures. 

1.3  Proposed Error Propagation Model   
In this section we propose our gate error model in the Boolean difference calculus 
notation. The gate error model is then used to calculate the error probability and 
reliability at outputs of a circuit.  

1.3.1  Gate Error Model   
Figure 1.1 shows a general logic gate realizing Boolean function f, with gate error 

probability of εg. The signal probabilities at the inputs, i.e., probabilities for input 
signals being 1, are p1, p2,…, pn while the input error probabilities are ε1, ε2,…, εn. The 
output error probability is εz.  

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz

 
Figure 1.1 Gate implementing function f 
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First consider the error probability equation for a buffer gate shown in Figure 1.2. 
The error occurs at the output if (i) the input is erroneous and the gate is error free or (ii) 
the gate is erroneous and the input is error free. Therefore, assuming independent faults 
for the input and the gate, the output error probability for a buffer can be written as: 

(1 ) (1 ) (1 2 )z in g in g g g inε ε ε ε ε ε ε ε= − + − = + −
   (1.12) 

where εin is the error probability at the input of the buffer. It can be seen from this 
equation that the output error probability for buffer is independent from the input signal 
probability. Note Equation1.12 can also be used to express the output error probability 
of an inverter gate. 

εz
εg

pin , εin εz
εg

pin , εin

 
Figure 1.2 A faulty buffer with erroneous input 

We can model each faulty gate with erroneous inputs as an ideal (no fault) gate 
with the same functionality and the same inputs in series with a faulty buffer as shown 
in Figure 1.3.  

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz f

(ideal)

εz
εg

p1 , ε1
p2 , ε2

pn , εn

pin

εin

p1 , ε1
p2 , ε2

pn , εn

f, εg
εz f

(ideal)

εz
εg

p1 , ε1
p2 , ε2

pn , εn

pin

εin

 
Figure 1.3 The proposed model for a general faulty gate 

Now consider a general two-input gate. Using the fault model discussed above, we 
can write the output error probability considering all the cases of no error, single error 
and double errors at the input and the error in the gate itself.  We can write the general 
equation for the error probability at the output, εz, as: 

1 2 1 2
1 2

1 2
1 2

(1 )Pr (1 ) Pr

(1 2 )

Pr
( )

z g g

in

f f

x x

f

x x

ε ε ε ε
ε ε ε

ε ε

ε

    ∂ ∂− + −    ∂ ∂    = + −   ∆ +   ∆  14444444244444443

  (1.13) 

where Pr{.} represents the signal probability function and returns the probability of its 
Boolean argument to be “1”. The first and the second terms in εin account for the error 
at the output of the ideal gate due to single input errors at the first and the second inputs, 
respectively. Note error at each input of the ideal gate propagates to the output of this 
gate only if the other inputs are not masking it. The non-masking probability for each 
input error is taken into account by calculating the signal probability of the partial 
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Boolean difference of the function f with respect to the corresponding input. The first 
two terms in εin only account for the cases when we have single input errors at the input 
of the ideal gate, however, error can also occur when both inputs are erroneous 
simultaneously. This is taken into account by multiplying the probability of having 
simultaneous errors at both inputs, i.e., ε1ε2, with the probability of this error to be 
propagated to the output of the ideal gate, i.e., the signal probability of the total Boolean 
difference of f with respect to x1x2.  
For 2-input AND gate (f=x1x2) shown in Figure 1.4 we have: 

{ } { }

{ } ( )( )

( )

2 2 1 1
1 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2

Pr Pr , Pr Pr

Pr Pr 1 1
( )

1 2

f f
x p x p

x x
f

x x x x p p p p
x x

p p p p

   ∂ ∂= = = =   ∂ ∂   
 ∆ = + = − − + ∆ 

= − + +

  (1.14) 

Plugging Equation 1.14 into Equation 1.13 and after some simplifications we have: 

( ) ( )( )( )2 1 2 2 1 1 2 1 2 1 21 2 1 2 2AND g g p p p p p pε ε ε ε ε ε ε= + − + + − + +   (1.15) 

p1 , ε1
p2 , ε2

εAND2εg

p1 , ε1
p2 , ε2

εAND2εg

 

Figure 1.4 A 2-input faulty AND gate with erroneous inputs 

Similarly, the error probability for the case of 2-input OR can be calculated as: 

( ) ( ) ( ) ( )( )2 1 2 2 1 1 2 1 21 2 1 1 2 1OR g g p p p pε ε ε ε ε ε ε= + − − + − + −  (1.16) 

And for 2-input XOR gate we have: 

( )( )2 1 2 1 21 2 2XOR g gε ε ε ε ε ε ε= + − + −
   (1.17) 

It is interesting to note that the error probability at the output of the XOR gate is 
independent of the input signal probabilities. Generally, the 2-inpout XOR gate exhibits 
larger output error compared to 2-input OR and AND gates. This is expected since 
XOR gates show maximum sensitivity to input errors (XOR, like inversion, is an 
entropy-preserving function).The output error expression for a 3-input gate is: 
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1 2 3 2 3
1

2 1 3 1 3
2

3 1 2 1 2
3

1 2 3
1 2

2 3 1
2 3

1 3 2
1 3

1 2 3

(1 )Pr

(1 )Pr

(1 )Pr

(1 2 ) (1 )Pr
( )

(1 )Pr
( )

(1 )Pr
( )

Pr
(

z g g

f

x

f

x

f

x

f

x x

f

x x

f

x x

f

x

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε

ε ε ε

ε ε ε

 ∂− − +  ∂ 

 ∂+ − − +  ∂ 

 ∂+ − − +  ∂ 

 ∆= + − + −  ∆ 

 ∆+ −  ∆ 

 ∆+ −  ∆ 

∆+
∆ 1 2 3)x x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
           (1.18) 

As an example of a 3-input gate, we can use Equation 1.18 to calculate the 
probability of error for the case of 3-input AND gate. We can show that the output error 
probability can be calculated as: 

2 3 1 1 3 2 1 2 3

3 2 1 1 2 1 2

3 1 2 3 2 3 2 3

2 1 3 1 3 1 3

1 2 3
1 2 3

1 2 2 3 1 3 1 2 3

(1 2( ) 2 )

(1 2 ) (1 2( ) 2 )

(1 2( ) 2 )

1 2( )

4( ) 6

AND g g

p p p p p p

p p p p p

p p p p p

p p p p p

p p p

p p p p p p p p p

ε ε ε
ε ε

ε ε ε ε ε
ε ε

ε ε ε

 
 

+ + 
 + − + +
 

= + − + − + + 
 + − + + 
 − + + 

+   + + + −    (1.19) 

Now we give a general expression for a 4-input logic gate as:  
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( , ) ( , , )

( , ) , ( , ) ,

( , , ) , ,

1 2 3
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1 Pr
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= (1 2 )
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ε ε ε ε ε
ε ε ε
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≠ ≠ ≠

≠ ≠

≠
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+

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

4
1 2 3 4

Pr
( )

f

x x x x
ε

 
 
 
 
 
 
 
 
 
 
 

 ∆ 
   ∆   (1.20) 

The Boolean expression for a general k-input gate can be calculated in a similar 
manner. 

 

1.3.2 Error Propagation in 2-to-1 Mux Using BDEC 

We represent 2-to-1 Multiplexer (Mux) function as:f as bs= + .Using BDEC the output 
error probability in terms of the gate error probability, input signal probabilities and 
input error probabilities is: 

( )

( ) ( ) ( )( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 1

1 1 Pr 1 1 Pr

1 1 Pr 1 Pr

1 2

1 Pr 1 Pr

Pr

a b s b a s

s a b a b s

Mux to g g

a s b b s a

a b s

f f

a b

f f

s ab

f f

as bs

f

abs

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε
ε ε ε ε ε ε

ε ε ε

 ∂ ∂    − − + − −    ∂ ∂    
  ∂ ∆ 
 + − − + −     ∂ ∆   
= + −

   ∆ ∆+ − + −       ∆ ∆   
  ∆
+    ∆  










 (1.21) 

Now we step wise show how to calculate various partial and total Boolean differences. 

First we calculate all single variable partial Boolean differences as:  



 
 
 
 

12 

   

( ) ( )
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b
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f
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Then we calculate two variables partial Boolean differences as: 
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1 0
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ab ab

f
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=

                         

( )

1

ab ab
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Finally we calculate three variable partial Boolean differences as:  
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Next we calculate total Boolean differences as: 
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Plugging these values in Equation 1.21 
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 (1.22) 

1.3.3 Circuit Error Model 
In this section we use the gate error model proposed in sub-section 1.3.1 to calculate the 
error probability at the output of a given circuit. Given a multi-level logic circuit 
composed of logic gates, we start from the primary inputs and move toward the primary 
outputs by using a post-order (reverse DFS) traversal. For each gate, we calculate the 
output error probability using input signal probabilities, input error probabilities, and 
gate error probability and utilizing the error model proposed in sub-section 1.3.1.  The 
signal probability for the output of each gate is also calculated based on the input signal 
probabilities and the gate function. The process of output error and signal probability 
calculation is continued until all the gates are processed. For each node z in the circuit, 
reliability is defined as: 

1z zχ ε= −
     (1.23) 

After processing all the gates in the circuit and calculating error probabilities and 
reliabilities for all the circuit primary outputs, we can calculate the overall circuit 
reliability. Assuming that different primary outputs of the circuit are independent, the 
overall circuit reliability can be calculated as the product of all the primary outputs 
reliabilities, that is: 

icircuit PO
i

χ χ= ∏
    (1.24) 

The case of dependent primary outputs (which is obviously a more realistic 
scenario) requires calculation of spatial correlation coefficient as will be outlined 
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further on in the paper. The detailed treatment of spatial correlation coefficient 
calculation however falls outside the scope of the present work. 

This error propagation algorithm has a complexity of O(2kN) where k is the 
maximum number of inputs to any gate in the circuit (which is small and can be upper 
bounded a priori in order to give O(N) complexity) and N is the number of gates in the 
circuit. This complexity should be contrasted to that of the PTM based or the PDD-
based approaches, that have a worst case complexity of O(2N). The tradeoff is that our 
proposed approach based on post-order traversal of the circuit netlist and application of 
Boolean difference operator results in only approximate output error and signal 
probability values due to the effect of re-convergent fanout structures in the circuit, 
which create spatial correlations among input signals to a gate. This problem has been 
extensively addressed in the literature on improving the accuracy of signal probability 
calculators [17][18]. Our future implementation of BDEC shall focus on utilizing 
similar techniques (including efficient calculation of spatial correlation coefficients) to 
improve the accuracy of proposed Boolean difference-based error calculation engine. 

1.4  Practical Considerations   
In this section we use the error models introduced in previous section to calculate the 
exact error probability expression at the output of a tree-structured circuit. 

1.4.1  Output error expression 
For the sake of elaboration, we choose a 4-input AND gate implemented as a balanced 
tree of 2-input AND gates as shown in Figure 1.5. We can calculate the output error of 
this circuit by expressing the error at the output of each gate using Equation 18. 
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εg
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Y
Out

p1 , ε1
p2 , ε2
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εg
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εg

X

Y
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Figure 1.5 Balanced tree implementation of 4-input AND gate 

Equation 1.25 provides the exact output error probability of the circuit shown in 
Figure 1.5 in terms of the input signal probabilities and input error probabilities where 
similar to [18] higher order exponents of the signal probabilities are reduced to first 
order exponents. 
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 +   (1.25) 

In Equation 1.25, without loss of generality, we assume εg=0 in order to reduce the 
length of the expression. 

Using symbolic notation along with higher order exponent suppression, the model 
presented in section 1.3  can compute the exact output error probability in circuits with 
no reconvergent fanout. We will show in next section that by sacrificing little accuracy 
and using numerical values instead of symbolic notation, the computational complexity 
of our gate error model becomes linear in terms of the number of gates in the circuit.  

1.4.2 Reconvergent Fanout 
Figure 1.6 shows an example of a circuit with reconvergent fanout. It is clear from the 
figure that inputs to the final logic gate are not independent. Therefore, if the BDEC 
technique discussed in Section 1.3 is applied to this circuit, the calculated output error 
probability will not be accurate. In this section we describe a modification to the BDEC 
technique that improves the probability of error for the circuit in the presence of 
reconvergent fanout structures in the circuit.  
Local reconvergent fanout such as the one depicted in Figure 1.6 can be handled by 
collapsing levels of logic. For this example, we consider all the four gates in Figure 1.6 
as a single super gate and then apply the BDEC technique to this super gate. For the 
input to output error propagation in the original circuit, BDEC will ignore the internal 
structure of the super gate and only considers the actual function implemented by the 
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super gate, 2-to-1 Mux in this case. The original implementation information can be 
taken into account by properly calculating the εg value for this new 3-input super gate. 
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εg

εg

εg

εg
Out

Super Gate

ps , εs
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εg

εg

εg
Out

ps , εs
εMux2to1

pa , εa

pb , εb

εg

εg

εg

εg
Out

Super Gate

 
Figure 1.6 Re-convergent fanout in a 2-to-1 Multiplexer 

The εg value for the collapsed gate is calculated using BDEC for the original circuit 
block before collapsing but assuming that the input error probabilities are zero. For 
example for the circuit in Figure 1.6 the error probability at the output of the top AND 
gate and the inverter using BDEC equations described in section 1.3.1 and assuming 
input error probabilities to be zero will be εg each. Similarly the error probability at the 
output of the bottom AND gate will be ( )( )2 1 2AND g g g bpε ε ε ε= + − . Likewise we can calculate 

the expression for the error probability at the output of the OR gate which in this case 
will be the εg of the super gate. Equation 1.26 shows the final expression for the εg value 
of the collapsed gate; note that the εg value for the collapsed gate is also a function of 
the input signal probabilities. As discussed in Section 1.4.1, the error expression for the 
super gate εg has been obtained after suppressing the exponents of signal probabilities 
that are greater than “1” to “1”. In contrast we do not suppress the exponents of εg 
values since this higher exponent may have correctly resulted from the fact that each 
gate in the circuit can fail with same error probability On the other hand the higher 
exponent may have arisen from the fact that the error of some multiple-fanout gate is 
propagated to a reconvergent fanout point through different paths in the circuit, and 
hence, the higher exponent must indeed be suppressed. So there is some inaccuracy in 
our proposed method. To be able to decide precisely whether or not the exponents of εg 
must be suppressed, we will have to use a unique symbol for each gate’s error 
probability and propagate these unique symbols throughout the circuit while 
suppressing the higher exponents of each unique symbol. The results reported in Table 
1.1 have been obtained using the estimation of super gate’s εg from our implementation 
of BDEC in SIS [20], which does not include exponent suppression. 
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Table 1.1  Output error probability with re-convergent fanout 

S/N Pa Pb Ps εεεεg εεεεa εεεεb εεεεs BDEC BDEC-CLP PTM 

1 0.5 0.5 0.5 0.05 0.05 0.05 0.05 0.1814 0.1835 0.1829 

2 0.1 0.2 0.3 0.05 0.05 0.05 0.05 0.1689 0.1820 0.1852 

3 0.5 0.6 0.7 0.05 0.05 0.05 0.05 0.1909 0.1827 0.1830 

4 0.7 0.8 0.9 0.05 0.05 0.05 0.05 0.1858 0.1684 0.1668 

5 0.5 0.5 0.5 0.001 0.001 0.001 0.001 0.0044 0.0044 0.0044 

6 0.5 0.5 0.5 0.002 0.001 0.001 0.001 0.0072 0.0072 0.0072 

7 0.5 0.5 0.5 0.01 0.01 0.01 0.01 0.0421 0.0422 0.0422 

8 0.5 0.5 0.5 0.02 0.01 0.02 0.03 0.0842 0.0815 0.0814 

9 0.5 0.5 0.5 0.08 0.08 0.08 0.08 0.2603 0.2645 0.2633 

10 0.5 0.5 0.5 0.05 0.06 0.07 0.08 0.2027 0.2037 0.2032 

Table 1.1 shows that BDEC + logic collapsing produces accurate results for the 
circuit in Figure 1.6. Table 1.2 shows the comparison of percent error for BDEC and 
BDEC + collapsing as compared to PTM. If the reconvergent fanout extends over 
multiple circuit levels then multiple level collapsing can be used but after few levels, 
the computational complexity of computing output error probability of a super gate with 
many inputs will become prohibitive and a trade-off between accuracy and complexity 
will have to be made. 

Table 1.2  Percent error reduction in output error probability using BDEC +Collapsing 

S/N Pa Pb Ps εεεεg εεεεa εεεεb εεεεs 
BDEC 
Error 

BDEC-CLP 
Error 

1 0.5 0.5 0.5 0.05 0.05 0.05 0.05 0.84% 0.33% 

2 0.1 0.2 0.3 0.05 0.05 0.05 0.05 8.78% 1.75% 

3 0.5 0.6 0.7 0.05 0.05 0.05 0.05 4.34% 0.15% 

4 0.7 0.8 0.9 0.05 0.05 0.05 0.05 11.39% 0.94% 

5 0.5 0.5 0.5 0.001 0.001 0.001 0.001 0.02% 0.01% 

6 0.5 0.5 0.5 0.002 0.001 0.001 0.001 0.01% 0.01% 

7 0.5 0.5 0.5 0.01 0.01 0.01 0.01 0.21% 0.08% 

8 0.5 0.5 0.5 0.02 0.01 0.02 0.03 3.48% 0.12% 

9 0.5 0.5 0.5 0.08 0.08 0.08 0.08 1.13% 0.46% 

10 0.5 0.5 0.5 0.05 0.06 0.07 0.08 0.25% 0.24% 

11 - - - - - - Average 3.05% 0.41% 



 
 
 
 

18 

In passing, we point out that the correlation coefficient method and partial collapse 
methods both tackle the same problem, that is, how to account for the correlations due 
to reconvergent fanout structures in VLSI circuits. The tradeoff is that the correlation 
coefficient method has high complexity due to the requirement to calculate and 
propagate all correlation coefficients along with signal and error probabilities whereas 
the partial collapse has high complexity due to the need to calculate output signals and 
error probabilities of super gates with a large number of inputs. In practice, the partial 
collapse of 2 or 3 levels of logic into each node (super gate) or the computation of only 
pair wise spatial correlations is adequate and provides high accuracy. 

1.5 Simulation Results   
In this section we present some simulation results for the proposed circuit 

reliability technique and we compare the results of our approach with those of PTM and 
PGM [19]. 

 We implemented the proposed error calculator and algorithm (BDEC) in SIS [20]. 
SIS has been widely used by logic synthesis community for designing combinational 
and sequential logic circuits. We extended existing logic simulation in SIS with faulty 
circuit simulation based on Monte Carlo simulation technique. We attached a 
probability function with each node which flips the correct output of the node with a 
predefined error probability. We used this Monte Carlo simulation to form a reference 
to compare BDEC results for medium and large circuits.  

We added a new BDEC module to the existing SIS package. While simulating a 
logic circuit, BDEC module models each gate as a probabilistic gate.  We used the 
built-in co-factor function in SIS to develop partial Boolean difference and total 
Boolean difference functions that are used to propagate single and simultaneous 
multiple errors from the inputs to the output of the gate respectively. We have also 
implemented level collapsing to overcome the inaccuracies introduced because of local 
reconvergent fanouts. Note that while collapsing levels of logic, we do not change the 
original logic network; instead, we simply recalculate and update the error and signal 
probability at the output of the nodes that have reconvergent fanout structures inside 
their corresponding super gate.  

In the past, SIS has been used to apply various delay, area and power level 
optimizations to logic circuits. By incorporating BDEC module to SIS, we expect that 
researches will be able to use SIS to develop reliability-aware optimizations for logic 
circuits. For example, given a library of gates with different levels of reliability, design 
a circuit with given functionality that minimizes area, delay and power overheads while 
meeting a given reliability constraint.  

Regarding simulation results in this section, for simplicity, but without loss of 
generality, we assume all gates in a circuit have the same gate error probability εg. All 
primary inputs are assumed to be error free and spatiotemporally uncorrelated. 
Moreover, signal probability for all the inputs were set to 0.5. The gate error probability 
was set to 0.05. We thus present results that show how efficiently BDEC can calculate 
the output reliability for circuits with high primary input count. Running our MATLAB 



 
 
 
 

19 

7.1-based implementation of PTM on a computer system with 2GBytes of RAM, we 
observed that typically for circuits with 16 or more inputs, PTM reported out of 
memory error. BDEC, however, does the calculations much faster and more efficient 
than PTM.  

Table 1.3 shows the results for reliability calculation for some tree-structured 
circuits. For example, “8-Input XOR BT” (BT for Balanced Tree) refers to 8-input 
XOR function implemented using 2-input XOR gates in three levels of logic whereas 
“8-Input XOR Chain” refers to the same function realized as a linear chain of seven 2-
input XOR gates. We also show results for two 16-input circuits with balanced tree 
implementation of 2-input gates having layers of 2-input AND, OR or XOR gates. First 
letter of gate name is used to show the gates used in each level. For example, AOXO 
means that the circuits consists of four levels of logic with AND, OR, XOR and OR 
gates at the first, second, third and fourth level, respectively. Since the complexity of 
the PTM approach increases with the number of primary inputs exponentially, all the 
circuits in Table 1.3 are chosen to have relatively small number of primary inputs. 
Second and third columns of this table compare the execution times for PTM and 
BDEC, respectively, while the forth and the fifth columns compare the output reliability 
for the two approaches. It can be seen that our proposed BDEC technique achieves 
highly accurate reliability values, i.e., the reliability values are different than PTM ones 
by at most 0.1% for the circuits reported in Table 1.3 . More importantly, Table 1.3 
shows the difference between the scaling trend of the execution time in both PTM and 
BDEC techniques. In PTM, the execution time increases exponentially when we move 
from smaller circuits to larger circuits in  Table 1.3, whereas in BDEC the change in the 
execution time when we move from smaller circuits to the larger ones in Table 1.3 is 
really small. For two cases, 16-input XOR chain and 16-input AND chain, the system 
runs out of memory while executing PTM technique. This shows that execution of PTM 
technique for even relatively small circuits needs a huge amount of system memory. 

Table 1.3  Circuit reliability for tree-structured circuits having relatively small number of PIs 

Execution Time (ms) Circuit  Reliability 
Benchmarks # of Gates 

PTM BDEC PTM BDEC 
8-Input XOR BT 7 0.790 0.011 0.7391 0.7391 
16-Input XOR BT 15 1664.5 0.017 0.6029 0.6029 
16-Input XOR Chain 15 Out of Memory 0.015 Out of Memory 0.6029 
8-Input AND BT 7 0.794 0.010 0.9392 0.9382 
16-Input AND BT 15 1752.2 0.017 0.9465 0.9462 
16-Input AND Chain 15 Out of Memory 0.016 Out of Memory 0.9091 
16-input AOXO BT 15 1769.3 0.017 0.7622 0.7616 
16-input OXAX BT 15 1593.1 0.017 0.7361 0.7361 

Another important advantage of the proposed BDEC technique which can be 
observed from Table 1.3 is that the complexity of this technique mainly depends on the 
number of the gates in the circuit; however, the complexity of PTM technique depends 
on several other factors such as number of the inputs, width and depth of the circuit, 
number of the wire crossovers, etc. In other words, efficiency (execution time and 
memory usage) of PTM depends not only on the number of the gates in the circuit, but 
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on the circuit topology. This is a big disadvantage for PTM making it an infeasible 
solution for large and/or topologically complex circuits.  

It is worth mentioning that although the complexity of Boolean difference 
equations increases exponentially with the number of the inputs of the function; this 
does not increase the complexity of the BDEC technique. The reason is the fact that 
using gates with more than few inputs, say 4, in the actual implementation of any 
Boolean function is not considered as a good design practice. This makes the 
complexity of calculating Boolean difference equations small. On the other hand for a 
fixed library of gates, all the Boolean difference equations can be calculated offline, so, 
there is no computational overhead due to calculating the Boolean difference equations 
in BDEC.  

Table 1.4  Circuit Reliability for Tree-Structured Circuits having relatively Large Number of PIs 

Circuit # of Gates Execution Time (ms) Circuit Reliability 
64-Input XOR (BT) 63 0.046 0.5007 
64-Input XOR (Chain) 63 0.043 0.5007 
64-Input AND (BT)  63 0.054 0.9475 
64-Input AND (Chain) 63 0.051 0.9091 
64-Input AOXAOXBT 63 0.054 0.6314 
64-Input XAOXAOBT 63 0.053 0.9475 
16-Bit RCA 80 0.115 0.0132 
32-Bit RCA 160 0.216 0.0002 
I1 46 0.054 0.3580 
C18 6 0.013 0.8032 

Table 1.4 shows the results, execution time and reliability calculation for some of 
synthesized tree-structured circuits with relatively larger number of inputs. Since the 
complexity of the PTM is really high for these circuits we only show the results for 
BDEC. Some of the circuits in Table 1.4 are the larger versions of the circuits reported 
in Table 1.3. We have also included 16 and 32-bit ripple carry adder (RCA) circuits. 
Results for two benchmark circuits, I1 and C18, are also included in this table. 

From the results of Table 1.3 and Table 1.4 we note that circuits that use more 
XOR gates will incur smaller output reliability under a uniform gate failure probability. 
Furthermore, moving XOR gates closer to the primary outputs results in lower output 
reliability. Therefore, in order to have more reliable designs, we must have lower XOR 
gates close to the primary outputs. 

Table 1.5  Circuit Reliability and Efficiency of BDEC Compared to PGM and PTM 

Execution Time 
(ms) 

Circuit Reliability 
(εεεεg=0.05) 

% Error Compared 
to PTM Circuit 

BDEC PTM BDEC PGM PTM BDEC PGM 
2-4 Decoder 0.014 6.726 0.7410 0.7397 0.7479 0.92% 1.10% 
FA1 0.013 2.399 0.7875 0.7898 0.8099 2.77% 2.48% 
FA2 0.017 3.318 0.6326 0.5933 0.6533 3.17% 9.18% 
C17 0.012 2.304 0.7636 0.7620 0.7839 2.59% 2.79% 
Comp. 0.014 0.937 0.7511 0.7292 0.8264 9.11% 11.76% 
Avg. Err. - - - - - 3.71% 5.46% 
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Table 1.5 compares the results for PTM, PGM [19], and BDEC for some more 
general circuits. Note FA1 and FA2 are two different implementations of full adder 
circuit. The former is XOR/AND implementation and the latter is NAND only 
implementation. Also Comp. is a two-bit comparator circuit. We report the results for 
our implementation of PTM and BDEC; however, since we were not able to produce 
the results of PGM, we took the reported results in [19]. As it can be seen from this 
table, BDEC shows better accuracy as compared to PGM. 

Table 1.6  Runtime Comparison between BDEC and PTM for some Large Benchmark Circuits 

Benchmark # of Gates PIs POs BDEC Exec Time (sec) PTM Exec Times (sec) 
C17 6 5 2 7.00E-06 0.313 
Pcle 71 19 9 2.40E-05 4.300 
z4ml 74 7 4 2.20E-05 0.840 
Mux 106 21 1 2.80E-05 2.113 
9symml 252 9 1 5.20E-05 696.211 

Table 1.6 shows the results of running BDEC for somewhat larger benchmark 
circuits. In the last column, we report the results for some of the circuits that were 
analyzed in [5] to compare the run times of running PTM with that of BDEC. PTM 
results were reported for technology independent benchmarks where as BDEC results 
are for benchmark circuits mapped to a cell library in 65nm CMOS technology. PTM 
results were generated using a system with 3GHz Pentium 4 processor where as BDEC 
results are generated from a system with 2.4GHz dual core processor. One can see that 
BDEC (which has very low memory usage) is orders of magnitude faster than PTM. 

Table 1.7 shows how BDEC execution times linearly scale with the number of 
gates. As it was mentioned in the introduction of this chapter, the worst-case time 
complexity of previously proposed techniques such as PTM and PDD is exponential in 
terms of the number of the gates in the circuit.  

Table 1.7  Circuit Reliability for Large Benchmark Circuits 

Benchmark # of Gates PIs POs 
BDEC Exec Time 

(µµµµ sec) 
BDEC Reported 

Reliability 

Majority 22 5 1 9.0 0.6994 
Decod 66 5 16 18.0 0.2120 
Count 139 31 16 38.0 0.0707 
frg1 143 28 3 48.0 0.6135 
C880 442 60 26 96.0 0.0038 
C3540 1549 50 22 358.0 0.0003 
alu4 2492 12 8 577.0 0.0232 
t481 4767 16 1 1710.0 0.8630 

Table 1.8 shows how BDEC execution times and reliability calculations compared 
to those of Monte Carlo (MC) simulations. We could not run PTM for larger circuits 
because of out of bound memory requirements to store probability transfer matrices 
hence we resorted to MC simulations. In most of the cases we ran 10000 iterations of 
MC simulations where each input changed with the probability of 0.5. In the case of 
higher input count we ran up to 1M iterations to get more accurate results, but the 
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execution times reported in 4th column of Table 1.8 are for 10000 iterations in each 
case. Since overall circuit reliability for multi output circuits tend to be very low we 
also report BDEC calculated minimum output reliability for single output in the last 
column of Table 1.8. 

Table 1.8  BDEC Circuit Reliability Compared to MC Simulations for Large Benchmark Circuits 

1.6 Extensions to BDEC 

1.6.1 Soft Error Rate (SER) estimation using BDEC 
As technology scales down, the node-level capacitance (which is a measure of the 

stored charge at the output of the node) and the supply voltage decrease, hence, soft 
error rates are increasing exponentially [23]. Soft errors in CMOS ICs are caused by a 
particle (Alpha, energetic neutron, etc.) striking a node which is holding some data 
value. Soft errors in general result in discharging of a node capacitance which in a 
combinational circuit means a “1” to “0” transition. This type of error is thus different 
from Von Neumann error discussed so far in the paper. A soft error in SRAM can 
change the logic value stored in the SRAM and thus, can be thought as a flipping error.  

To use BDEC for soft error rate estimation of combinational logic circuits, we 
modify the BDEC equations developed in Section 1.3.1. We still use the Boolean 
Difference Calculus method to find out the conditions when an error on one or more 
inputs will affect the output of the gate. We also assume a sufficiently large latching 
window for a soft error so that such an error can in the worst case propagate to the 
primary output(s) of the target combinational circuit. In the following, we show the 
equations to calculate the soft error rate at the output of a buffer, a 2-input AND gate 
and a 2-input XOR gate. Note εg, soft in the following equations means the probability 
that a soft error at the output of the gate will cause the output to transition from logic 
“1” to logic “0”. 

Benchmark 
# of 

Gates 
POs 

MC 
Exec 
Time 
(sec) 

BDEC 
Exec 
Time 

(µµµµ sec) 

MC 
Reported 
Reliability 

BDEC 
Reported 
Reliability 

% 
Error 

Min  
Single 
Output 

Reliability 
majority 22 1 0.25 2244 0.6616 0.6994 5.71 0.6994 
decod 66 16 0.69 6234 0.2159 0.2120 1.81 0.8820 
pcle 71 9 0.82 6899 0.2245 0.2270 1.11 0.8401 
cordic 116 2 1.26 10093 0.5443 0.5299 2.65 0.7220 
sct 143 15 1.54 13086 0.1310 0.130 0.76 0.7988 
frg1 143 3 1.59 13864 0.5895 0.6135 4.07 0.7822 
b9 147 21 1.64 14118 0.0271 0.0261 3.69 0.7223 
lal 179 19 2.52 18001 0.0924 0.0990 7.14 0.8067 
9symml 252 1 2.90 27225 0.7410 0.6189 16.48 0.6189 
9sym 429 1 4.93 48039 0.7705 0.6398 16.96 0.6398 
C5315 2516 123 33.34 267793 0.0000 0.0000 0.00 0.5822 
Average - - - - - - 5.49 - 
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To calculate the soft error rate expression at the output of a buffer, we note that soft 
error happens only when the input is “1” and either of the input or output is affected. 
That is:  

( )softgsoftinsoftgsoftininsoftbuf p ,,,,, εεεεε −+=
   (1.27) 

where εin, soft is the soft error rate at the input, and the term in the parentheses is the 
probability of error at the input or the output. 
To calculate the soft error rate at the output of a 2-input AND gate, we pay attention to 
the truth table of this gate knowing that soft error can only make “1” to “0” changes. 
This leads us to the fact that the only time that the output value of a 2-input AND gate is 
affected by a soft error is when both inputs are “1” and an error occurs at any of the 
inputs or at the output. Therefore, the soft error rate at the output of a 2-input AND gate 
is written as:  
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Similarly, the soft error rate at the output of a 2-input XOR gate can be calculated by 
looking into its truth table and realizing that the output value can be affected by a soft 
error when: (i) exactly one input is “1” and one input is “0” and soft error changes the 
logic-1 input or the output, or (ii) both inputs are “1” and soft error changes one and 
only one of these logic-1 inputs. Therefore, the soft error rate at the output of a 2-input 
XOR gate is calculated as:  

( )( )
( ) ( )

( ) ( )( )softsoftsoftsoft

softgsoftsoftgsoft

softgsoftsoftgsoftsoftXOR
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  (1.29) 

Similarly we can derive error equations for other types of gate functions. 

1.6.2 BDEC for asymmetric erroneous transition probabilities 
BDEC for Von Neumann fault model assumed equal probability of error for a “0” 

to “1” and “1” to “0” erroneous transition. But this may not always be the case for 
example in dynamic and domino logic families, the only possible erroneous transition 
during the evaluate mode is from “1” to “0”. In these situations, the solution is to 
independently calculate the overall circuit error probability using the low-to-high and 
high-to-low probability values and gate-level error rates. Both circuit error rates are 
then reported.    
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1.6.3 BDEC applied to Emerging Nano Technologies 
A quantum-dot cellular automaton (QCA) [21] is a binary logic architecture which 

can miniaturize digital circuits to the molecular levels and operate at very low power 
levels [22]. QCA devices encode and process binary information as charge 
configurations in arrays of coupled quantum dots, rather than current and voltage levels. 
One unique aspect of QCA is that both wires and gates are constructed from quantum 
dots. Each dot consists of a pair of electrons that can be configured in two different 
ways to represent a single bit of information. Hence in QCA both gates and wire are 
subject to bit-flip errors. QCAs have two main sources of error: 1) decay 
(decoherence)—when electrons that store information are lost to the environment, and 
2) switching error—when the electrons do not properly switch from one state to another 
due to background noise or voltage fluctuations [22]. BDEC uses Von Neumann (Bit-
flip) fault model, hence it is thus well suited to calculate errors in QCAs. In QCA 
wires/interconnects can also make bit-flip errors, hence BDEC must be extended to be 
used for QCAs. This extension in BDEC is straightforward and requires a simple 
replacement of each interconnect in the circuit with a probabilistically faulty buffer. 

1.7 Conclusions   
As technology scales down circuit reliability is becoming one of the main concerns 

in VLSI design. In nano scale CMOS regime circuit reliability have to be considered in 
the early design phases. This shows the need for fast reliability calculator tools that are 
accurate enough to estimate overall circuit reliability. The presented error/reliability 
calculator, BDEC, takes primary input signal and error probabilities and gate error 
probabilities and computes the reliability of the circuit. BDEC benefits from a linear-
time complexity with number of the gates in the circuit. Compared to PTM which 
generates accurate reliability results, BDEC generates highly accurate results that are 
very close to PTM ones. We showed that the efficiency, execution time and memory 
usage, of BDEC is much better than those for PTM.  

 BDEC can find application in any combinatorial logic design where reliability is a 
major concern. Presently BDEC can be applied to combinatorial circuits only, 
sequential logic is not supported. BDEC can be easily enhanced to be applied to 
sequential logic. Current version of BDEC uses level collapsing to reduce the effect of 
re-convergent fanout. In future BDEC can be enhanced to use spatial correlations 
between the signals to further reduce the inaccuracies introduced because of re-
convergent fanouts. 
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