Deep Learning-Driven Circuit Representation
Arash Fayyazi, Massoud Pedram, University of Southern California

Motivation
Facilitate Utilization of Machine Learning in VLSI Computer Aided Design

- Hardware Security
- Verification and Test
- Synthesis

Fixed-size feature matrices filled with real numbers
Contains both functional and structural pieces of information from the circuit

Outputs desire circuit property, e.g., its functionality

Deep Learning-Driven Circuit Representation

- Feature Extraction
 - Sparse Mapping
 - Level-Dependent Decaying Sum
 - Existence Vectors
- Feature Selection
 - Select the most representative nodes

Circuits with distinct properties have different representations

An Application: Circuit Recognition
Five sets of benchmarks in six different classes: Division, Modulo, Adders, Subtractors, Multiplier circuits, and others.
Achieves a classification accuracy higher than 98%

http://sportlab.usc.edu