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ABSTRACT
This paper presents LEQA, a fast latency estimation tool for evaluating 
the performance of a quantum algorithm mapped to a quantum fabric. 
The actual quantum algorithm latency can be computed by performing 
detailed scheduling, placement and routing of the quantum instructions
and qubits in a quantum operation dependency graph on a quantum 
circuit fabric. This is, however, a very expensive proposition that 
requires large amounts of processing time. Instead, LEQA, which is 
based on computing the neighborhood population counts of qubits, can 
produce estimates of the circuit latency with good accuracy (i.e., an 
average of less than 3% error) with up to two orders of magnitude 
speedup for mid-size benchmarks. This speedup is expected to increase 
superlinearly as a function of circuit size (operation count).

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Simulation, Placement and 
routing.

General Terms
Algorithms, Performance, Design.

Keywords
Quantum computing, latency estimation, algorithm, quantum fabric, 
CAD tool.

1. INTRODUCTION
To accurately calculate the latency (total execution time) of a software 
program, one needs to simulate or run it on a specific processor.
Changing the processor architecture including the size of cache 
memories or internal buffers can affect the latency dramatically. A
number of approaches have been proposed to estimate program latency 
without performing time consuming simulations [1][2]. Researchers in 
the area of quantum computing face the same issue for estimating the 
latency of a quantum algorithm, programmed in a high-level quantum 
programming language such as QPL. In this field, the problem is even 
harder because the size of quantum programs for real-size problems is 
so huge that the simulation time is much more time consuming than 
that for classical programs [3].1

Devising a new quantum algorithm is a challenging task because of the 
complex structure of today’s quantum computers and the non-intuitive 

1 By simulation, we only mean tracing the execution of quantum 
operations. Simulation of a quantum program and calculating the 
results cannot be performed efficiently on classical computers even for 
mid-size problems.
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principles (i.e. quantum physics) they are built upon. Currently, 
quantum algorithms are designed and evaluated by asymptotic runtime 
analysis, i.e. big notation [4]. Unfortunately, in many cases, the
asymptotic analysis is too coarse-grained to be of practical use to 
algorithm developers. Another problem is that quantum computers 
built using the current technology are only capable of executing toy-
size programs, so they cannot be used to experimentally determine the 
latency of a quantum program. Hence devising a fast, yet accurate, 
method for estimating the latency of a program is necessary. This 
method would enable quantum algorithm designers to evaluate their 
new algorithms and learn efficient ways of coding their quantum 
algorithms by quickly comparing the latency of different software 
coding techniques. Moreover, this method allows designers of quantum 
error correction codes (QECC) to investigate the effect of different 
error correction codes on the latency of quantum programs.
Latency is an important factor for QECC designers since quantum 
computers allow only a limited amount of time for running a quantum 
program without using error correction. QECC has a high impact on
the latency. At the same time, one needs to know the latency of a 
quantum program to know how much error correction it needs. So 
there is a complex inter-dependency between the quantum algorithm 
and its latency on one hand and the QECC used on the other hand.
In this paper, we present a procedural method to accurately and quickly 
estimate the latency of a quantum program. A tool called quantum 
algorithm latency estimator (LEQA) is developed based on this 
method. To the best of our knowledge, no research has been conducted 
on this topic before.
The rest of this paper is organized as follows. Section 2 uses the prior 
art (such as [5] and [6]) to describe a (somewhat novel) design flow for 
compiling a quantum algorithm and mapping it to primitive quantum 
structures on a 2-D plane. Section 3 explains the estimation method 
used for the latency calculation. A procedural method is presented for
estimating the average routing latency for the CNOT gates. This 
section introduces a new parameter called , which is the 
average routing latency of a qubit in an average-size presence zone 
when the routing channels are not congested. Estimation of this 
parameter is explained followed by the detailed description of LEQA 
(a prototype software implementation of the proposed method).
Section 4 presents experimental results while Section 5 concludes the 
paper.

2. A QUANTUM DESIGN FLOW
A typical quantum circuit fabric consists of an infinite 2-D array of 
identical primitive structures (called quantum templates in this paper), 
each structure containing some sites for generating/initializing qubits, 
measuring them, performing operations on one or two qubits, and 
channels for moving qubits or swapping their information. 
Unfortunately, dealing with this primitive template array is very 
cumbersome and unwieldy. So in practice another 2-D array of super-
templates (which we call tiles) is built. Each tile comprises a number of 
primitive templates. Instead of mapping a quantum circuit directly to 
the quantum fabric, quantum circuit is mapped to this tiled architecture
(see below). A quantum logic synthesis tool (surveyed in reference [7])
generates a reversible quantum circuit. Every qubit in the output circuit 



is called a logical qubit, which is subsequently encoded into several 
physical qubits to detect and correct potential errors. 
To prevent the propagation of errors in the quantum circuit, the 
(reversible) logic gates in the synthesized circuit (which are typically 
NOT, CNOT, and Toffoli gates [8]) must be converted into Fault-
Tolerant (FT) quantum operations. A possible universal (but 
redundant) set of FT quantum operations includes CNOT, H 

/4 rotation), T† (- S (phase), X, Y and Z 
gates. Note that these gates are all one and two-qubit gates.
Implementation of these FT quantum operations depend on the picked 
error correction method. Note that the set {CNOT, H, T} constitutes a 
universal basis for quantum circuit realization–the other operations are 
included to enable more logical simplification in the process of 
converting the logic synthesis output to the FT quantum operation 
realization. Each quantum fabric is natively capable of performing a 
universal set of one and two-qubit instructions (also called native 
quantum instructions). This set differs among various quantum fabrics. 
Each FT quantum operation can be implemented by using a 
composition of these native quantum instructions. 
The transformation from logical gates (results of the quantum logic 
synthesis) to the FT quantum operations and from the FT quantum 
operations to the native quantum instructions can be called quantum FT 
synthesis and quantum fabric synthesis, respectively. Quantum FT and 
quantum fabric synthesis are outside of the scope of this paper. Each of 
these FT quantum operations performs a desired function on one or 
two logical qubits as input producing one or two logical qubits as 
output; each of the input qubits is encoded with some number of 
physical qubits. The output qubits will also be coded. Moreover, each 
of these FT quantum operations requires syndrome extraction circuitry 
following the quantum gate in order to detect and correct errors (up to 
a certain limit) that may have been introduced by the quantum 
operation. Based on the adopted encoding scheme, implementation of 
each of the aforementioned FT quantum operations may require 
hundreds to tens of thousands of native quantum instructions in a given 
quantum fabric. 
Various works (e.g. [9] and [10]) have suggested using the tiled 
quantum architecture (TQA), composed of a regular two-dimensional 
array of Universal Logic Blocks (ULBs) to avoid dealing with this 
complexity. Notice that each ULB in TQA is capable of performing 
any FT quantum operations. ULBs are separated by the routing 
channels, which are needed to move logical qubits (or information 
about these qubits) from some source ULBs to a target ULB in the 
TQA. A pictorial representation of the TQA is shown in Figure 1. The 
quantum structures placed at the junctions of routing channels may be 
thought out as quantum crossbars (possibly with some qubit 
purification capability [11]). Routing channels and quantum crossbars 
are also built from quantum templates.

Figure 1. A 3×3 tiled quantum architecture (TQA)
A ULB is analogous to a Configurable Logic Block (CLB) in an FPGA 
device, in that it can implement any of a set of target functions. 
Moreover, the same ULB (as identified by its unique row and column 
indices in the ULB array) can be configured to perform different FT 
quantum operations at different times as needed. This is analogous to 
an on-the-fly-reconfigurable CLB. After appropriate high-level 

transformations, a quantum algorithm may be represented as a quantum 
operation dependency graph (QODG), in which nodes represent FT 
quantum operations and edges capture data dependencies. A one-qubit 
operation is represented by a node with one edge entering it and one 
edge leaving it. On the other hand, a two-qubit operation is shown
using a node with two edges entering it and two edges leaving it. One 
edge is called control edge while the other is called target edge. It is 
assumed that the order of gates does not change after the synthesis 
step. If two edges in the QODG come from one node and go to another
node, the edges are combined in order to keep the graph simple. Also, 
due to the no-cloning theorem, a fan-out in the circuit is forbidden. A
start node is added which connects to the first-level nodes in order to
satisfy the initial dependencies. Also an end node is added where all 
the last-level nodes are connected to it. These two extra nodes simplify
the problem formulation. A sample synthesized quantum circuit and 
the QODG constructed from it is presented in Figure 2.

(a)

(b)
Figure 2. (a) The synthesized ham3 circuit [12] for size 3 Hamming 
optimal coding. Note that this circuit only contains FT gates. (b) A 

QODG constructed from the circuit shown in (a). Numbers are 
added to relate each node to its corresponding operation in the 

circuit.
Based on the target quantum fabric and error threshold, a particular 
quantum coding is selected, and subsequently, a high-level tool maps 
the QODG into a TQA, where each ULB (tile) in this architecture can 
implement any operation in a fault-tolerant way. The latency of the 
quantum algorithm mapped to the TQA can be calculated as the length 
of the longest path (critical path) in the mapped QODG, where the 
length of a path in the QODG is the summation of latencies of 
operations located on the path plus routing latencies of their qubit
operands. Note that the critical path of the mapped QODG may not be 
the same as the critical path of the original QODG because the latter
does not contain routing latencies of logical qubits. These latencies
change the scheduling slacks and hence may change the critical path of 
the entire graph.
Mapping a QODG to a TQA comprises of three intertwined steps: 
scheduling, placement, and routing. These steps depend on each other. 
For example, the result of placement and routing can increase the 
routing latency of a logical qubit and hence the qubit may fail to meet 
the timing requirements of the scheduling. As a result, the operation
should be deferred by one or more scheduling steps. The quantum 
mapping problem, similar to the corresponding problem in the 
traditional VLSI area, is a hard problem. Hence, several heuristics have 
been proposed in the literature for solving it near-optimally
[9][10][13][14]. Unfortunately, these heuristics are still very slow. 
They produce the mapping solution with the details of every qubit 
movement on the TQA. Since quantum computers are still not mature 
enough to handle large-scale problems [15], detailed information that a 
quantum mapper produces is excessive and not very useful. Hence, we 
introduce a model to quickly estimate the latency of a quantum 
algorithm as explained next.
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3. ESTIMATING LATENCY OF A QUANTUM 
ALGORITHM

The latency of a quantum algorithm may be calculated as follows:= + + + (1)

where is the set of one-qubit FT operations (such as H, T, S, etc.); 
and are the number of CNOTs and operations of 

type (one-qubit FT operations) on the critical path; and 
determine the delay of  CNOT and the operation of type respectively; 

and capture the average routing latency for CNOT and the 
operation of type . Note that the equation treats one and two-qubit 
operations differently. The only two-qubit FT operation is CNOT while 
there are different one-qubit operations. and can be 
determined by calculating the critical path of the circuit. As explained 
earlier, considering the critical path of the original QODG instead of 
the critical path of the mapped QODG introduces some errors to the 
estimation model. So the values of and will be added to the 
operation delays in the QODG in order to determine the critical path 
more accurately. and depend on the underlying fabric 
technology, the error correction and the control techniques used. These 
parameters are the output of a ULB fabric designer tool which has a 
very low runtime execution (in the order of at most a few minutes) and 
produces exact results which can be used for any algorithms. Hence, 
values of these parameters for all types of FT operations are assumed 
to be given.  can be estimated empirically since routing of a qubit 
is not too complex. A one-qubit operation can be done in the ULB 
where the qubit currently resides or in the nearest free ULB if the 
current location is also occupied by another qubit. Value of is set 
to 2 × where is a physical parameter which captures the 
time that a logical qubit needs to move from any ULBs, channels, or 
quantum crossbars to another ULB, channel or quantum crossbar in its 
neighborhood. This empirical result shows that on average each qubit 
needs to move to its nearest ULB for a one-qubit operation. The main 
challenge is to estimate which is more interesting as it 
represents the average traveling (routing) time of two logical qubits 
from their source locations to the target ULB (i.e., the ULB where the 
two qubits will interact). This value accounts for the traffic congestion 
in the routing channels. In this paper, a procedural method for 
estimating is suggested. Knowing this value and estimating the 
critical path, one can calculate the latency of a quantum program using 
Equation (1).

3.1 Estimating the Average Routing Latency for 
CNOT
The wire length estimation problem in the traditional VLSI area [16]
approximates the average total wire length among all of the connected 
standard logic cells before performing the time-consuming cell 
placement and routing steps. Our problem is similar to the aforesaid, 
but in fact it is more complex. This is mainly because also 
depends on the scheduling of a QODG. More precisely, mapping of a
QODG to a quantum fabric consists of three steps: scheduling, 
placement and routing. These steps are interrelated, and none can be 
optimally solved without solving the others. Placement and routing 
affect the result of scheduling (which in turn affects the timing slacks 
in the QODG.) Placement cannot be done optimally without 
considering the effect of routing and channel congestions. Also note 
that in the placement problem, one should assign both the logical 
qubits and the logical operations to ULBs. Compared to the VLSI 
placement, this problem has (dynamically) moveable cells since the 
qubits move during the execution of a program. Also two or more 
operations may be assigned to a ULB as long as they are scheduled to 
be done in different time slots. Moreover, the size of QODG for real-
size problems is generally far larger than any standard VLSI gate-level 

netlists [10]. So, this estimation problem is more complex than the 
traditional VLSI counterpart.
For each logical qubit, a hypothetical presence zone is assumed in 
which the qubit performs most of its interactions. This zone also shows 
the area where the other qubits that interact with the qubit in question 
are located at some point in time. These zones are located in different 
places of the TQA fabric. They can overlap with each other. An 
overlap resembles congestion since it is possible that more than one 
qubit pass the overlapping area at the same time. Figure 3 depicts an 
illustration of five presence zones placed randomly on a fabric showing 
the interaction among five qubits. The overlapping area among zones 
3, 4, and 5 is the most congested area.

Figure 3 Five presence zones placed randomly on the fabric
Since the result of the placement is not known a priori, the zones are 
assumed to be placed randomly (uniformly and independently) on the 
fabric. can be estimated using Equation (2).×[ ] (2)

[ ] = (3)

where is the total number of logical qubits; [ ] is the expected 
surface of the fabric covered by exactly overlapping presence zones; 

is the average routing latency of a qubit in an average-size presence 
zone when all the routing channels are occupied by qubits; and is 
the area of the fabric and it is equal to the total number of ULBs 
assuming that each ULB is a 1 × 1 square. Equation (3) shows a 
constraint on [ ]. Note that the summation index in the constraint 
starts at 0 instead of 1 since some parts of the fabric may not be 
covered by any presence zones. Since calculating the latency for the 
unoccupied surface is meaningless, [ ]/ [ ] is used in 
Equation (2) as the normalized value for [ ]. To calculate [ ],
Equation (4) is used:[ ] = , 1 , (4)

where , is the probability that the ULB at position (x,y) on the fabric 
is being covered by a qubit’s presence zone randomly placed on the 
fabric; and are width and length of the fabric. (Remember that a 
fabric is modeled as a grid of × square-shape ULBs and × =

.) The coefficient is the number of ways to choose presence zones 
from the total presence zones (i.e. which equals to the total number 
of logical qubits). The two summations add the probability that each of
the ULBs on the fabric is covered by exactly presence zones. The 
overall equation calculates the expected surface of the fabric covered 
by exactly presence zones. Calculating this equation times and 
using it in Equation (2) is time consuming. Hence, only the first 20 
terms are calculated in practice. Simulation results show that this 
choice does not dramatically affect the accuracy of the estimation 
while it substantially improves the runtime of LEQA.
Equation (5) calculates , . (In the nominator, two min{. } functions 
are multiplied. Note that they are written in two lines.)

1
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highly congested



, = min , a + 1, , + 1 ×min , b + 1, , + 1a + 1 b + 1 (5)

where B is the average area of presence zones. Figure 4 depicts how 
Equation (5) is derived. The nominator counts the number of ways that 
placing a presence zone of size ( × ) on a ( × ) fabric 
covers the ULB located at position (x,y). Min{. } functions are used to 
account for the boundary situations. The denominator counts the 
number of ways a ( × ) presence zone can be placed on a ( × ) fabric.

Figure 4. Calculation of Px,y

To estimate , the average area of presence zones, a new graph called 
interaction intensity graph IIG(V,E) is built as follows. Nodes of this 
graph are logical qubits which are denoted by . An edge is added 
between nodes and if these two qubits interact with each other. 
Weight of this edge, which is denoted by ( ), is equal to the 
number of two-qubit operations between and . Note that edges are 
not directed, so and refer to the same edge. Clearly, IIG(V,E) 
has no self-loops since no edges are added for one-qubit operations. 
is defined as the number of neighbors of node  in the IIG(V,E). It is 
equal to deg ( ) which is the degree of node in the IIG(V,E). We 
model the area of the presence zone associated with , which is 
denoted by , as follows:= + 1 × + 1 (6)

Addition of one to the term accounts for the qubit itself. (There 
are + 1 qubits in the presence zone.) Qubit travels inside this 
zone and interacts with qubits. It visits ( )( ) number 
of ULBs which may not be necessarily unique during the program 
execution. The average size of presence zones, B, can be calculated by 
using a weighted average over the size of the presence zone of all 
logical qubits: = ( )( ) ×( )( ) (7)

( )( ) sums over the weights of all adjacent edges of the 
node in IIG(V,E). It increases the weight of the term if the qubit 

is involved in more two-qubit operations. 
To calculate , which was used in Equation (2), the following 
equation is used:= ,                           (1 + ) ,          (8)

where is the capacity of routing channels and is the 
average routing latency of a qubit for interacting with another qubits in 
an average-size presence zone when all the routing channels are 
uncongested. A channel is considered as uncongested if the number of 
qubits inhibiting the channel is less than or equal to . In this case, 
qubits can pass through the channel with the minimum delay (i.e. 

). If is greater than , the channel is called congested and 
qubits will form a  pipeline for passing through it (hence, they will be 
delayed depending on their position in the pipeline). We capture this 
increase in the routing latency by modeling the routing channels as an 

Figure 5 shows a pictorial view of this model. Green 
blocks show logical qubits that are currently using the channel. Red 
blocks show the qubits waiting to get access to the channel. We assume 
that the arrival rate of qubits has Poisson distribution with parameter 
since the inter-arrival time of qubits are independent and memory-less. 
Hence, a Poisson distribution can model it very well. The service rate 
is assumed to have an exponential distribution with parameter . This 
assumption is made to simplify the calculations. Experimental results 
show that this simple model performs well in practice.
Knowing that the average routing latency for each qubit under the 
service is , can be calculated as / . Moreover, the 
average length of the queue, , is which is the number of qubits 
in the queue.

Figure 5. An M/M/1 queue model for routing channels
Based on the queuing theory [17], , (i.e., the average length of 
the queue) can be calculated as in Equation (9). Exploiting this 
equation and knowing the value of , can be calculated as 
shown in Equation (10).= = (9)

= = (1 + ) (10)

Now the values of the arrival rate ( ) and the average queue length 
( ) are known. With these values, Little’s formula [17] gives the 
average waiting (service) time in the queue ( ):= (1 + ) × = (1 + ) (11)

This is the expression used in Equation (8). Estimation of is 
not a trivial task and explained in the next section.

3.2 Estimating
To estimate , a new parameter called , is defined. This 
variable represents the average routing latency of the qubit in an 
average-size presence zone when the routing channels are not 
congested.  A weighted average over all , values, similar to the
Equation (7), gives an estimation of :

= ( )( ) × ,( )( ) (12)

One way to estimate , is to randomly place + 1 qubits in 
the presence zone of the qubit and calculate the expected length of 
the shortest Hamiltonian path ( [ , ]) which goes through these 
qubits. These qubits can be placed anywhere in the presence zone, even 
they can be placed at the same location. This captures the fact that two 
qubit can travel to the same ULB for interaction. The reason for 
selecting Hamiltonian path is that according to the assumption, in a 
presence zone, only one qubit interacts with others, so it has to travel to 

locations (not necessarily unique) and interact with unique 
qubits. Interactions among other qubits are considered in their own 
presence zone calculation. A shortcoming of the aforementioned 
approach is that the problem of calculating the expected shortest 
Hamiltonian path is NP-hard [18]. Hence, the exact calculation of [ , ] is infeasible for a quick estimation method. An upper bound 
and a lower bound for the expected path length of traveling salesman 
problem (TSP) are presented in reference [19]. It assumes that ( +1) 1 points are randomly distributed in a 1 × 1 square. Equation 
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(13) presents a lower bound and equation (14) shows an upper bound 
for the expected path length of TSP.

lower bound: 0.708 + 1 + 0.551 (13)

upper bound: 0.718 + 1 + 0.731 (14)

Taking the average of the upper bound and the lower bound gives a 
good estimation for the expected path length of TSP. In our problem, 
the square length is times greater so the result should be multiplied 
by . Moreover, since TSP solution is a tour, the result should also 
be multiplied by ( 1)/ to give the Hamiltonian path length 
which has one edge less than the tour. Equation (15) shows the 
resultant estimation for , .

, × 0.713 + 1 + 0.641 × 1 (15)

By knowing the value of [ , ], , can be calculated as 
follows:

, = ,× (16)

where is a parameter depending on the physical characteristics of the 
fabric technology mostly the speed of moving a logical qubit through 
the channels. This parameter also can be used for tuning the LEQA 
with different quantum mappers. is presented in the denominator to 
give the average routing latency for an operation.

3.3 LEQA Algorithm and Its Performance
Algorithm 1 shows the implementation of LEQA based on the 
presented procedural method. Note that QODG is an input of the 
algorithm. One can easily construct it from a synthesized quantum 
circuit as shown in Figure 2. Size of the fabric is another input. This 
value can be changed to find the optimal size for the fabric which 
results in the minimum delay. The other inputs are physical parameters. 
The runtime complexity of the algorithm may be summarized as 
follows: + + . . log (17)

More details on the analytical analysis to derive this time complexity 
are presented in the Supplemental Material section.

4. EXPERIMENTAL RESULTS
4.1 Simulation Setup
LEQA is implemented in Java. For the baseline, a quantum scheduling, 
placement, and routing tool (called QSPR) [20] was used. QSPR was
minimally modified to work on the tile-based architecture of Figure 1.
Table 1 lists the physical parameters of the TQA used for simulations. 
QSPR was also used to calculate the delay of performing FT operations 
on an ion-trap circuit fabric (left table). The [[7,1,3]] Steane code was
used as the encoding and error correction scheme. Hence, delays of the 
T and T† gates ( and ) which are non-transversal in this coding, 
are higher than the others. These numbers can be adjusted based on any 
underlying technologies and does not limit the functionality of LEQA 
to a specific quantum realization technique. In the right table, the 
specifications of a TQA are presented.

Table 1. List of physical parameters of the TQA
Parameter Value Parameter Value

5440μs 5, 10940μs 0.001, , 5240μs A= × 3600 = 60 × 60
4930μs Tmove 100μs

Benchmarks are taken from reference [12] and synthesized using the 
fault-tolerant gate library. The simple method presented in reference 
[4] is used to decompose n-input Toffoli and n-input Fredking gates
(n>3) to several 3-input Toffoli and Fredking gates. Note that this 
method adds ancillary qubits to the circuit. Also no ancillary sharing is 
performed among the decomposed gates. The resultant 3-input Fredkin 
gates are replaced by three 3-input Toffoli gates. Finally, 3-input 

Toffoli gates are decomposed to a set of fault-tolerant gates using the 
method presented in reference [21] and shown in Figure 2.
LEQA and QSPR share the same parsers for parsing the inputs, the 
TQA specification, and physical parameters. A PC with Intel Pentium 
Dual-Core E5500 CPU clocked at 2.80GHz with 4GB RAM running
Windows 7 and Java Development Kit (JDK) 7 is used for simulations.

4.2 Simulation Results
Table 2 shows the comparison between the actual delay computed by 
QSPR and the estimated delay calculated by LEQA. As can be seen, 
the average estimation error is equal to 2.11% while the maximum 
error is below 9%.

Table 3 lists the information about the benchmarks as well, i.e. the 
qubit count and operation count. The benchmarks are sorted based on 
the operation count. Also Table 3 compares the runtime of LEQA and 
QSPR. Evidently, when the operation count grows, LEQA performs 
better. In the largest benchmark, which its netlist file size is more than 
12MB, LEQA performs more than two orders of magnitude faster than 
QSPR. This trend shows that as the size of netlist grows, LEQA beats 
QSPR in terms of speed and still gives accurate results.

As an interesting case, consider the last two benchmarks, i.e. 
gf2^128mult and gf2^256mult. The operation count of the latter 
benchmark is almost 4 times of the former one. By comparing the 
runtime of LEQA and QSPR for these two benchmarks, it can be seen 
that runtime of LEQA is increased by a factor of 3 while the runtime of 
QSPR is increased by a factor of 4.5. This further depicts the 
scalability of LEQA compared to QSPR.
LEQA achieves 114X speedup over QSPR for the largest benchmark, 
i.e. gf2^256mult. This factor increases for larger benchmarks.
Precisely, QSPR runtime scales super linearly with operation count in 
the circuit (with degree of 1.5) whereas LEQA runtime depends only 
linearly on this count (see Equation (17)). Reference [10] reports that 
Shor algorithm for a 1024-bit integer has 1.35×1015 physical
operations. Using two-level [[7,1,3]] Steane code, each logical
operation results in about 105 physical operations. So this algorithm 

Algorithm 1: LEQA
Inputs: QODG quantum operation dependency graph,  , width 
and length of the fabric, and delays of logical gates, 
the capacity of routing channels, speed of a logical qubit through 
the routing channels,  number of logical qubits
Outputs: estimated latency of the input program

1 Make IIG(V,E) from the given  QODG
2 Let = deg ( ) for every and calculate from Eq (6).
3 Calculate from Eq (7).
4 For ( = 1 to )
5 Calculate , using Eq (15).
6 Calculate , using Eq (16).
7 End
8 Calculate from Eq (12).
9 For (x= 1 to )
10 For (y= 1 to )
11 Calculate , using Eq (5).
12 End
13 End
14 For ( = 1 to )
15 Calculate from Eq (8).
16 Calculate [ ] from Eq (4).
17 End
18 Calculate from the approximation given in Eq (2)
19 Update the based on the value of and empirical 

value for and then calculate and for all 
operations types

20 Calculate  using the estimation given in Eq (1).
21 Return D



has almost 1.35×1010 logical operations. Using extrapolation, QSPR
would compute the latency in ~2 years whereas LEQA needs only 16.5 
hours!! Moreover, multiple QSPR runs are needed to select minimum 
overhead QECC design.

Table 2. Comparison between the actual latency computed by 
QSPR and the estimated latency calculated by LEQA

Benchmark Actual Delay 
(sec)

Estimated 
Delay (sec)

Absolute 
Error (%)

8bitadder 1.617E+00 1.667E+00 3.10
gf2^16mult 4.460E+00 4.524E+00 1.45
hwb15ps 1.940E+01 1.993E+01 2.76
hwb16ps 1.852E+01 1.903E+01 2.76
gf2^18mult 5.085E+00 5.109E+00 0.46
gf2^19mult 5.393E+00 5.407E+00 0.25
gf2^20mult 5.654E+00 5.660E+00 0.11
ham15 2.518E+01 2.530E+01 0.51
hwb20ps 3.026E+01 3.106E+01 2.66
hwb50ps 1.236E+02 1.274E+02 3.10
gf2^50mult 1.474E+01 1.495E+01 1.44
mod1048576adder 2.027E+02 1.958E+02 3.38
gf2^64mult 1.904E+01 1.935E+01 1.64
hwb100ps 3.427E+02 3.402E+02 0.72
gf2^100mult 3.015E+01 2.998E+01 0.57
hwb200ps 9.638E+02 8.839E+02 8.29
gf2^128mult 3.886E+01 3.838E+01 1.24
gf2^256mult 7.936E+01 7.654E+01 3.55

Table 3. Information about benchmark circuits and comparison 
between the runtime of QSPR and LEQA

Benchmark Qubit 
Count

Operation
Count

QSPR 
Runtime 

(sec)

LEQA 
Runtime 

(sec)

Speedup 
(X)

8bitadder 24 822 0.9 0.115 8.2
gf2^16mult 48 3,885 3.0 0.289 10.3
hwb15ps 47 3,885 2.7 0.256 10.7
hwb16ps 55 3,811 2.9 0.250 11.5
gf2^18mult 54 4,911 3.5 0.276 12.6
gf2^19mult 57 5,469 3.7 0.259 14.2
gf2^20mult 60 6,019 5.1 0.301 17.1
ham15 146 5,308 4.3 0.257 16.6
hwb20ps 83 6,395 3.8 0.272 13.9
hwb50ps 370 25,370 11.8 0.450 26.3
gf2^50mult 150 37,647 16.9 0.398 42.5
mod1048576adder 1,180 37,070 20.2 0.382 52.8
gf2^64mult 192 61,629 29.4 0.461 63.8
hwb100ps 1,106 67,735 26.7 0.575 46.4
gf2^100mult 300 150,297 65.2 0.859 76.0
hwb200ps 3,145 175,490 66.7 0.915 72.9
gf2^128mult 384 246,141 106.0 1.381 78.3
gf2^256mult 768 983,805 524.8 4.576 114.7

5. CONCLUSION
This paper presented LEQA—a fast latency estimation tool for 
evaluating the latency of a quantum algorithm mapped to a tiled 
quantum architecture. It uses a procedural method to calculate the 
latency of an algorithm based on computing the neighborhood 
population counts of qubits. Simulation results showed that in mid-size
circuits, LEQA is two orders of magnitude faster than the modern
quantum mapper that performs detailed scheduling, placement and 
routing of the quantum instructions and qubits in a quantum operation
dependency graph to a quantum fabric. This speedup is expected to 
increase superlinearly as a function of circuit size (operation count).
Moreover, LEQA could produce quick estimates of the circuit latency 
with sufficient accuracy i.e., an average of 2.11% error.
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Supplemental Material 
1. PERFORMANCE ANALYSIS OF LEQA
The number of nodes in a QODG is equal to the number of operations 
in the circuit plus two (because of the dummy start and end nodes) and 
designated as . The number of edges in this graph is also 
shown by . Knowing these parameters, the runtime complexity 
of each line (or set of lines) in Algorithm 1 can be calculated as 
follows:
Line 1: Making of graph IIG(V,E) needs a traversal of QODG which 
takes ( + ).
Line 2: Calculation of and can be done in ( ).
Line 3: Calculating the weights need to sum over all edges in the 
IIG(V,E) which has at most ( ) edges. Calculating the 
summation over weighted s takes ( ). Overall this line takes ( + ) to be done.
Lines 4-7: Calculation of , and , can be done in 
constant time and hence the for-loop takes ( ) to complete.
Line 8: Same as line 3, it takes ( + ). One can reuse the 
calculated weights in line 3 to reduce the calculation time to ( ).
Lines 9-13: The nested for-loops iterate (= × ) times in total. In 
each iteration, the value of is calculated in constant time. So it 
takes ( ) time to complete.
Lines 14-17: The for-loop iterates times and in each iteration, line 
15 takes (1) whereas line 16 takes ( . log ). ( ) is the result of 
the double summation over the area and (log ) is the time needed to 

calculate , and 1 , . The value of can be 
calculated in constant time using the following recursive formula:( , 0) = 1 ( , ) = ( , 1) × + 1 , 0 < (18)

Overall these lines take ( . . log ) for completion. As explained in 
the paper, only the first 20 values for [ ] is calculated in practice, i.e.  
for = 1 to 20. Hence, in action LEQA performs much faster than ( . . log ).
Line 18: The calculation takes ( ).
Line 19: Updating the delay of all instructions takes ( ).
Calculation of the critical path in a directed acyclic graph (DAG) takes ( + ) (Chapter 24 of the reference [1] explains an 
algorithm with this time complexity). Deriving the values of
and can be done by traversing the critical path which has the 
length ( ) in the worst case.
Line 20: Calculation of can be done in constant time.
So, the overall runtime of the algorithm may be summarized as 
follows: + + . . log (19)
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